1887

Chapter 10 : Ethanolamine Utilization in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Ethanolamine Utilization in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap10-2.gif

Abstract:

In 1984, only two B- dependent enzymes were known in , ethanolamine ammonia lyase, required for use of ethanolamine (EA) as a nitrogen and carbon source, and a methyltransferase involved in cysteine biosynthesis. A genetic analysis of ethanolamine utilization was undertaken in John Roth’s laboratory in part to explore whether ethanolamine degradation contributes to the selective forces that maintain the ability to synthesize B. Identification of the enzymes encoded in the operon suggests that ethanolamine degradation is an integral part of a network of reactions involving both reduction and oxidation of ethanolamine as well as fixation of CO. EA can be used aerobically as a carbon, energy, and nitrogen source in the presence of Ado-B or a suitable corrinoid precursor. Under anaerobic conditions, EA can be used as a carbon source when tetrathionate is provided as an electron acceptor. Induction of the 17-gene operon requires the EutR regulatory protein and two effectors: EA, the substrate for the degredative pathway, and Ado-B, the effector for EutBC lyase, which catalyzes the first step in the pathway. Induction of the operon is under autogenous control by , the regulatory gene positioned at the end of the operon transcript. The gene encodes an adenosyltransferase that plays a role in maintaining levels of Ado-B sufficient for operon induction and lyase activity.

Citation: Roof D, Sheppard D. 2011. Ethanolamine Utilization in , p 87-98. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch10

Key Concept Ranking

Deletion Mutation
0.594833
Point Mutation
0.5945064
Insertion Mutation
0.5919681
ABC Transporters
0.49351418
0.594833
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The operon: gene assignments and metabolic pathway. The horizontal line represents a portion of the chromosome. The genes are shown in italic letters below the line; point mutations are indicated by numbers above the genes; Mud insertions are shown by triangles containing the letter M; and Tn insertions are shown with triangles containing the letter T. Transcripts are shown with solid arrows; the thickness of the line indicates the relative rate of transcription. Open boxes indicate the extent of the material deleted by deletion mutations 302 and 333. The metabolism of EA is shown below the chromosome. The insertion is outside but within the and transcripts. (Modified from references , and .)

Citation: Roof D, Sheppard D. 2011. Ethanolamine Utilization in , p 87-98. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Functional assignments for the 17 genes of the operon. (Modified from references , and .)

Citation: Roof D, Sheppard D. 2011. Ethanolamine Utilization in , p 87-98. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Ethanolamine metabolic pathway. (Modified from reference .)

Citation: Roof D, Sheppard D. 2011. Ethanolamine Utilization in , p 87-98. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816810.ch10
1. Babior, B. M.,, T. J. Carty, and, R. H. Abeles. 1974. The mechanism of action of ethanolamine ammonia-lyase, a B12-dependent enzyme. J. Biol. Chem. 249:16891695.
2. Blackwell, C. M.,, F. A. Scarlett, and, J. M. Turner. 1977. Microbial metabolism of amino acids. Control of formation and stability of partially purified ethanolamine ammonia-lyase in Escherichia coli. J. Gen. Microbiol. 98:133139.
3. Blackwell, C. M., and, J. M. Turner. 1978. Microbial metabolism of amino acids. Formation of coenzyme B12-dependent ethanolamine ammonia-lyase and its concerted induction in Escherichia coli. Biochem.J. 176:751757.
4. Bobik, T. A.,, G. Havemann,, R. Busch,, D. Williams, and, H. Aldrich. 1999. The propane utilization operon of serovar Typhimurium LT2 includes genes necessary for formation of polyhedral organelles involved in coenzyme B12-dependent 1,2 propanediol degradation. J. Bacteriol. 181:59675975.
5. Bochner, B. R.,, H.-C. Huang,, G. L. Schievern, and, B. N. Ames. 1980. Positive selection for loss of tetracycline resistance. J. Bacteriol. 143:926933.
6. Bradbeer, C. 1965. The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase. J. Biol. Chem. 240:46754681.
7. Chang, G. W., and, J. T. Chang. 1975. Evidence for the B12-dependent enzyme ethanolamine deaminase in Salmonella. Nature 254:150151.
8. English, R. S.,, S. C. Lorbach,, X. Qin, and, J. M. Shively. 1994. Isolation and characterization of a carbozysome shell gene from Thiobacillus neapolitanus. Mol. Microbiol. 12:647654.
9. Escalante-Semerena, J. C.,, S.-J. Suh, and, J. R. Roth. 1990.cobA function is required for both de novo cobalamin biosynthesis and assimilation of exogenous corrinoids in Salmonella typhimurium. J. Bacteriol. 172:273280.
10. Faust, L. P.,, J. A. Connor,, D. M. Roof,, J. A. Hock, and, B. M. Babior. 1990. Cloning, sequencing and expression of the genes encoding the adenosylcobalamine-dependent ethanolamine ammonia-lyase of Salmonella typhimurium. J. Biol. Chem. 265:1246212466.
11. Hong, J.-S., and, B. N. Ames. 1971. Localized mutagenesis of any specific small region of the bacterial chromosome. Proc. Natl. Acad. Sci. USA 68:31583162.
12. Hughes, K. T., and, J. R. Roth. 1988. Transitory cis complementation: a method for providing transposition functions to defective transposons. Genetics 119:912.
13. Hughes, K. T., and, J. R. Roth. 1985. Directed formation of deletions and duplications using Mud (Ap,lac). Genetics 109:263282.
14. Jeter, R.,, B. M. Olivera, and, J. R. Roth. 1984.Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions. J. Bacteriol. 159:206216.
15. Jones, P. W., and, J. M. Turner. 1984. A model for common control of enzymes of ethanolamine metabolism in Escherichia coli. J. Gen. Microbiol. 130:849860.
16. Jones, P. W., and, J. M. Turner. 1984. Interrelationships between the enzymes of ethanolamine metabolism in Escherichia coli. J. Gen. Microbiol. 130:299308.
17. Kofoid, E.,, C. Rappleye,, I. Stojiljkovic, and, J. R. Roth. 1999. The seventeen gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologs of carboxysome shell proteins. J. Bacteriol. 181:53175329.
18. Lundrigen, M., and, R. Kadner. 1989. Altered cobalamin metabolism in Escherichia coli btu mutants that affect btu regulation. J. Bacteriol. 171:154161.
19. Maloy, S. R., and, W. D. Nunn. 1981. Selection for loss of tetracycline resistance by Escherichia coli. J. Bacteriol. 145:11101112.
20. Price, G. D.,, S. M. Howitt,, K. Harrison, and, M. R. Badger. 1993. Analysis of a genomic DNA region from the cyanobacterium Synechococcus sp. strain PCC7942 involved in carboxysome assembly and function. J. Bacteriol. 175:28712879.
21. Rappleye, C. A., and, J. R. Roth. 1997. A Tn10 derivative (“T-POP”) for isolation of insertions with conditional (tetracycline-dependent) phenotypes. J. Bacteriol. 179:58275834.
22. Roof, D. M., and, J. R. Roth. 1989. Functions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium. J. Bacteriol. 171:33163323.
23. Roof, D. M., and, J. R. Roth. 1992. Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella typhimurium. J. Bacteriol. 174:66346643.
24. Roof, D. M., and, J. R. Roth. 1988. Ethanolamine utilization in Salmonella typhimurium. J. Bacteriol. 170:38553863.
25. Roth, J. R.,, J. G. Lawrence, and, T. Bobik. 1996. Cobalamin (coenzyme B12): synthesis and biological significance. Ann. Rev. Microbiol. 50:137181.
26. Scarlett, F. A., and, J. M. Turner. 1976. Microbial metabolism of amino alcohols. Ethanolamine catabolism mediated by coenzyme B12-dependent ethanolamine ammonia-lyase in Escherichia coli and Klebsiella aerogenes. J. Gen. Microbiol. 95:173176.
27. Seyfriend, M.,, R. Daniel, and, G. Gottschalk. 1996. Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. J. Bacteriol. 178:57935796.
28. Sheppard, D. E.,, J. T. Penrod,, T. Bobik,, E. Kofoid, and, J. R. Roth. 2004. Evidence that B12-adenosyl transferase is encoded within the ethanolamine operon of Salmonella enterica. J. Bacteriol. 186:76357644.
29. Sheppard, D. E., and, J. R. Roth. 1994. A rationale for autoinduction of a transcriptional activator: ethanolamine ammonia-lyase (EutBC) and the operon activator (EutR) compete for adenosyl-cobalamin in Salmonella typhimurium. J. Bacteriol. 176:12871296.
30. Shively, J., and, R. English. 1991. The carboxy-some, a prokaryotic organelle: a mini review. Can. J. Bot. 69:957963.
31. Shively, J. M. 1974. Inclusion bodies of prokaryotes. Ann. Rev. Microbiol. 28:167187.
32. Shively, J. M.,, F. Ball,, D. H. Brown, and, R. E. Saunders. 1973. Functional organelles in prokaryotes: polyhedral inclusions (carboxysomes) of Thiobacillus neapolitanus. Science 182:584586.
33. Shively, J. M.,, E. Bock,, K. Westphal, and, G. C. Cannon. 1997. Icosahedral inclusions (carboxy-somes) of Nitrobacter agilis. J. Bacteriol. 132:673675.
34. Stojiljkovic, I.,, A. J. Bäumler, and, F. Heffron. 1995. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutJ eutG eutH gene cluster. J. Bacteriol. 177:13571366.
35. Suh, S.-J., and, J. C. Escalante-Semerena. 1995. Purification and initial characterization of the ATP:corrinoid adenosyltransferase encoded by the cobA gene of Salmonella typhimurium. J. Bacteriol. 177:921925.
36. Suh, S.-J., and, J. C. Escalante-Semerena. 1993. Cloning, sequencing and overexpression of cobA, which encodes ATP:corrinoid adenosyltransferase in Salmonella typhimurium. Gene 129:9397.
37. Way, J. C.,, M. A. Davis,, D. Morisato,, D. E. Roberts, and, N. Klechner. 1984. New Tn10 derivatives for transposon mutagenesis and for construction of lacZ operon fusions by transposition. Gene 32:369379.

Tables

Generic image for table
TABLE 1

Characterization of Eut mutants

Citation: Roof D, Sheppard D. 2011. Ethanolamine Utilization in , p 87-98. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch10
Generic image for table
TABLE 2

encodes an adenosyltransferase

Citation: Roof D, Sheppard D. 2011. Ethanolamine Utilization in , p 87-98. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch10
Generic image for table
TABLE 3

Characterization of the major ( ) and minor ( ) promoters

Citation: Roof D, Sheppard D. 2011. Ethanolamine Utilization in , p 87-98. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch10
Generic image for table
TABLE 4

Titration of Ado-B by EutBC lyase alters operon induction kineticsa

Citation: Roof D, Sheppard D. 2011. Ethanolamine Utilization in , p 87-98. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch10
Generic image for table
TABLE 5

Alignments of Eut proteinsa

Citation: Roof D, Sheppard D. 2011. Ethanolamine Utilization in , p 87-98. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error