1887

Chapter 9 : Regulation of NAD(P) Metabolism in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Regulation of NAD(P) Metabolism in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap09-2.gif

Abstract:

John Roth commonly refers to the biosynthesis and recycling of nicotinamide adenine dinucleotide (NAD) (and the related cofactor NADP) as the navel of the universe since they are required for hundreds of the fundamental, and thus highly conserved, biochemical reactions of life. In this chapter, the author reviews what is known about NAD biosynthesis in (including work done while he was a graduate student in the Roth lab). There are two enzymes known to directly control the NAD to NADP ratio; one is NAD kinase (which produces NADP from NAD), and the other is NADP phosphatase (which runs the opposing reaction forming NAD from NADP). As new NAD(P)-related genes are identified through genomic, genetic, and biochemical approaches, we can increase our understanding of the interplay between cellular regulation of NAD(P) levels and NAD(P)- dependent processes. The chapter ends with the current thoughts on approaches for identifying novel NAD(P)-associated pathways or genes.

Citation: House Grose J. 2011. Regulation of NAD(P) Metabolism in , p 75-86. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch9

Key Concept Ranking

Circular Double-Stranded DNA
0.4248235
0.4248235
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

NAD(P) biosynthetic pathway of serovar Typhimurium. The gene encoding each enzyme activity is indicated by solid lines if known or by dashed lines if unknown. Unknown activities include NMN deamidase, NADP phosphatase, NAD(P) pyrophosphatase, NAD glycohydrolase, NMN glycohydrolase, and pyridine transport proteins.

Citation: House Grose J. 2011. Regulation of NAD(P) Metabolism in , p 75-86. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The NAD(P) biosynthetic pathway is feedback regulated by NAD and NADPH. The NAD(P) biosynthetic enzymes affected by feedback inhibition (A). The activities regulated by NadR are indicated in bold. The and genes are transcriptionally repressed by NadR when NAD levels are low, while the NmR kinase activity of NadR is enzymatically inhibited by NAD. In addition, NAD kinase is potently inhibited by in vivo levels of NADPH. A schematic diagram of the regulation of NadR by NAD (B). NadR acts as a transcriptional repressor when NAD levels are high but acts as a NmR kinase when NAD levels are low.

Citation: House Grose J. 2011. Regulation of NAD(P) Metabolism in , p 75-86. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

NadK is essential as shown by segregation of a duplication containing both wild-type and (swap) alleles (A). Colonies of a strain with a duplication spanning the region growing on rich medium with X-gal, in the presence and absence of chloramphenicol (B). When chloramphenicol is present, duplication segregation is lethal due to the requirement for .

Citation: House Grose J. 2011. Regulation of NAD(P) Metabolism in , p 75-86. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Conserved genomic clusters harboring NAD(P) biosynthetic genes. The genomic clustering of NAD(P) biosynthetic genes with other NAD(P) biosynthetic genes (A), with (B), and with and (C) in phylogenetically diverse bacterial genomes.

Citation: House Grose J. 2011. Regulation of NAD(P) Metabolism in , p 75-86. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816810.ch09
1. Burkle, A.,, C. Brabeck,, J. Diefenbach, and, S. Beneke. 2005. The emerging role of poly(ADP-ribose) polymerase-1 in longevity. Int. J. Biochem. Cell Biol. 37:10431053.
2. Ceciliani, F.,, T. Caramori,, S. Ronchi,, G. Tedeschi,, M. Mortarino, and, A. Galizzi. 2000. Cloning, overexpression, and purification of Escherichia coli quinolinate synthetase. Protein Expr. Purif. 18:6470.
3. Chandler, J. L., and, R. K. Gholson. 1972. Studies on the biosynthesis of NAD in Escherichia coli. 3. Precursors of quinolinic acid in vitro. Biochim. Biophys. Acta 264:311318.
4. Cheng, W., and, J. R. Roth. 1994. Evidence for two NAD kinases in Salmonella typhimurium. J. Bacteriol. 176:42604268.
5. Filippovich, S. I.,, T. P. Afanas’eva,, G. P. Bachurina, and, M. S. Kritskii. 2000. [ATP and polyphosphate-dependent bacterial NAD+-kinases]. Prikl. Biokhim. Mikrobiol. 36:117121.
6. Friedkin, M., and, A. L. Lehninger. 1949. Esterification of inorganic phosphate coupled to electron transport between dihydrodiphosphopyridine nucleotide and oxygen.J. Biol. Chem. 178:611644.
7. Frye, R. A. 1999. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260:273279.
8. Fukuda, C.,, S. Kawai, and, K. Murata. 2007. NADP(H) phosphatase activities of archaeal inositol monophosphatase and eubacterial 3′-phosphoadenosine 5′-phosphate phosphatase. Appl. Environ. Microbiol. 73:54475452.
9. Furfine, C. S., and, S. F. Velick. 1965. The acylenzyme intermediate and the kinetic mechanism of the glyceraldehyde 3-phosphate dehydrogenase reaction.J. Biol. Chem. 240:844855.
10. Gerdes, S. Y.,, M. D. Scholle,, J. W. Campbell,, G. Balazsi,, E. Ravasz,, M. D. Daugherty,, A. L. Somera,, N. C. Kyrpides,, I. Anderson,, M. S. Gelfand,, A. Bhattacharya,, V. Kapatral,, M. D’Souza,, M. V. Baev,, Y. Grechkin,, F. Mseeh,, M. Y. Fonstein,, R. Overbeek,, A. L. Barabási,, Z. N. Oltvai, and, A. L. Osterman. 2003. Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185:56735684.
11. Grose, J. H.,, U. Bergthorsson, and, J. R. Roth. 2005. Regulation of NAD synthesis by the trifunctional NadR protein of Salmonella enterica. J. Bacteriol. 187:27742782.
12. Grose, J. H.,, U. Bergthorsson,, Y. Xu,, J. Sterneckert,, B. Khodaverdian, and, J. R. Roth. 2005. Assimilation of nicotinamide mononucleotide requires periplasmic AphA phosphatase in Salmonella enterica. J. Bacteriol. 187:45214530.
13. Grose, J. H.,, L. Joss,, S. F. Velick, and, J. R. Roth. 2006. Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc. Natl. Acad. Sci. USA 103:76017606.
14. Han, C. D.,, E. H. Coe, Jr., and, R. A. Martienssen. 1992. Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBOJ. 11:40374046.
15. Harden, A., and, W. J. Young. 1906–1934.The Alcoholic Ferment of Yeast-Juice. Proc. R. Soc. London Ser. B, containing Papers of a Biological Character V. 78:369375.
16. Higgins, N. P. 2005.The Bacterial Chromosome. ASM Press. Washington, DC.
17. Hillyard, D.,, M. Rechsteiner,, P. Manlapaz-Ramos,, J. S. Imperial,, L. J. Cruz, and, B. M. Olivera. 1981. The pyridine nucleotide cycle. Studies in Escherichia coli and the human cell line D98/AH2.J. Biol. Chem. 256:84918497.
18. Hughes, K. T.,, B. T. Cookson,, D. Ladika,, B. M. Olivera, and, J. R. Roth. 1983. 6-Aminonicotin-amide-resistant mutants of Salmonella typhimurium. J Bacteriol. 154:11261136.
19. Hughes, K. T.,, D. Ladika,, J. R. Roth, and, B. M. Olivera. 1983. An indispensable gene for NAD biosynthesis in Salmonella typhimurium. J. Bacteriol. 155:213221.
20. Hughes, K. T.,, B. M. Olivera, and, J. R. Roth. 1988. Structural gene for NAD synthetase in Salmonella typhimurium. J. Bacteriol. 170:21132120.
21. Hutchison, C. A.,, S. N. Peterson,, S. R. Gill,, R. T. Cline,, O. White,, C. M. Fraser,, H. O. Smith, and, C. J. Venter. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286:21652169.
22. Imai, S.,, C. M. Armstrong,, M. Kaeberlein, and, L. Guarente. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795800.
23. Imlay, J. A.,, S. M. Chin, and, S. Linn. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640642.
24. Imlay, J. A., and, S. Linn. 1988. DNA damage and oxygen radical toxicity. Science 240:13021309.
25. Jensen, L. J.,, M. Kuhn,, M. Stark,, S. Chaffron,, C. Creevey,, J. Muller,, T. Doerks,, P. Julien,, A. Roth,, M. Simonovic,, P. Bork, and, C. von Mering. 2009. STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 37:D412416.
26. Kawai, S.,, C. Fukuda,, T. Mukai, and, K. Murata. 2005. MJ0917 in archaeon Methanococcus jannaschii is a novel NADP phosphatase/ NAD kinase. J. Biol. Chem. 280:3920039207.
27. Kawai, S.,, S. Mori,, T. Mukai,, S. Suzuki,, T. Yamada,, W. Hashimoto, and, K. Murata. 2000. Inorganic polyphosphate/ATP-NAD kinase of Micrococcus flavus and Mycobacterium tuberculosis H37Rv. Biochem. Biophys. Res. Commun. 276:5763.
28. Kerr, T. J., and, G. J. Tritz. 1973. Cross-feeding of Escherichia coli mutants defective in the biosynthesis of nicotinamide adenine dinucleotide. J. Bacteriol. 115:982986.
29. Kobayashi, G.,, S. Moriya, and, C. Wada. 2001. Deficiency of essential GTP-binding protein ObgE in Escherichia coli inhibits chromosome partition. Mol. Microbiol. 41:10371051.
30. Lamb, H. K.,, P. Thompson,, C. Elliott,, I. G. Charles,, J. Richards,, M. Lockyer,, N. Watkins,, C. Nichols,, D. K. Stammers,, C. R. Bagshaw,, A. Cooper, and, A. R. Hawkins. 2007. Functional analysis of the GTPases EngA and YhbZ encoded by Salmonella typhimurium. Protein Sci. 16:23912402.
31. Liu, G.,, J. Foster,, P. Manlapaz-Ramos, and, B. M. Olivera. 1982. Nucleoside salvage pathway for NAD biosynthesis in Salmonella typhimurium. J. Bacteriol. 152:11111116.
32. Lundquist, R., and, B. M. Olivera. 1973. Pyridine nucleotide metabolism in Escherichia coli. II. Niacin starvation. J. Biol. Chem. 248:51375143.
33. Nagashima, K.,, Y. Kubota,, T. Shibata,, C. Sakaguchi,, H. Shinagawa, and, T. Hishida. 2006. Degradation of Escherichia coli RecN aggregates by ClpXP protease and its implications for DNA damage tolerance. J. Biol. Chem. 281:3094130946.
34. North, B. J., and, E. Verdin. 2004. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 5:224.
35. Olivera, B. M.,, Z. W. Hall,, Y. Anraku,, J. R. Chien, and, I. R. Lehman. 1968. On the mechanism of the polynucleotide joining reaction. Cold Spring Harb. Symp. Quant. Biol. 33:2734.
36. Overbeek, R.,, N. Larsen,, G. D. Pusch,, M. D’Souza,, E. Selkov, Jr.,, N. Kyrpides,, M. Fonstein,, N. Maltsev, and, E. Selkov. 2000. WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res. 28:123125.
37. Park, U. E.,, B. M. Olivera,, K. T. Hughes,, J. R. Roth, and, D. R. Hillyard. 1989. DNA ligase and the pyridine nucleotide cycle in Salmonella typhimurium. J. Bacteriol. 171:21732180.
38. Park, U. E.,, J. R. Roth, and, B. M. Olivera. 1988.Salmonella typhimurium mutants lacking NAD pyrophosphatase. J. Bacteriol. 170:37253730.
39. Pollak, N.,, C. Dolle, and, M. Ziegler. 2007. The power to reduce: pyridine nucleotides—small molecules with a multitude of functions. Biochem. J. 402:205218.
40. Preiss, J., and, P. Handler. 1958. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J. Biol. Chem. 233:488492.
41. Preiss, J., and, P. Handler. 1958. Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J. Biol. Chem. 233:493500.
42. Reference deleted.
43. Silhavy, D., and, P. Maliga. 1998. Mapping of promoters for the nucleus-encoded plastid RNA polymerase (NEP) in the iojap maize mutant. Curr. Genet. 33:340344.
44. Tanny, J. C.,, G. J. Dowd,, J. Huang,, H. Hilz, and, D. Moazed. 1999. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99:737745.
45. Tritz, G. J., and, J. L. Chandler. 1973. Recognition of a gene involved in the regulation of nicotinamide adenine dinucleotide biosynthesis. J. Bacteriol. 114:128136.
46. Zerez, C. R.,, D. E. Moul,, E. G. Gomez,, V. M. Lopez, and, A. J. Andreoli. 1987. Negative modulation of Escherichia coli NAD kinase by NADPH and NADH. J. Bacteriol. 169:184188.
47. Zhu, N., and, J. R. Roth. 1991. The nadI region of Salmonella typhimurium encodes a bifunctional regulatory protein. J. Bacteriol. 173:13021310.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error