1887

Chapter 9 : Solid-Phase Fermentation: Aerobic and Anaerobic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Solid-Phase Fermentation: Aerobic and Anaerobic, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap09-2.gif

Abstract:

The science of solid-phase fermentation (SPF) draws on the same ancient origins that are the foundation of the field of biotechnology and of the modern methods used to grow microorganisms. The chapter discusses advantages and disadvantages of SPF. Complex microbial growth phenomena are associated with solid substrates that are typically heterogeneous and porous with void spaces. The moisture content of the solid substrate strongly influences microbial growth. SPFs with foods vary based on geography and dietary customs, but most often are classified according to substrate such as cereal, dairy, fish, fruit and vegetable, meat, starch crop, and legume products. De Vrije et al. have discussed the relevance of SPF to the production of commercial products containing , , , and the spp. , , and , as well as that for the promising biocontrol agent . Key SPF process variables are related to the microorganism and its preparation, the choice of substrate and its pretreatment, and environmental factors which determine how the microorganism and the substrate interact, often in a large-scale bioreactor. The chapter provides general procedures for SPF. Bioreactors, or fermentors, have been used in small-and large-scale SPF to produce diverse metabolites and enzyme products. While laboratory-scale SPF employs flasks, jars, roller bottles, columns, and petri dishes, common bioreactor/ fermentor systems used for industrial scale-up are tray fermentors, packed-bed fermentors and fluidized-bed fermentors.

Citation: Bigelis R. 2010. Solid-Phase Fermentation: Aerobic and Anaerobic, p 117-131. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch9

Key Concept Ranking

Fourier Transform Infrared Spectroscopy
0.42157152
0.42157152
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The macroscale and microscale processes that occur within an SPF bioreactor (Adapted from reference .)

Citation: Bigelis R. 2010. Solid-Phase Fermentation: Aerobic and Anaerobic, p 117-131. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Time course of lovastatin production by in SPF (A) and LPF (B). Note the different scales in lovastatin concentration. pH evolution is shown in the upper part. (Adapted from reference .)

Citation: Bigelis R. 2010. Solid-Phase Fermentation: Aerobic and Anaerobic, p 117-131. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch09
1. Acuna-Arguelles, M.,, M. Gutierrez-Rojas,, G. Viniegra-Gonzalez, and, E. Favela-Torres. 1994. Effect of water activity on exo-pectinase production by Aspergillus niger CH4 on solid-state fermentation. Biotechnol. Lett. 16:2328.
2. Acuna-Arguelles, M. E.,, M. Gutierrez-Rojas,, G. Viniegra-Gonzalez, and, E. Favela-Torres. 1995. Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation. Appl. Microbiol. Biotechnol. 43:808814.
3. Aguilar, C. N.,, J. C. Contreras-Esquivel,, R. Rodriguez,, L. A. Prado, and, O. Loera. 2004. Differences in fungal enzyme productivity in submerged and solid state cultures. Food Sci. Biotechnol. 13:109113.
4. Aidoo, K. E.,, R. Hendry, and, B. J. B. Wood. 1982. Solid substrate fermentation. Adv. Appl. Microbiol. 28:201237.
5. Akao, T.,, K. Gomi,, K. Goto,, N. Okazaki, and, O. Akita. 2002. Subtractive cloning of cDNA from Aspergillus oryzae differentially regulated between solid-state culture and liquid (submerged) culture. Curr. Genet. 41:275281.
6. Anastassiadis, S., and , H.-J. Rehm. 2006. Citric acid production from glucose by yeast Candida oleophila ATCC 20177 under batch, continuous and repeated batch cultivation. Electronic J. Biotechnol. 9:2639.
7. Ashley, V. M.,, D. A. Mitchell, and, T. Howes. 1999. Evaluating strategies for overcoming overheating problems during solid-state fermentation in packed bed bioreactors. Biochem. Eng. J. 3:141150.
8. Astoreca, A.,, C. Magnoli,, M. L. Ramirez,, M. Combina, and, A. Dalcero. 2007. Water activity and temperature effects on growth of Aspergillus niger, A. awamori and A. carbonarius isolated from different substrates in Argentina. Int. J. Food Microbiol. 119:314318.
9. Atlas, R. M. 1993. Handbook of Microbiological Media. CRC Press, Boca Raton, FL.
10. Balakrishnan, K., and , A. Pandey. 1996. Production of biologically active secondary metabolites in solid state fermentation. J. Sci. Ind. Res. 55:365372.
11. Barrios-González, J.,, T. E. Castillo, and, A. Mejia. 1993. Development of high penicillin producing strains for solid state fermentation. Biotechnol. Adv. 11:525537.
12. Barrios-González, J., and, A. Mejia. 1996. Production of secondary metabolites by solid-state fermentation. Biotechnol. Annu. Rev. 2:85121.
13. Barrios-González, J.,, J. G. Baños,, A. A. Covarrubias, and , A. Garay-Arroyo. 2008. Lovastatin biosynthetic genes of Aspergillus terreus are expressed differentially in solid-state and in liquid submerged fermentation. Appl. Microbiol. Biotechnol. 79:179186.
14. Bellon-Maurel, V.,, O. Orliac, and, P. Christen. 2003. Sensors and measurements in solid state fermentation: a review. Process Biochem. 38:881896.
15. Bennett, J. W. 1998. Mycotechnology: the role of fungi in biotechnology. J. Biotechnol. 66:101107.
16. Beuchat, L. R. 1987. Traditional fermented food products, p. 269–306. In L. R. Beuchat (ed.), Food and Beverage Mycology, 2nd ed. Avi Publishing Co., Westport, CT.
17. Bigelis, R. 1985. Primary metabolism and industrial fermentations, p. 357–401. In J. W. Bennett and, L. L. Lasure (ed.), Gene Manipulations in Fungi. Academic Press, New York, NY.
18. Bigelis, R. 1991. Fungal metabolites in food processing, p. 415–443. In D. K. Arora,, K. G. Mukerji, and, E. H. Marth (ed.), Handbook of Applied Mycology, vol. 3. Foods and Feeds. Marcel Dekker, New York, NY.
19. Bigelis, R. 1991. Fungal enzymes in food processing, p. 445–498. In D. K. Arora,, K. G. Mukerji, and , E. H. Marth (ed.). Handbook of Applied Mycology, vol. 3. Foods and Feeds. Marcel Dekker, New York, NY.
20. Bigelis, R. 1992. Flavor metabolites and enzymes from filamentous fungi. Food Technol. 46:151, 154156, 158, 161.
21. Bigelis, R. 1992. Food enzymes, p. 361–415. In D. B. Finkelstein and, C. Ball (ed.), Biotechnology of Filamentous Fungi. Technology and Products. Butterworth-Heinemann, Stoneham, MA.
22. Bigelis, R. 1993. Carbohydrases, p. 121–158. In T. W. Nagodawithana and, G. Reed (ed.), Enzymes in Food Processing, 3rd ed. Academic Press, New York, NY.
23. Bigelis, R. 1999. Fungal fermentation: industrial, p. 1–10. In Encyclopedia of Life Sciences. Nature Publishing Group, London, United Kingdom. www.els.net. (Online.)
24. Bigelis, R., and , D. K. Arora. 1992. Organic acids of fungi, p. 357–376. In D. K. Arora,, R. P. Elander, and, K. G. Mukerji (ed.), Handbook of Applied Mycology, vol. 4. Fungal Biotechnology. Marcel Dekker, New York, NY.
25. Bigelis, R., and , S.-P. Tsai. 1995. Microorganisms for organic acid production, p. 239–280. In Y. H. Hui and, G. G. Khachatourians (ed.), Food Biotechnology. Microorganisms, Food Science and Technology Series. VCH Publishers, Inc., New York, NY.
26. Bigelis, R.,, H. He,, H. Y. Yang,, L. P. Chang, and, M. Greenstein. 2006. Production of fungal antibiotics using polymeric solid supports in solid-state and liquid fermentation. J. Ind. Microbiol. Biotechnol. 33:815826.
27. Bigelis, R.,, H. He,, H. Y. Yang,, S. W. Luckman,, L. P. Chang, and, D. M. Roll. 2007. New approaches to natural product discovery: mixed-phase fermentation for secondary metabolites from actinomycetes and fungi. Abstract P68. Ann. Mtg. Soc. Ind. Microbiol., July 30, 2007, Denver, CO.
28. Bigelis, R.,, H. Y. Yang, and, H. He. 2009. Production of fungal natural products by mixed phase fermentation with milled cereal grains dispersed on polyester cellulose. Abstr. P68. Ann. Mtg. Soc. Ind. Microbiol., July 27, 2009, Toronto, Ontario.
29. Bills, G. F.,, G. Platas,, A. Fillola,, M. R. Jimenez,, J. Collado,, F. Vicente,, J. Martin,, A. Gonzalez,, J. Bur-Zimmermann,, J. R. Tormo, and , F. Pelaez. 2008. Enhancement of antibiotic secondary metabolite detection from filamentous fungi by growth on nutritional arrays. J. Appl. Microbiol. 104:16441658.
30. Bussari, B.,, P. S. Saudagar,, N. S. Shaligram,, S. A. Survase, and, R. S. Singhal. 2008. Production of cephamycin C by Streptomyces clavuligerus NT4 using solid-state fermentation. J. Ind. Microbiol. Biotechnol. 35:4958.
31. Byndoor, M. G.,, N. G. Karanth, and, G. V. Rao. 1997. Efficient and versatile design of a tray type solid state fermentation bioreactor, p. 113–119. In S. Roussos,, B. K. Lonsane,, M. Raimbault, and, G. Viniegra-Gonzalez (ed.), Advances in Solid State Fermentation. Kluwer Academic Publishers, Dordrecht,The Netherlands.
32. Calvo, A. M.,, R. A. Wilson,, J. W. Bok, and, N. P. Keller. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66:447459.
33. Campbell-Platt, G. 1987. Fermented Foods of the World. A Dictionary and Guide. Butterworths, Cambridge, UK.
34. Cannel, E., and , M. Moo-Young. 1980. Solid-state fermentation systems. Process Biochem. 15:27.
35. Cen, P., and , L. Xia. 1999. Production of cellulase by solid-state fermentation. Adv. Biochem. Eng. Biotechnol. 65:6972.
36. Chisti, Y. 1999. Solid substrate fermentations, enzyme production, food enrichment, p. 2446–2462. In M. C. Flickinger and, S. W. Drew (ed), Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation, vol. 5. John Wiley & Sons, Inc., New York, NY.
37. Claessen, D.,, W. de Jong,, L. Dijkhuizen, and, H. A. B. Wosten. 2006. Regulation of Streptomyces development: reach for the sky! Trends Microbiol. 14:313319.
38. Compos, C.,, F. J. Fernandez,, E. C. Sierra,, F. Fierro,, A. Gray, and , J. Barrios-Gonzalez. 2008. Improvement of penicillin yield in solid state and submerged fermentation of Penicillium chrysogenum by amplification of the penicillin biosynthetic gene cluster. World J. Microbiol. Biotechnol. 24:30173022.
39. Corry, J. E. L. 1987. Relationships of water activity to fungal growth, p. 51–99. In L. R. Beuchat (ed.), Food and Beverage Mycology, 2nd ed. Avi Publishing Co., Westport, CT.
40. Couto, S. R. 2008. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnol. J. 3:859870.
41. Couto, S. R., and , M. A. Sanromán. 2005. Application of solid-state fermentation to ligninolytic enzyme production—review. Biochem. Eng. J. 22:211219.
42. Couto, S. R., and , M. A. Sanromán. 2006. Application of solid-state fermentation to food industry—a review. J. Food Eng. 76:291302.
43. Dalsenter, F. D. H.,, G. Viccini,, M. C. Barga,, D. A. Mitchell, and, N. Krieger. 2005. A mathematical model describing the effect of temperature variations on the kinetics of microbial growth in solid-state culture. Process Biochem. 40:801807.
44. Davies, J. 2006. Are antibiotics naturally antibiotics? J. Ind. Microbiol. Biotechnol. 33:496499.
45. Demain, A. L. 1998. Induction of microbial secondary metabolism. Int. Microbiol. 1:259264.
46. Demain, A. L. 1999. Pharmaceutically active secondary metabolites of microorganisms. Appl. Microbiol. Biotechnol. 52:455463.
47. Demain, A. L. 2000. Microbial biotechnology. Trends Biotechnol. 13:2631.
48. Demain, A. L. 2006. From natural products discovery to commercialization: a success story. J. Ind. Microbiol. Biotechnol. 33:486495.
49. Demain, A. L. 2007. The business of biotechnology. Ind. Biotechnol. 3:269283.
50. Demain, A. L., and , A. Fang. 2000. The natural functions of secondary metabolites. Adv. Biochem. Eng. Biotechnol. 69:139.
51. Demain, A. L., and , L. Zhang. 2005. Natural products and drug discovery, p. 3–32. In L. Zhang and, A. Demain (ed.), Natural Products: Drug Discovery and Therapeutic Medicines. Humana Press, Totowa, NJ.
52. Demain, A. L., and , J. L. Adrio. 2008. Contributions of microorganisms to industrial biology. Mol. Biotechnol. 38:4155.
53. Desgranges, C.,, C. Vergoignan,, M. Georges, and, A. Durand. 1991. Biomass estimation in solid-state fermentation. I. Manual biochemical methods. Appl. Microbiol. Biotechnol. 35:200205.
54. Desgranges, C.,, M. Georges,, C. Vergoignan, and, A. Durand. 1991. Biomass estimation in solid state fermentation. II. On-line measurements. Appl. Microbiol. Biotechnol. 35:206209.
55. de Vrije, T.,, N. Antoine,, R. M. Buitelaar,, S. Bruckner,, M. Dissevelt,, A. Durand,, M. Gerlagh,, E. E. Jones,, P. Lüth,, J. Oostra,, W. J. Ravensberg,, R. Renaud,, A. Rinzema,, F. J. Weber, and, J. M. Whipps. 2001. The fungal biocontrol agent Coniothyrium minitans: production by solid-state fermentation, application and marketing. Appl. Microbiol. Biotechnol. 56:5868.
56. Diaz, J. C. M.,, J. A. Rodriguez,, S. Roussos,, J. Cordova,, A. Abousalham,, F. Carriere, and, J. Baratti. 2006. Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb. Technol. 39:10421050.
57. Díaz-Godínez, G.,, J. Soriano-Santos,, C. Augur, and , G. Viniegra-González. 2001. Exopectinases produced by Aspergillus niger in solid state and submerged fermentation: a comparative study. J. Ind. Microbiol. Biotechnol. 26:271275.
58. Dominguez, M.,, A. Mejia, and , J. Barrios-Gonzalez. 2000. Respiration studies of penicillin solid-state fermentation. J. Biosci. Bioeng. 89:409413.
59. Feron, G.,, P. Bonnarme, and, A. Durand. 1996. Prospects for the microbial production of food flavours. Trends Food Sci. Technol. 7:285293.
60. Flärdh, K., and, M. J. Buttner. 2009. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7:3649.
61. Gervais, P.,, P. Molin,, W. Grajek, and, M. Bensoussan. 1988. Influence of the water activity of a solid substrate on the growth rate and sporogenesis of filamentous fungi. Biotechnol. Bioeng. 31:457463.
62. Gervais, P.,, P. A. Marrchal, and, P. Molin. 1996. Water relations of solid state fermentation. J. Sci. Ind. Res. 55:343357.
63. Gervais, P., and , P. Molin. 2003. The role of water in solid-state fermentation. Biochem. Eng. J. 13:85101.
64. Ghildyal, N. P.,, M. K. Gowthaman,, K. S. Rao, and, N. G. Karanth. 1994. Interaction of transport resistances with biochemical reaction in packed-bed solid-state fer-mentors: effect of temperature gradients. Enzyme Microb. Technol. 16:253257.
65. Gowthaman, M. K.,, C. Krishna, and , M. Moo-Young. 2001. Fungal solid state fermentation—an overview, p. 305–352. In G. G. Khachatourians and, D. K. Arora (ed.), Agriculture and Food Production. Applied Mycology and Biotechnology, vol. 1. Elsevier, Amsterdam, The Netherlands.
66. Graminha, E. B. N.,, A. Z. L. Gonçalves,, R. D. P. B. Pirota,, M. A. A. Balsalobre,, R. Da Silva, and, E. Gomes. 2008. Enzyme production by solid-state fermentation: application to animal nutrition. Anim. Feed Sci. Technol. 144:122.
67. Grayek, W., and , P. Gervais. 1987. Influence of water activity on the enzyme biosynthesis and enzyme activities produced by Trichoderma viride TS in solid-state fermentation. Enzyme Microb. Technol. 9:658662.
68. Greene, R. V.,, S. N. Freer, and, S. H. Gordon. 1988. Determination of solid-state fungal growth by Fourier transform infrared-photoacoustic spectroscopy. FEMS Microbiol. Lett. 52:7377.
69. Gutierrez-Rojas, M.,, S. Amar Aboul Hosn,, R. Auria,, S. Revah, and , E. Favela Tomes. 2001. Heat transfer in citric acid production by solid state fermentation. Process Biochem. 31:363369.
70. Halstensen, A. S.,, K. C. Nordby,, I. M. Wouters, and, W. Eduard. 2007. Determinants of microbial exposure in grain farming. Ann. Occup. Hyg. 51:581592.
71. Haug, R. T. 1993. The Practical Handbook of Compost Engineering. CRC Press, Boca Raton, FL.
72. Hesseltine, C. W. 1977. Substrate fermentation. Process Biochem. 12:2427.
73. Hogan, D. A. 2006. Talking to themselves, autoregulation and quorum sensing in fungi. Eukaryotic Cell 5:613619.
74. Holker, U.,, M. Hofer, and, J. Lenz. 2004. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl. Microbiol. Biotechnol. 64:175186.
75. Holker, U., and , J. Lenz. 2005. Solid-state fermentation—are there any biotechnological advantages? Curr. Opin. Microbiol. 8:301306.
76. Jermini, M. F. G., and, A. L. Demain. 1989. Solid state fermentation for cephalosporin production by Streptomyces clavuligerus and Cephalosporium acremonium. Experientia 4:10611065.
77. Kashyap, D. R.,, S. K. Soni, and, R. Tewari. 2003. Enhanced production of pectinase by Bacillus sp. DT7 using solid state fermentation. Bioresour. Technol. 88:251254.
78. Koehn, F. E., and , G. T. Carter. 2005. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 4:206220.
79. Krishna, C. 1999. Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour. Technol. 69:231239.
80. Krishna, C. 2005. Solid-state fermentation systems—an overview. Crit. Rev. Biotechnol. 25:130.
81. Krishna, C.,, A. Pandey, and, A. Mohandas. 2004. Microbial phytases, p. 569–576. In A. Pandey (ed.), Concise Encyclopedia of Bioresource Technology. Haworth Press, Binghamton, NY.
82. Lacey, J., and , B. Crook. 1988. Fungal and actinomycete spores as pollutants of the workplace and occupational allergens. Ann. Occup. Hyg. 32:515533.
83. Larroche, D. 1996. Microbial growth and sporulation behaviour in solid state fermentation. J. Sci. Ind. Res. 55:408423.
84. Liu, C.-Z.,, F. Wang, and , F. Ou-Yang. 2001. Ethanol fermentation in a magnetically fluidized bed reactor with immobilized Saccharomyces cerevisiae in magnetic particles. Bioresour. Technol. 100:878882.
85. Lockwood, L. B. 1979. Production of organic acids by fermentation, p. 355–387. In H. J. Peppler and, D. Perlman (ed.), Microbial Technology, vol. 1. Academic Press, New York, NY.
86. Lonsane, B. K.,, N. P. Ghildyal,, S. Budiatman, and, S. V. Ramakrishna. 1985. Engineering aspects of solid-state fermentation. Enzyme Microb. Technol. 7:258265.
87. Lonsane, B. K.,, O. Saucedo-Castaneda,, M. Raimbault,, S. Roussos,, O. Viniegra-Gonzalez,, N. P. Ghildyal,, M. Ramakrishna, and, M. M. Krishnaiah. 1992. Scale-up strategies for solid state fermentation systems. Process Biochem. 27:259273.
88. Mason, I. G., and , M. W. Milke. 2005. Physical modelling of the composting environment: a review. Part 1: reactor systems. Waste Manag. 25:489500.
89. Matcham, S. E.,, B. R. Jordan, and, D. A. Wood. 1985. Estimation of fungal biomass in a solid substrate by three independent methods. Appl. Microbiol. Biotechnol. 21:108112.
90. Membrillo, I.,, C. Sánchez,, M. Meneses,, E. Favela, and, O. Loera. 2008. Effect of substrate particle size and additional nitrogen source on production of lignocellulolytic enzymes by Pleurotus ostreatus strains. Bioresour. Technol. 99:78427847.
91. Miall, L. M. 1978. Organic acids, p. 47–119. In A. H. Rose (ed.), Primary Products of Metabolism, Economic Microbiology, vol. 2. Academic Press, New York, NY.
92. Mitchell, D. A.,, M. Berovic, and, N. Krieger. 2000. Biochemical engineering aspects of solid state bioprocessing. Adv. Biochem. Eng. Biotechnol. 68:61138.
93. Mitchell, D. A.,, N. Krieger,, D. M. Stuart, and, A. Pandey. 2000. New developments in solid state fermentation. II. Rational approaches to the design, operation and scale-up of bioreactors. Process Biochem. 35:12111225.
94. Mitchell, D. A.,, O. F. von Meien,, L. F. Luiz, Jr., and, N. Krieger. 2002. Evaluation of productivity of Zymotis solid-state bioreactor. Food Technol. Biotechnol. 40:135144.
95. Mitchell, D. A.,, O. F. von Meien,, N. Krieger, and, F. D. H. Dalsenter. 2004. A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem. Eng. J. 17:1526.
96. Mitchell, D. A.,, N. Krieger, and , M. Berovič (ed.). 2001. Solid-State Fermentation Bioreactors: Fundamentals of Design and Operation. Springer, Berlin, Germany.
97. Mitchell, D. A.,, M. Berovič,, M. Nopharatana, and, N. Krieger. 2006. The bioreactor step of SSF: a complex interaction of phenomena, p. 13–32. In D. A. Mitchell,, N. Krieger, and, M. Berovič (ed.), Solid-State Fermentation Bioreactors: Fundamentals of Design and Operation. Springer, Berlin, Germany.
98. Moo-Young, M.,, A. R. Moriera, and, R. P. Tengerdy. 1983. Principles of solid state fermentation, p. 117–144. In J. E. Smith,, D. R. Berry, and , B. Kristiansen (ed.), The Filamentous Fungi, vol. 4. Fungal Biotechnology. Edward Arnold Publishers, London, United Kingdom.
99. Nagel, F. J. I.,, J. Tramper,, M. S. N. Bakker, and, A. Rinzema. 2001. Model for on-line moisture-content control during solid-state fermentation. Biotechnol. Bioeng. 72:231243.
100. Nandakumar, M. P.,, M. S. Thakur,, K. S. M. S Raghavarao, and, N. P. Ghildyal. 1999. Studies on catabolite repression in solid state fermentation for biosynthesis of fungal amylases. Lett. Appl. Microbiol. 29:380384.
101. Newman, D. J., and , G. M. Cragg. 2007. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70:461477.
102. Nigam, P., and, D. Singh. 1994. Solid-state (substrate) fermentation systems and their applications in biotechnology. J. Basic Microbiol. 6:405423.
103. Nigam, P., and , D. Singh. 1996. Processing of agricultural wastes in solid state fermentation for cellulolytic enzymes production. J. Sci. Ind. Res. 55:457463.
104. Ooijkaas, L. P.,, F. J. Weber,, R. M. Buitelaar,, J. Tramper, and, A. Rinzema. 2000. Defined media and inert supports: their potential as solid-state fermentation production systems. Trends Biotechnol. 18:356360.
105. Oostra, J.,, E. P. le Comte,, J. C. van den Heuvel,, J. Tramper, and, A. Rinzema. 2001. Intra-particle oxygen diffusion limitation in solid-state fermentation. Biotechnol. Bioeng. 74:1324.
106. Oriol, E.,, B. Schettino, and , G. Viniegra-Gonzales. 2001. Solid-state culture of Aspergillus niger on support. J. Ferment. Technol. 66:5762.
107. Pandey, A. 1991. Effect of particle size of substrate on enzyme production in solid-state fermentation. Bioresour. Technol. 37:169172.
108. Pandey, A. 2003. Solid-state fermentation. Biochem. Eng. J. 13:8184.
109. Pandey, A.,, P. Selvakumar,, C. R. Soccol, and, P. Nigam. 1999. Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77:149162.
110. Pandey, A.,, C. R. Soccol, and, D. Mitchell. 2000. New developments in solid state fermentation: I—bioprocesses and products. Process Biochem. 35:11531169.
111. Pandey, A., and, S. Ramachandran. 2006. Process development for food applications, p. 87–110. In K. Shetty,, G. Paliyath,, A. Pometto, and, R. E. Levin (ed.), Food Biotechnology, 2nd ed. CRC Press, Boca Raton, FL.
112. Pandey, A.,, C. R. Soccol, and , C. Larroche. 2008. Current Developments in Solid-State Fermentation. Springer, Berlin, Germany.
113. Papagianni, P. 2004. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol. Adv. 22:189259.
114. Papagianni, M.,, S. E. Nokes, and , K. Filer. 1999. Production of phytase by Aspergillus niger in submerged and solid state fermentation. Process Biochem. 35:397402.
115. Parsek, M. P., and , E. P. Greenberg. 2005. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13:2733.
116. Pearce, C. 1997. Biologically active fungal metabolites. Adv. Appl. Microbiol. 44:180.
117. Pintado, J.,, A. Torrado,, M. P. Gonzalez, and, M. A. Murado. 1998. Optimization of nutrient concentration for citric acid production by solid-state culture of Aspergillus niger on polyurethane foams. Enzyme Microb. Technol. 23:149156.
118. Raghavarao, K. S. M. S.,, T. V. Ranganathan, and , N. G. Karanth. 2003. Some engineering aspects of solid-state fermentation. Biochem. Eng. J. 13:127135.
119. Rahardjo, Y. S. P.,, J. Tramper, and, A. Rinzema. 2006. Modeling conversion and transport phenomena in solid-state fermentation: a review and perspectives. Biotechnol. Adv. 24:161179.
120. Raimbault, M. 1998. General and microbiological aspects of solid substrate fermentation. Electronic J. Biotechnol. 1:115.
121. Raimbault, M., and , D. Alazard. 1980. Culture method to study fungal growth in solid fermentation. Eur. J. Appl. Microbiol. Biotechnol. 9:199202.
122. Rajagopalan, S., and , J. M. Modak. 1995. Modeling of heat and mass transfer for solid state fermentation process in tray bioreactor. Bioprocess Biosyst. Eng. 13:161169.
123. Rajagopalan, R., and , J. M. Modak. 1995. Evaluation of relative growth limitation due to depletion of glucose and oxygen during fungal growth on a spherical solid particle. Chem. Eng. Sci. 50:803811.
124. Ramesh, M. V., and , B. K. Lonsane. 1990. Critical importance of moisture content of the medium in alpha-amylase production by Bacillus licheniformis M27 in a solid-state fermentation system. Appl. Microbiol. Biotechnol. 3:201205.
125. Robinson, T.,, D. Singh, and , P. Nigam. 2001. Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 55:284289.
126. Romero-Gomez, R. J.,, C. Augur, and , G. Viniegra-Gonzalez. 2001. Invertase production by Aspergillus niger in submerged and solid-state fermentation. Biotechnol. Lett. 22:12551258.
127. Roussos, S.,, M. Raimbault,, J.-P. Prebois, and, B. K. Lonsane. 1993. Zymotis, a large scale solid state fermenter. Appl. Biochem. Biotechnol. 42:3752.
128. Roussos, S.,, E. Bresson,, G. Saucedo-Castaneda,, P. Martinez,, J. Guymberteau, and , J.-M. Olivier. 1997. Production of mycelial cells of Pleurotus opuntiae on natural support in solid state fermentation, p. 483–498. In S. Roussos,, B. K. Lonsane,, M. Raimbault, and, G. Viniegra-Gonzalez (ed.), Advances in Solid State Fermentation. Kluwer Academic Publishers, Dordrecht, The Netherlands.
129. Sangsurasak, P.,, M. Nopharatana, and, D. A. Mitchell. 1996. Mathematical modeling of the growth of filamentous fungi in solid state fermentation. J. Sci. Ind. Res. 55:333342.
130. Santos, M. M.,, A. S. Rosa,, S. Dal’boit,, D. A. Mitchell, and, N. Krieger. 2004. Thermal denaturation: is solid state fermentation really a good technology for the production of enzymes? Bioresour. Technol. 93:261268.
131. Sato, K., and , S. Sudo. 1999. Small-scale solid-state fermentations, p. 61–89. In A. L. Demain and, J. E. Davies (ed.), Manual of Industrial Microbiology and Biotechnology, 2nd ed. ASM Press, Washington, DC.
132. Saucedo-Castaneda, G.,, M. Gutierrez-Rojas,, G. Bacquet,, M. Raimbault, and , G. Viniegra-Gonzalez. 1990. Heat transfer simulation in solid substrate fermentation. Biotechnol. Bioeng. 5:802808.
133. Saucedo-Castaneda, G.,, M. R. Trejo-Hernandez,, J. M. Lonsane,, J. M. Navarro,, S. Roussos,, D. Dufour, and, M. Raimbault. 1994. On-line automated monitoring and control systems for CO2 and O2 in aerobic and anaerobic solid-state fermentations. Process Biochem. 29:1324.
134. Shankar, S. K., and , V. H. Mulimani. 2007. α-Galactosidase production by Aspergillus oryzae in solid-state fermentation. Bioresour. Technol. 98:958961.
135. Singhania, R. R.,, C. R. Soccol, and, A. Pandey. 2009. Recent advances in solid-state fermentation. Biochem. Eng. J., 44:1318.
136. Smith, P. G. 2007. Gas-Solid Fluidized Bed Fermentation. Wiley Interscience, New York, NY.
137. Soccol, C. R. 1996. Biotechnology products from cassava root by solid state fermentation. J. Sci. Ind. Res. 55:358364.
138. Sree, N. K.,, M. Sridhar,, K. Suresh, and, L. V. Rao. 1999. High alcohol production by solid substrate fermentation from starchy substrates using thermotolerant Saccharomyces cerevisiae. Bioprocess Biosyst. Eng. 20:561563.
139. Stuart, D. M.,, D. A. Mitchell,, M. R. Johns, and, J. D. Litster. 1999. Solid-state fermentation in rotating drum bioreactors: operating variables affect performance through their effects on transport phenomena. Biotechnol. Bioeng. 63:383391.
140. Sudo, S.,, S. Kobayashi,, A. Kaneko,, K. Sato, and, T. Oba. 1995. Growth of submerged mycelia of Aspergillus kawachii in solid-state culture. J. Ferment. Bioeng. 79:252256.
141. Suryanarayan, S. 2003. Current industrial practice in solid state fermentations for secondary metabolite production: the Biocon India experience. Biochem. Eng. J. 13:189195.
142. Szewczyk, K. W., and , L. Myszka. 1994. The effect of temperature on the growth of A. niger in solid state fermentation. Bioprocess Eng. 10:123126.
143. Takamine, J. September, 1894. Preparing and making taka-koji. U.S. patent 525,820.
144. Talbot, N. J. 2003. Aerial morphogenesis: enter the chaplins. Curr. Biol. 13:R696R698.
145. Tomasini, A.,, C. Fajardo, and , J. Barrios-Gonzalez. 2001. Gibberellic acid production using different solid-state fermentation systems. World J. Microbiol. Biotechnol. 13:203206.
146. Trejo-Hernandez, M. R.,, M. Raimbault,, S. Roussos, and, B. K. Lonsane. 1992. Potential of solid state fermentation for production ergot alkaloids. Lett. Appl. Microbiol. 14:156159.
147. Vandenberghe, L. P. S.,, C. R. Soccol,, F. C. Prado, and, A. Pandey. 2004. Comparison of citric acid production by solid-state fermentation in flask, column, tray, and drum bioreactors. Appl. Biochem. Biotechnol. 118:293303.
148. Varzakas, T. H.,, S. Roussos, and , I. S. Arvanitoyannis. 2001. Glucoamylases production of Aspergillus niger in solid state fermentation using a continuous counter-current reactor. Int. J. Food Sci. Technol. 43:11591168.
149. Viccini, G.,, D. A. Mitchell,, S. D. Boit,, J. C. Gern,, A. S. da Rosa,, R. M. Costa,, F. D. H. Dalsenter,, O. F. von Meien, and, N. Krieger. 2001. Analysis of growth kinetic profiles in solid-state fermentation. Food Technol. Biotechnol. 39:271294.
150. Viniegra-Gonzalez, G. 2001. Solid state fermentation: definition, characteristics, limitations and monitoring, p. 5–22. In S. Roussos,, B. K. Lonsane,, M. Raimbault and, G. Viniegraz-Gonzalez (ed.), Advances in Solid State Fermentation. Kluwer Academic Publishers, Dordrecht, The Netherlands.
151. Viniegra-González, G.,, E. Favela-Torres,, C. N. Aguilar,, S. de Jesus Rómero-Gomez,, G. Diaz-Godinez, and, C. Augur. 2003. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 13:157167.
152. Wang, L., and , S.-T. Yang. 2007. Bioprocessing for value-added products from renewable resources. New technologies and applications, p. 465–489. In S.-T. Yang (ed.), Solid State Fermentation and Its Applications. Elsevier, Amsterdam, The Netherlands.
153. Wiacek-Zychlinska, A.,, J. Czajak, and , R. Sawicka-Zukowska. 1994. Xylanase production by fungal strains in solid-state fermentations. Bioresour. Technol. 49:1316.
154. Wood, D. A. 2001. Mushroom biotechnology. Int. Ind. Biotechnol. 9:58.
155. Wosten, H. A. B.,, M. A. van Wetter,, L. G. Lugones,, H. C. van der Mei,, H. J. Busscher, and, J. G. H. Wessels. 1999. How a fungus escapes the water to grow into the air. Curr. Biol. 9:8588.
156. Yamane, Y.,, M. Yoshii,, S. Mikami,, H. Fukuda, and, Y. Kizaki. 2000. A solid-state culture system using a cellulose carrier containing defined medium as a useful tool for investigating characteristics of koji culture. J. Biosci. Bioeng. 89:3339.
157. Yim, G.,, H. H. Wang, and, J. Davies. 2007. Antibiotics as natural signaling molecules. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362:11951200.

Tables

Generic image for table
TABLE 1

Production of bioactive natural products by SPF

Citation: Bigelis R. 2010. Solid-Phase Fermentation: Aerobic and Anaerobic, p 117-131. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch9
Generic image for table
TABLE 2

Medium formulations for small-scale fermentation with solid-substrate system in 2.8-liter Fernbach flasks

Citation: Bigelis R. 2010. Solid-Phase Fermentation: Aerobic and Anaerobic, p 117-131. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error