1887

Chapter 30 : Impact of Horizontal Genetic Transfer on the Evolution of Bacterial Genomes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Impact of Horizontal Genetic Transfer on the Evolution of Bacterial Genomes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555816810/9781555815387_Chap30-2.gif

Abstract:

Analyses of bacterial genomes suggest that horizontal genetic transfer was an important process in the acquisition of new functions. Models of bacterial diversification are explored in detail in this chapter. Although the rate of horizontal transfer in is substantial, and potentially useful information has been delivered in the form of selfish operons, it is clear that bacterial genomes are not growing ever larger in size; it is also clear that particular bacterial strains exhibit a definable set of metabolic capabilities and certainly do not perform every biochemical function possible. The acquired sequences—when they are maintained by natural selection and show signs of amelioration—must provide a selectable function that contributes to cellular fitness, few point mutation changes are likely to improve cellular fitness. For this reason, acquired genes are more likely to contribute to the long-term evolution of bacterial species than are point mutations. Both mutational processes and horizontal genetic transfer have allowed diversity of bacterial species in soils to arise from the common ancestor of all known life. If the roles of horizontal genetic transfer and chromosomal deletion are considered in shaping the composition of bacterial chromosomes, we can see that the mode of genome evolution has strong implications for how bacteria diversify. More recent work examining the role played by laterally transferred genes in lineage diversification concluded that the acquisition of laterally acquired genes (like the cob operons in ) was the initiating event leading to genetic isolation between bacterial species.

Citation: Lawrence J. 2011. Impact of Horizontal Genetic Transfer on the Evolution of Bacterial Genomes, p 307-323. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch30

Key Concept Ranking

Mobile Genetic Elements
0.5662202
0.5662202
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) Relationships between the overall nucleotide composition of a bacterial genome and nucleotide compositions of the three codon positions (data from Muto and Osawa [ ] and Lawrence and Ochman [ ]). Organisms providing the data are listed at the top of the figure. (B) Process of amelioration used to infer the time of introduction of acquired genes (from Lawrence and Ochman [ ]). The codon-position-specific nucleotide compositions of acquired genes are back-ameliorated (equation 1) until the minimum deviation (by least-squares analysis) from the Muto and Osawa relationships is obtained.

Citation: Lawrence J. 2011. Impact of Horizontal Genetic Transfer on the Evolution of Bacterial Genomes, p 307-323. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Distribution of times of introduction for horizontally acquired genes in (from Lawrence and Ochman [ ]).

Citation: Lawrence J. 2011. Impact of Horizontal Genetic Transfer on the Evolution of Bacterial Genomes, p 307-323. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Making selfish operons. Genes for the eakly selected function can be lost from genomes regardless of their locations within chromosomes. However, if the genes are transferred to a naïve genome, they may escape evolutionary loss; only clustered genes can be mobilized. Following transfer, any essential genes between the loci are now useless genes that can be deleted.

Citation: Lawrence J. 2011. Impact of Horizontal Genetic Transfer on the Evolution of Bacterial Genomes, p 307-323. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Genomic flux in bacteria. The gain of horizontally transferred DNA (dark arrow) results in the introduction of new genes in derived chromosomes, whereas some old ancestral genes are lost (figure modeled after Lawrence [ ], where rates of horizontal transfer were derived from Lawrence and Ochman [ ]).

Citation: Lawrence J. 2011. Impact of Horizontal Genetic Transfer on the Evolution of Bacterial Genomes, p 307-323. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Speciation models in prokaryotes and eukaryotes.

Citation: Lawrence J. 2011. Impact of Horizontal Genetic Transfer on the Evolution of Bacterial Genomes, p 307-323. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816810.ch30
1. Ames, B. N., and, R.G. Martin. 1964. Biochemical aspects of genetics: the operon. Ann. Rev. Biochem. 33:235258.
2. Azad, R. K., and, J. G. Lawrence. 2007. Detecting laterally transferred genes: use of entropic clustering methods and genome position. Nucleic Acids Res 35:46294639.
3. Barinaga, M. 1996. A shared strategy for virulence. Science 272:12611263.
4. Blumenthal, T.,, D. Evans,, C. D. Link,, A. Guf-fanti,, D. Lawson,, J. Thierry-Mieg,, D. Thierry-Mieg,, W. L. Chiu,, K. Duke,, M. Kiraly, and, S. K. Kim. 2002. A global analysis of Caenorhabditis elegans operons. Nature 417:851854.
5. Reference deleted.
6. Bodmer, W. F., and, P. A. Parsons. 1962. Linkage and recombination in evolution. Adv. Genet. 11:1100.
7. Botstein, D. 1980. A theory of modular evolution for bacteriophages. Ann. N Y Acad. Sci. 354:484491.
8. Doolittle, R. F.,, D. F. Feng,, K. L. Anderson, and, M. R. Alberro. 1990. A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J. Mol. Evol. 31:383388.
9. DuBose, R. F., and, D. L. Hartl. 1990. Themolecular evolution of alkaline phosphatase: correlating variation among enteric bacteria to experimental manipulations of the protein. Mol. Biol.Evol. 7:547577.
10. Dykhuizen, D. E. 1998. Santa Rosalia revisited: why are there so many species of bacteria? Antonie Leeuwenhoek 73:2533.
11. Feil, E. J., and, B. G. Spratt. 2001. Recombination and the population structures of bacterial pathogens. Annu. Rev. Microbiol. 55:561590.
12. Fisher, R. A. 1930. The GeneticalTheory of Natural Selection. Oxford University Press, Oxford, United Kingdom.
13. Groisman, E. A., and, H. Ochman. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791794.
14. Groisman, E. A.,, M. Sturmoski,, F. Soloman,, R. Lin, and, H. Ochman. 1993. Molecular, functional and evolutionary analysis of sequences specific to Salmonella. Proc. Natl. Acad. Sci. USA 90:10331037.
15. Hacker, J., and, J. B. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev.Microbiol. 54:641679.
16. Hartl, D. L.,, E. R. Lozovskaya, and, J. G. Lawrence. 1992. Nonautonomous transposable elements in prokaryotes and eukaryotes. Genetica 86:4753.
17. Hayes, W. S., and, M. Borodovsky. 1998. How to interpret an anonymous bacterial genome: machine learning approach to gene identification. Genome Res. 8:11541171.
18. Horowitz, N. H. 1945. On the evolution of biochemical synthesis.Proc. Natl. Acad. Sci. USA 31:153157.
19. Reference deleted.
20. Ikemura, T. 1981. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J. Mol. Biol. 146:1121.
21. Ikemura, T. 1980. The frequency of codon usage in E. coli genes: correlation with abundance of cognate tRNA, p. 519523. In S. Osawa,, H. Ozeki,, H. Uchida, and, T. Yura (ed.), Genetics and Evolution of RNA Polymerase, tRNA and Ribosomes. University of Tokyo Press, Tokyo, Japan.
22. Jacob, F., and, J. Monod. 1962. On the regulation of gene activity. Cold Spring Harbor Symp. Quant.Biol. 26:193211.
23. Jacob, F.,, D. Perrin,, C. Sanchez, and, J. Monod.1960. L’opéron: groupe de gènes à expression coor-donee par un operateur. C. R.Acad. Sci. 250:17271729.
24. Jeter, R. M.,, B., M. Olivera, and, J. R. Roth.1984. Salmonella typhimurium synthesizes cobalamin (vitamin B12) de novo under anaerobic growth conditions.J. Bacteriol. 15:9206213.
25. Karlin, S. 1998. Global dinucleotide signatures and analysis of genomic heterogeneity. Curr. Opin. Microbiol. 1:598610.
26. King, M. 1993. Species Evolution. Cambridge University Press, Cambridge, United Kingdom.
27. Lan, R., and, P. Reeves. 1996. Gene transfer is a major force in bacterial evolution. Mol. Biol. Evol. 13:4755.
28. Lawrence, J., G. 2001. Catalyzing bacterial speciation: correlating lateral transfer with genetic headroom. Syst. Biol. 50:479496.
29. Lawrence, J.G. 2002. Gene transfer in bacteria: speciation without species? Theor.Popul. Biol.61:449460.
30. Lawrence, J. G. 1999. Gene transfer, speciation, and the evolution of bacterial genomes. Curr. Opin. Microbiol. 2:519523.
31. Lawrence, J. G. 1997. Selfish operons and speciation by gene transfer. Trends Microbiol. 5:355359.
32. Lawrence, J. G. 1999. Selfish operons: the evolutionary impact of gene clustering in the prokaryotes and eukaryotes. Curr. Opin. Genet. Dev. 9:642648.
33. Lawrence, J. G., and , H. Ochman. 1997. Amelioration of bacterial genomes: rates of change and exchange. J. Mol. Evol. 44:383397.
34. Lawrence,, J. G., and, H. Ochman. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95:94139417.
35. Lawrence, J. G., and, H. Ochman. 2002. Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10:14.
36. Lawrence, J. G., and , J. R. Roth. 1995. The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli.J. Bacteriol. 177:63716380.
37. Lawrence, J. G., and, J. R. Roth. 1996. Evolution of coenzyme B12 synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. Genetics 142:1124.
38. Lawrence, J. G., and, J. R. Roth. 1999. Genomic flux : genome evolution by gene loss and acquisition, p.263289. In R. L. Charlebois (ed.),Organization of the Prokaryotic Genome. ASM Press, Washington, DC.
39. Lawrence, J. G., and, J. R. Roth. 1998. Roles of horizontal transfer in bacterial evolution, p. 208225. In M. Syvanen and, C. I. Kado (ed.), Horizontal Transfer. Chapman and Hall, London, United Kingdom.
40. Lawrence, J. G., and, J. R. Roth. 1996. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143:18431860.
41. Martin, W. 1999. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays21:99104.
42. Maurelli, A. T. 1994. Virulence protein export systems in Salmonella and Shigella: a new family or lost relatives. Trends Cell. Biol. 4:240242.
43. Medigue, C.,, T.Rouxel,, P. Vigier,, A. Henaut, and, A. Danchin. 1991. Evidence of horizontal gene transfer in Escherichia coli speciation. J. Mol. Biol. 222:851856.
44. Muller, H. 1932. Some genetic aspects of sex. Am. Nat. 66:118138.
45. Muto, A., and, S. Osawa. 1987. The guanine and cytosine content of genomic DNA and bacterial evolution. Proc. Natl. Acad. Sci. USA 84:166169.
46. Nakata, N.,, T. Tobe,, I. Fukuda,, T. Suzuki,, K. Komatsu,, M. Yoshikawa, and, C. Sasakawa.1993. The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci. Mol. Microbiol. 9:459468.
47. Ochman, H., and, J. G. Lawrence. 1996. Phylogenetics and the amelioration of bacterial genomes, p. 26272637. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff, , M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, DC.
48. Retchless, A. C., and, J. G. Lawrence. 2007. Temporal fragmentation of speciation in bacteria. Science 317:10931096.
49. Roth, J. R.,, J. G. Lawrence,, M. Rubenfield,, S. Kieffer-Higgins, and, G. M. Church.1993. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J. Bacteriol. 175:33033316.
50. Sharp, P. M. 1991. Determinants of DNA sequence divergence between Escherichia coli and Salmonella typhimurium: codon usage, map position, and concerted evolution. J. Mol. Evol. 33:2333.
51. Sharp, P. M., E., Cowe, D. G., Higgins, D. C., Shields, K. H., Wolfe, and, F. Wright. 1988. Codon usage patterns in Escherichia coli, Bacillus subtilus, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster, and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res. 16:82078211.
52. Sueoka, N. 1988. Directional mutation pressure and neutral molecular evolution. Proc. Natl. Acad. Sci. USA 85:26532657.
53. Sueoka, N. 1962. On the genetic basis of variation and heterogeneity in base composition. Proc. Natl. Acad. Sci. USA 48:582592.
54. Sueoka, N. 1961. Variation and heterogeneity of base composition of deoxy-ribonucleic acids: a compilation of old and new data. J. Mol. Biol. 3: 3140.
55. Sueoka, N.,, J. Marmur, and, P. Doty. 1959. Heterogeneity in deoxyribonucleic acids. II. Dependence of the density of deoxyribonucleic acids on guanine-cytosine. Nature (London) 183:14291431.
56. Torsvik, V.,, J. Goksøyr, and , F. L. Daae.1990. High diversity of DNA in soil bacteria. Appl. Environ. Microbiol. 56:776781.
57. Van Valen, L. 1976. Ecological species, multispecies, and oaks. Taxon 25: 223239.
58. Vrba, E. S. (ed.). 1985. Species and Speciation. Transvaal Museum, Pretoria, S. Africa.
59. Welch, R. A.,, V. Burland,, G. Plunkett III,, P. Redford,, P. Roesch,, D. Rasko,, E. L. Buckles,, S. R. Liou,, A. Boutin,, J. Hackett,, D. Stroud,, G. F. Mayhew,, D. J. Rose,, S. Zhou,, D. C. Schwartz,, N. T. Perna,, H. L. Mobley,, M. S. Donnenberg, and, F. R. Blattner. 2002. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Esche-richia coli. Proc. Natl. Acad. Sci. USA 99:1702017024.
60. Whittam, T. S., and, S. Ake. 1992. Genetic polymorphisms and recombination in natural populations of Escherichia coli, p. 223246. In N. Takahata and , A. G. Clark (ed.), Mechanisms of Molecular Evolution. Japan Scientific Society Press, Tokyo, Japan.
61. Woese, C. 1998. The universal ancestor. Proc. Natl.Acad. Sci. USA 95: 68546859.

Tables

Generic image for table
TABLE 1

Codon usage table for highly expressed genes in and in

Citation: Lawrence J. 2011. Impact of Horizontal Genetic Transfer on the Evolution of Bacterial Genomes, p 307-323. In Maloy S, Hughes K, Casadesús J (ed), The Lure of Bacterial Genetics. ASM Press, Washington, DC. doi: 10.1128/9781555816810.ch30

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error