1887

Chapter 6 : Why Galactose? The Early Curiosities and the Consequences

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Why Galactose? The Early Curiosities and the Consequences, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap06-2.gif

Abstract:

This chapter is the author's reflection of the pioneering work of Michael Yarmolinsky and Gerard Buttin in studying the galactose operon based on a few simple curiosities. The galactose () operon was an example of an amphibolic operon. It encodes enzymes for the metabolism of the sugar D-galactose in . D-Galactose is not only used as a carbon energy source, but its metabolic products are also precursors of biosynthetic glycosylation reactions. Most of the enzymes in the D-galactose metabolic pathway were first characterized by Luis Leloir. Glucose also affects the transcription of the operon via cAMP level in an unusual way if the inducer d-galactose is generated intracellularly without glucose interfering with the uptake, for example, by hydrolysis of lactose. Under conditions of UTP depletion created by the presence of D-galactose in GalE-deficient cells, the P2 promoter was specifically derepressed and makes more GalE enzyme to compensate for the deficiency. Higher concentrations of D-galactose release GalR from O and the inhibitory GalR contact to RNA polymerase. The differential solo effects of GalR on the two gal promoters have physiological consequences. The internal inducer concentration is not high enough to break up the P1 repression by RNA polymerase contact but allows enhancement of P2-mediated GalE enzyme synthesis, making UDP-galactose and UDP-glucose for biosynthetic glycosylations from non-galactose carbons. It was observed that cells deleted for the galR gene and constitutive for gal expression can be further induced by exogenous D-galactose (ultra-induction).

Citation: Adhya S. 2011. Why Galactose? The Early Curiosities and the Consequences, p 43-53. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch6

Key Concept Ranking

Mobile Genetic Elements
1.0433573
RNA Polymerase I
0.59795827
RNA Polymerase
0.52945703
1.0433573
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Leloir pathway of D-galactose metabolism in

Citation: Adhya S. 2011. Why Galactose? The Early Curiosities and the Consequences, p 43-53. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Structure and regulation of the operon in

Citation: Adhya S. 2011. Why Galactose? The Early Curiosities and the Consequences, p 43-53. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Assembly of a DNA loop in the regulatory DNA.

Citation: Adhya S. 2011. Why Galactose? The Early Curiosities and the Consequences, p 43-53. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Activation of and repression of promoters by GalR, respectively, through a protein-protein contact between GalR and carboxy terminal domain of α-subunit of RNA polymerase.

Citation: Adhya S. 2011. Why Galactose? The Early Curiosities and the Consequences, p 43-53. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Intrinsic DNA sequence in determining RNA polymerase backtracking and elongation to control transcription during roadblock by GalR sitting on . (a) Pause and backtracking sequence shown in upstream box; (b) antipause sequence favoring elongation shown in upstream box. (Details are in reference .)

Citation: Adhya S. 2011. Why Galactose? The Early Curiosities and the Consequences, p 43-53. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816810.ch06
1. Adhya, S., and , H. Echols. 1966. Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport. J. Bacteriol. 92:601608.
2. Adhya, S., and , M. Gottesman. 1978. Control of transcription termination. Annu. Rev. Biochem. 47:967996.
3. Adhya, S.,, M. Gottesman, and , B. De Crombrugghe. 1974. Release of polarity in Escherichia coli by gene N of phage lambda: termination and antitermination of transcription. Proc. Natl. Acad. Sci. USA 71:25342538.
4. Adhya, S., and , W. Miller. 1979. Modulation of the two promoters of the galactose operon of Escherichia coli. Nature 279:492494.
5. Adhya, S. L., and , J. A. Shapiro. 1969. The galactose operon of E. coli K-12. I. Structural and pleiotropic mutations of the operon. Genetics 62:231247.
6. Aki, T.,, H. E. Choy, and , S. Adhya. 1996. Histone-like protein HU as a specific transcriptional regulator: co-factor role in repression of gal transcription by GAL repressor. Genes Cells 1:179188.
7. Busby, S., and , R. H. Ebright. 1997. Transcription activation at class II CAP-dependent promoters. Mol. Microbiol. 23:853859.
8. Busby, S., and , R. H. Ebright. 1999. Transcription activation by catabolite activator protein (CAP). J. Mol. Biol. 293:199213.
9. Buttin, G. 1963. Regulatory mechanisms in the biosynthesis of the enzymes of galactose metabolism in Escherichia coli K-12. I. The induced biosynthesis of galactokinase and the simultaneous induction of the enzymatic sequence. J. Biol. Med. 7:164182.
10. Buttin, G. 1963. Regulatory mechanisms in the biosynthesis of the enzymes of galactose metabolism in Escherichia coli K-12. II. The genetic determinism of the regulation. J. Mol. Biol. 7:183205.
11. Caputto, R.,, L. R. Leloir,, R. E. Trucco,, C. E. Cardini, and , A. C. Paladini. 1949. The enzymatic transformation of galactose into glucose derivatives. J. Biol. Chem. 179:497498.
12. Chatterjee, S.,, Y. N. Zhou,, S. Roy, and , S. Adhya. 1997. Interaction of Gal repressor with inducer and operator: induction of gal transcription from repressor-bound DNA. Proc. Natl. Acad. Sci. USA 94:29572962.
13. Choy, H. E.,, R. R. Hanger,, T. Aki,, M. Mahoney,, K. Murakami,, A. Ishihama, and , S. Adhya. 1998. Repression and activation of promoter-bound RNA polymerase activity by Gal repressor. J. Mol. Biol. 272:293300. (Erratum: 275:715, 1998.)
14. Choy, H. E.,, S. W. Park,, T. Aki,, P. Parrack,, N. Fujita,, A. Ishihama, and , S. Adhya. 1995. Repression and activation of transcription by Gal and Lac repressors: involvement of alpha subunit of RNA polymerase. EMBO J. 14:45234529.
15. Choy, H. E.,, S. W. Park,, P. Parrack, and , S. Adhya. 1995. Transcription regulation by inflexibility of promoter DNA in a looped complex. Proc. Natl. Acad. Sci. USA 92:73277331.
16. Das, A.,, D. Court, and , S. Adhya. 1976. Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho. Proc. Natl. Acad. Sci. USA 73:19591963.
17. Das, A.,, C. Merril, and , S. Adhya. 1978. Interaction of RNA polymerase and rho in transcription termination: coupled ATPase. Proc. Natl. Acad. Sci. USA 75:48284832.
18. De Crombrugghe, B.,, S. Adhya,, M. Gottesman, and , I. Pastan. 1973. Effect of Rho on transcription of bacterial operons. Nat. New Biol. 241:260264.
19. Dunn, T. M.,, S. Hahn,, S. Ogden, and , R. F. Schleif. 1984. An operator at −280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders repression. Proc. Natl. Acad. Sci. USA 81:50175020.
20. Eustance, R. J.,, S. A. Bustos, and , R. F. Schleif. 1994. Reaching out. Locating and lengthening the interdomain linker in AraC protein. J. Mol. Biol. 242:330338.
21. Franklin, N. C. 1974. Altered reading of genetic signals fused to the N operon of bacteriophage lambda: genetic evidence for modification of polymerase by the protein product of the N gene. J. Mol. Biol. 89:3348.
22. Friedman, D. I.,, G. S. Wilgus, and , R. J. Mural. 1973. Gene N regulator function of phage lambda imm21: evidence that a site of N action differs from a site of N recognition. J. Mol. Biol. 81:505516.
23. Ganesan, A. K., and , B. Rotman. 1966. Transport systems for galactose and galactosides in Escherichia coli. I. Genetic determination and regulation of the methyl-galactoside permease. J. Mol. Biol. 16:4250.
24. Geanacopoulos, M., and , S. Adhya. 1997. Functional characterization of roles of GalR and GalS as regulators of the gal regulon. J. Bacteriol. 179:228234.
25. Guarente, L. 1979. Restoration of termination by RNA polymerase mutations is rho allele-specific. J. Mol. Biol. 129:295304.
26. Guidi-Rontani, C.,, A. Danchin, and , A. Ullmann. 1984. Transcriptional control of polarity in Escherichia coli by cAMP. Mol. Gen. Genet. 195:96100.
27. Irani, M. H.,, L. Orosz, and , S. Adhya. 1983. A control element within a structural gene: the gal operon of Escherichia coli. Cell 32:783788.
28. Jacob, F., and , J. Monod. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318356.
29. Jin, D. J. 1994. Slippage synthesis at the galP2 promoter of Escherichia coli and its regulation by UTP concentration and cAMP-CRP receptor protein. J. Biol. Chem. 269:1722117227.
30. Jin, D. J., and , C. L. Turnbough, Jr. 1994.Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products. J. Mol. Biol. 236:7280.
31. Jordan, E.,, H. Saedler, and , P. Starlinger. 1968. O0 and strong-polar mutations in the gal operon are insertions. Mol. Gen. Genet. 102:353363.
32. Jordan, E.,, M. B. Yarmolinsky, and , H. M. Kalckar. 1962. Control of inducibility of enzymes of the galactose sequence in Escherichia coli. Proc. Natl. Acad. Sci. USA 48:3240.
33. Kar, S., and , S. Adhya. 2001. Recruitment of HU by piggyback: a special role of GalR in represso-some assembly. Genes Dev. 15:22732281.
34. Komissarova, N., and , M. Kashlev. 1997. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272:1532915338.
35. Korn, L. J., and , C. Yanofsky. 1976. Polarity suppressors defective in transcription termination at the attenuator of the tryptophan operon of Escherichia coli have altered rho factor. J. Mol. Biol. 106:231241.
36. Lee, H. J.,, H. J. Jeon,, S. C. Ji,, S. H. Yun, and , H. M. Lim. 2008. Establishment of an mRNA gradient depends on the promoter: an investigation of polarity in gene expression. J. Mol. Biol. 378:318327.
37. Lewis, D. E., and , S. Adhya. 2002. In vitro repression of the gal promoters by GalR and HU depends on the proper helical phasing of the two operators. J. Biol. Chem. 277:24982504.
38. Lewis, D. E.,, N. Komissarova,, P. Le,, M. Kashlev, and , S. Adhya. 2008. DNA sequences in gal operon override transcription elongation blocks. J. Mol. Biol. 382:843858.
39. Lia, G.,, D. Bensimon,, V. Croquette,, J. F. Allemand,, D. Dunlap,, D. E. Lewis,, S. Adhya, and , L. Finzi. 2003. Supercoiling and denaturation in Gal repressor/heat unstable nucleoid protein (HU)-mediated DNA looping. Proc. Natl. Acad. Sci. USA 100:1137311377.
40. Lia, G.,, S. Semsey,, D. E. Lewis,, S. Adhya,, D. Bensimon,, D. Dunlap, and , L. Finzi. 2008. The antiparallel loops in gal DNA. Nucleic Acids Res. 36:42044210.
41. Magasanik, B., and , F. C. Neidhardt. 1956. The effect of glucose on the induced biosynthesis of bacterial enzymes in the presence and absence of inducing agents. Biochim. Biophys. Acta 21:324334.
42. Martin, R. G.,, D. F. Silbert,, W. E. Smith, and , H. J. Whitfield, Jr. 1966. Polarity in the histidine operon. J. Mol. Biol. 21:357369.
43. Møller, T.,, T. French,, C. Udesen,, K. Gerdes, and , P. Valentin-Hansen. 2002. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16:16961706.
44. Morse, D. E.,, R. F. Baker, and , C. Yanofsky. 1968. Translation of the tryptophan messenger RNA of Escherichia coli. Proc. Natl. Acad. Sci. USA 60:14281435.
45. Morse, D. E., and , C. Yanofsky. 1969. Polarity and the degradation of mRNA. Nature 224:329331.
46. Morse, M. L.,, E. M. Lederberg, and , J. Lederberg. 1956. Transduction in Escherichia coli K-12. Genetics 41:142156.
47. Musso, R. E.,, R. Di Lauro,, S. Adhya, and , B. de Crombrugghe. 1977. Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. Cell 12:847854.
48. Pastan, I., and , S. Adhya. 1976. Cyclic adenosine 5′-monophosphate in Escherichia coli. Bacteriol. Rev. 40:527551.
49. Perlman, R. L.,, B. De Crombrugghe, and , I. Pastan. 1969. Cyclic AMP regulates catabolite and transient repression in E. coli. Nature 223:810812.
50. Pontiggia, A.,, A. Negri,, M. Beltrame, and , M. E. Bianchi. 1993. Protein HU binds specifically to kinked DNA. Mol. Microbiol. 7:343350.
51. Rhodius, V. A., and , S. J. Busby. 2000. Interactions between activating region 3 of the Escherichia coli cyclic AMP receptor protein and region 4 of the RNA polymerase sigma(70) subunit: application of suppression genetics. J. Mol. Biol. 299:311324.
52. Richardson, J. P.,, P. Fink,, K. Blanchard, and , M. Macy. 1977. Bacteria with defective rho factors suppress the effects of N mutations in bacteriophage lambda. Mol. Gen. Genet. 153:8185.
53. Roberts, J. W. 1969. Termination factor for RNA synthesis. Nature 224:11681174.
54. Rojo, F.,, M. Mencía,, M. Monsalve, and , M. Salas. 1998. Transcription activation and repression by interaction of a regulator with the alpha subunit of RNA polymerase: the model of phage phi 29 protein p4. Prog. Nucleic Acid Res. Mol. Biol. 60:2946.
55. Rotman, B.,, A. K. Ganesan, and , R. Guzman. 1968. Transport systems for galactose and galactosides in Escherichia coli. II. Substrate and inducer specificities. J. Mol. Biol. 36:247260.
56. Roy, S.,, E. K. Dimitriadis,, S. Kar,, M. Geana-copoulos,, M. S. Lewis, and , S. Adhya. 2005. Gal repressor-operator-HU ternary complex: pathway of repressosome formation. Biochemistry 44:53735380.
57. Roy, S.,, H. M. Lim,, M. Liu, and , S. Adhya. 2004. Asynchronous basepair openings in transcription initiation: CRP enhances the rate-limiting step. EMBO J. 23:869875.
58. Ryu, S.,, N. Fujita,, A. Ishihama, and , S. Adhya. 1998. GalR-mediated repression and activation of hybrid lacUV5 promoter: differential contacts with RNA polymerase. Gene 223:235245.
59. Semsey, S.,, S. Krishna,, K. Sneppen, and , S. Adhya. 2007. Signal integration in the galactose network of Escherichia coli. Mol. Microbiol. 65:465476.
60. Semsey, S.,, M. Y. Tolstorukov,, K. Virnik,, V. B. Zhurkin, and , S. Adhya. 2004. DNA trajectory in the Gal repressosome. Genes Dev. 18:18981907.
61. Semsey, S.,, K. Virnik, and , S. Adhya. 2006. Three-stage regulation of the amphibolic gal operon: from repressosome to GalR-free DNA. J. Mol. Biol. 358:355363.
62. Shapiro, J. A. 1969. Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J. Mol. Biol. 40: 93105.
63. Sidorenkov, I.,, N. Komissarova, and , M. Kashlev. 1998. Crucial role of the RNA:DNA hybrid in the processivity of transcription. Mol. Cell 2:5564.
64. Tokeson, J. P.,, S. Garges, and , S. Adhya. 1991. Further inducibility of a constitutive system: ultra-induction of the gal operon. J. Bacteriol. 173:23192327.
65. Ullmann, A.,, E. Joseph, and , A. Danchin. 1979. Cyclic AMP as a modulator of polarity in polycistronic transcriptional units. Proc. Natl. Acad. Sci. USA 76:31943197.
66. Weickert, M. J., and , S. Adhya. 1992. Isorepressor of the gal regulon in Escherichia coli. J. Mol. Biol. 226:6983.
67. Wilson, D. B., and , D. S. Hogness. 1969. The enzymes of the galactose operon in Escherichia coli. IV. The frequencies of translation of the terminal cistrons in the operon. J. Biol. Chem. 244:21432148.
68. Zabin, I.,, A. Kepes, and , J. Monod. 1968. Thiogalactoside transacetylase. J. Biol. Chem. 237:253257.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error