1887

Chapter 8 : Genetics of the Heme Pathway and Its Regulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Genetics of the Heme Pathway and Its Regulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap08-2.gif

Abstract:

In the spring of 1984, the author decided to study the regulation of heme biosynthetic enzymes and thereby contribute in a peripheral way to the B project. This review presents a personal view of the pathway for heme biosynthesis and its regulation in the enteric bacteria and . The chapter emphasizes the genetic aspects with some historical perspective. It discusses what is known about regulation of the heme pathway in these bacteria. The HemA protein is quite unstable in cells growing normally, but it is stabilized by more than 10-fold specifically under conditions of heme limitation. The chapter suggests three simple models for HemA regulation. In the first model, the ATP concentration in vivo is postulated to decrease during heme-limited growth to a point that ATP becomes limiting for energy-dependent proteolysis. Second, when the Lon and ClpAP proteases act on HemA, the K for ATP might be higher than for other substrates. Finally, the third model supposes that the protease-sensitive conformation is stabilized by formation of a disulfide bond, which is favored when the cell has excess oxidation capacity.

Citation: Elliott T. 2011. Genetics of the Heme Pathway and Its Regulation, p 65-74. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch8

Key Concept Ranking

Vitamin B12
0.50205255
Heme
0.5
Coenzyme A
0.46957523
Hydrogen Peroxide
0.46601215
0.50205255
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Genetic steps of heme biosynthesis and side pathways.

Citation: Elliott T. 2011. Genetics of the Heme Pathway and Its Regulation, p 65-74. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Cells of a mutant grow in response to a localized application of heme, and accumulate uroporphyrin III (visible by red fluorescence under UV light) in the region where cells are heme-limited. (Adapted from reference .)

Citation: Elliott T. 2011. Genetics of the Heme Pathway and Its Regulation, p 65-74. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Three simple models for HemA regulation. (Reprinted from reference .)

Citation: Elliott T. 2011. Genetics of the Heme Pathway and Its Regulation, p 65-74. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816810.ch08
1. Avissar, Y., and , S. Beale. 1989. Identification of the enzymatic basis for delta-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J. Bacteriol. 171:29192924.
2. Beale, S. I. 1996. Biosynthesis of hemes, p. 731748. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and , H. E. Umbarger (ed.), Escherichia coli and Salmonella. Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
3. Becker, G.,, E. Klauck, and , R. Hengge-Aronis. 1999. Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc. Natl. Acad. Sci. USA 96:64396444.
4. Casadaban, M. J., and , S. N. Cohen. 1979. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc. Natl. Acad. Sci. USA 76:45304533.
5. Choi, P.,, L. Wang,, C. D. Archer, and , T. Elliott. 1996. Transcription of the glutamyl-tRNA reductase (hemA) gene in Salmonella typhimurium and Escherichia coli: role of the hemA P1 promoter and the arcA gene product. J. Bacteriol. 178:638646.
6. Davis, B. 1987. Mechanism of bactericidal action of aminoglycosides. Microbiol. Rev. 51:341350.
7. Elliott, T. 1989. Cloning, genetic characterization and nucleotide sequence of the hemA-prfA operon of Salmonella typhimurium. J. Bacteriol. 171:39483960.
8. Elliott, T. 1993. Transport of 5-aminolevulinic acid by the dipeptide permease in Salmonella typhimurium. J. Bacteriol. 175:325331.
9. Gardella, T.,, H. Moyle, and , M. M. Susskind. 1989. A mutant Escherichia coli σ70 subunit of RNA polymerase with altered promoter specificity. J. Mol. Biol. 206:579590.
10. Gennis, R. B., and , V. Stewart. 1996. Respiration, p. 217261. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and , H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC.
11. Gorini, L., and , W. K. Maas. 1957. The potential for the formation of a biosynthetic enzyme in Escherichia coli. Biochim. Biophys. Acta 25:208209.
12. Gottesman, S. 1996. Roles for energy-dependent proteases in regulatory cascades, p. 503519. In E. C. C. Lin and , A. S. Lynch (ed.),Regulation of Gene Expression in Escherichia coli. R. G. Landes Co., Austin, TX.
13. Gottesman, S., and , M. R. Maurizi. 1992. Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol. Rev. 56:592621.
14. Gutnick, D.,, J. M. Calvo,, T. Klopotowski, and , B. N. Ames. 1969. Compounds which serve as the sole source of carbon or nitrogen for Salmonella typhimurium LT-2. J. Bacteriol. 100:215219.
15. Hoober, J. K.,, A. Kahn,, D. E. Ash,, S. Gough, and , C. G. Kannangara. 1988. Biosynthesis of Δ-aminolevulinate in greening barley leaves. IX. Structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate-1-semialdehyde aminotransferase. Carlsberg Res. Commun. 53:1125.
16. Hughes, K. T., and , J. R. Roth. 1984. Conditionally transposition-defective derivative of Mu d1(Amp Lac). J. Bacteriol. 159:130137.
17. Imlay, J. A. 1995. A metabolic enzyme that rapidly produces superoxide, fumarate reductase of Escherichia coli. J Biol. Chem. 270:1976719777.
18. Imlay, J. A., and , S. Linn. 1988. DNA damage and oxygen radical toxicity. Science 240:13021309.
19. Jahn, D.,, U. Michelsen, and , D. Soll. 1991. Two glutamyl-tRNA reductase activities in Escherichia coli. J. Biol. Chem. 266:25422548.
20. Janzer, J.,, H. Stan-Lotter, and , K. Sanderson. 1981. Isolation and characterization of hemin-permeable, envelope-defective mutants of Salmonella typhimurium. Can. J. Microbiol. 27:226237.
21. Javor, G. T., and , E. F. Febre. 1992. Enzymatic basis of thiol-stimulated secretion of porphyrins by Escherichia coli. J. Bacteriol. 174:10721075.
22. Kleckner, N.,, J. Roth, and , D. Botstein. 1977. Genetic engineering in vivo using translocatable drug-resistance elements. New methods in bacterial genetics. J. Mol. Biol. 116:125159.
23. Kobayashi, T.,, S. Kishigami,, M. Sone,, H. Inokuchi,, T. Mogi, and , K. Ito. 1997. Respiratory chain is required to maintain oxidized states of the DsbA-DsbB disulfide bond formation system in aerobically growing Escherichia coli cells. Proc. Natl. Acad. Sci. USA 94:1185711862.
24. Lascelles, J. 1979. Heme-deficient mutants of Staphylococcus aureus. Methods Enzymol. 56:172178.
25. McConville, M. L., and , H. P. Charles. 1979. Isolation of haemin-requiring mutants of Escherichia coli K12. J. Gen. Microbiol. 113:155164.
26. McConville, M. L., and , H. P. Charles. 1979. Mutants of Escherichia coli K12 permeable to haemin. J. Gen. Microbiol. 113:165168.
27. McNicholas, P. M.,, G. Javor,, S. Darie, and , R. P. Gunsalus. 1997. Expression of the heme biosynthetic pathway genes hemCD, hemH, hemM and hemA of Escherichia coli. FEMS Microbiol. Lett. 146:143148.
28. Membrillo-Hernandez, J.,, M. D. Coopamah,, M. F. Anjum,, T. M. Stevanin,, A. Kelly,, M. N. Hughes, and , R. K. Poole. 1999. The flavohemoglobin of Escherichia coli confers resistance to a nitrosating agent, a “nitric oxide releaser,” and paraquat and is essential for transcriptional responses to oxidative stress. J. Biol. Chem. 274: 748754.
29. Miyamoto, K.,, K. Nakahigashi,, K. Nishimura, and , H. Inokuchi. 1991. Isolation and characterization of visible light-sensitive mutants of Escherichia coli K-12. J Mol. Biol. 219:393398.
30. Peters, A. C.,, J. W. T. Wimpenny, and , J. P. Coombs. 1987. Oxygen profiles in, and in the agar beneath, colonies of Bacillus cereus, Staphylococcus albus, and Escherichia coli. J. Gen. Microbiol. 133:12571263.
31. Roth, J. R.,, J. G. Lawrence, and , T. A. Bobik. 1996. Cobalamin (coenzyme B12): synthesis and biological significance. Annu. Rev. Microbiol. 50:137181.
32. Sasarman, A.,, M. Surdeanu,, G. Szegli,, T. Horodniceanu,, V. Greceanu, and , A. Dumitrescu. 1968. Hemin-deficient mutants of Escherichia coli K-12. J. Bacteriol. 96:570572.
33. Sasarman, A.,, K. E. Sanderson,, M. Surdeanu, and , S. Sonea. 1970. Hemin-deficient mutants of Salmonella typhimurium. J. Bacteriol. 102:531536.
34. Shemin, D. 1956. The biosynthesis of porphyrins. Harvey Lect. (19541955). 50:258284.
35. Tien, W., and , D. C. White. 1968. Linear sequential arrangement of genes for the biosynthetic pathway of protoheme in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 61:13921398.
36. Vothknecht, U. C.,, C. G. Kannangara, and , D. von Wettstein. 1996. Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. Proc. Natl. Acad. Sci. USA 93:92879291.
37. Wang, L.,, M. Elliott, and , T. Elliott. 1999. Conditional stability of the HemA protein (glutamyl-tRNA reductase) regulates heme biosynthesis in Salmonella typhimurium. J. Bacteriol. 181:12111219.
38. Wang, L.,, S. Wilson, and , T. Elliott. 1999. A mutant HemA protein with positive charge close to the N-terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J Bacteriol. 181:60336041.
39. Wang, L.Y.,, L. Brown,, M. Elliott, and , T. Elliott. 1997. Regulation of heme biosynthesis in Salmonella typhimurium: activity of glutamyl-tRNA reductase (HemA) is greatly elevated during heme limitation by a mechanism which increases abundance of the protein. J. Bacteriol. 179:29072914.
40. Wulff, D. L. 1967. Delta-aminolevulinic acid-requiring mutant from Escherichia coli. J. Bacteriol. 93:14731474.
41. Xu, K.,, J. Delling, and , T. Elliott. 1992. The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic coproporphyrinogen oxidation. J. Bacteriol. 174:39533963.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error