1887

Chapter 10 : Bacterial Cultivation for Production of Proteins and Other Biological Products

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Bacterial Cultivation for Production of Proteins and Other Biological Products, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap10-2.gif

Abstract:

This chapter concentrates on the production of proteins and other biological products from bacteria. Most bacteria used for the production of low-and high-molecular-weight organic compounds (e.g., acids, DNA, proteins) are chemoorganotrophic; thus, in addition to inorganic substrates, they also need organic substrates for cell maintenance, growth, and production. For temperature-induced production of recombinant proteins, the desired specific growth temperature should be reduced to 0.08 h after raising the temperature to 42°C. The chapter provides some examples of processes for production of biological products other than recombinant proteins: one is the production of the amino acid L-alanine by genetically engineered ; the second is the conversion of ferulic acid to vanillin by recombinant ; and the third is the production of polysialic acid by a selected K1 strain. The chapter also mentions three examples of production of biological products using different types of bacteria. The first two examples describe classical production processes using genetically unmodified bacteria: production of the antibiotic streptomycin by and production of glutamic acid by . The third example is the description of succinic acid production by a novel, genetically engineered strain of .

Citation: Shiloach J, Rinas U. 2010. Bacterial Cultivation for Production of Proteins and Other Biological Products, p 132-144. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch10

Key Concept Ranking

Bacterial Proteins
0.5674502
Chemicals
0.47051385
Enzyme-Linked Immunosorbent Assay
0.45216215
Sulfur Amino Acids
0.41972762
0.5674502
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

General layout of the bacterial cultivation process for production of proteins and other biological products.

Citation: Shiloach J, Rinas U. 2010. Bacterial Cultivation for Production of Proteins and Other Biological Products, p 132-144. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

General scheme of a stirred-tank bioreactor.

Citation: Shiloach J, Rinas U. 2010. Bacterial Cultivation for Production of Proteins and Other Biological Products, p 132-144. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

General scheme of cultivation strategies.

Citation: Shiloach J, Rinas U. 2010. Bacterial Cultivation for Production of Proteins and Other Biological Products, p 132-144. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

On-line data on batch cultivation process for production of recombinant exotoxin A from in 5-liter bioreactor. Arrow A indicates the point of introducing oxygen-enriched air to the culture; arrow B indicates the time when IPTG was added to the culture.

Citation: Shiloach J, Rinas U. 2010. Bacterial Cultivation for Production of Proteins and Other Biological Products, p 132-144. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Off-line data on batch cultivation process for production of recombinant exotoxin A from in 5-liter bioreactor. The arrow indicates the time when IPTG was added to the culture.

Citation: Shiloach J, Rinas U. 2010. Bacterial Cultivation for Production of Proteins and Other Biological Products, p 132-144. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch10
1. Babu, K. R.,, S. Swaminathan,, S. Marten,, N. Khanna, and, U. Rinas. 2000. Production of interferon-alpha in high-cell density cultures of recombinant Escherichia coli and its single step purification from refolded inclusion body proteins. Appl. Microbiol. Biotechnol. 53:655660.
2. Barghini, P.,, D. Di Giola,, F. Fava, and, M. Ruzzi. 2007. Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb. Cell Fact. 6:13.
3. El-Mansi, E. M. T., and, C. F. A. Bryce (ed.). 2007. Fermentation Microbiology and Biotechnology, 2nd ed. CRC, Boca Raton, FL.
4. Endo, I.,, T. Nagamune,, S. Katoh, and, T. Yonemoto. 2001. Bioseparation Engineering. John Wiley & Sons, Inc., New York, NY.
5. Fass, R.,, M. van de Walle,, A. Shiloach,, A. Joslyn,, J. Kaufman, and, J. Shiloach. 1991. Use of high density cultures of Escherichia coli for high level production of recombinant Pseudomonas aeruginosa exotoxin A. Appl. Microbiol. Biotechnol. 36:6569.
6. Hale, V.,, J. D. Keasling,, N. Renninger, and, T. T. Diagana. 2007. Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am. J. Trop. Med. Hyg. 77:198202.
7. Hoffmann, F.,, J. van den Heuvel,, N. Zidek, and, U. Rinas. 2004. Minimizing inclusion body formation during recom-binant protein production in Escherichia coli at bench and pilot plant scale. Enzyme Microb. Technol. 34:235241.
8. Johansson, H. J.,, C. Jägersten, and, J. Shiloach. 1996. Large scale recovery and purification of periplasmic recombinant protein from E. coli using expanded bed adsorption chromatography followed by new ion exchange media. J. Biotechnol. 48:914.
9. Johnson, I. S. 1983. Human insulin from recombinant DNA technology. Science 219:632637.
10. Kayser, A.,, J. Weber,, V. Hecht, and, U. Rinas. 2005. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture: I. Growth rate dependent metabolic efficiency at steady state. Microbiology 151:693706.
11. Kirsop, B. E., and , J. J. S. Snell. 1984. Maintenance of Microorganisms. Academic Press, London, United Kingdom.
12. Korz, D. J.,, U. Rinas,, K. Hellmuth,, E. A. Sanders, and , W. D. Deckwer. 1995. Simple fed-batch technique for high cell density cultivation of Escherichia coli. J. Biotechnol. 39:5965.
13. Lee, J.,, S. Y. Lee,, S. Park, and, A. P. J. Middelberg. 1999. Control of fed-batch fermentations. Biotechnol. Adv. 17:2948.
14. Martinez, A.,, T. B. Grabar,, K. T. Shanmugam,, L. P. Yomano,, S. W. York, and, L. O. Ingram. 2007. Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnol. Lett. 29:397404.
15. Mcneil, B., and , L. M. Harvey (ed.). 2001. Practical Fermentation Technology. John Wiley & Sons Ltd., Chichester, United Kingdom.
16. Mori, H.,, T. Yamane,, T. Kobayashi, and, S. Shimizu. 1983. Comparison of cell productivities among fed-batch, repeated fed-batch and continuous cultures at high cell concentration. J. Ferment. Technol. 61:391401.
17. Mori, H.,, T. Yano,, T. Kobayashi, and, S. Shimizu. 1979. High density cultivation of biomass in fed-batch system with DO-stat. J. Chem. Eng. 12:313319.
18. Newman, J. D.,, J. Marshall,, M. Chang,, F. Nowroozi,, E. Paradise,, D. Pitera,, K. L. Newman, and, J. D. Keasling. 2006. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol. Bioeng. 95:684691.
19. Oh, I. J.,, D. H. Kim,, E. K. Oh,, S. Y. Lee, and, J. Lee. 2009. Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. J. Microbiol. Biotechnol. 19:167171.
20. Phue, J. N.,, S. J. Lee,, L. Trinh, and, J. Shiloach. 2008. Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5α). Biotechnol. Bioeng. 101:831-836.
21. Phue, J. N.,, S. B. Noronha,, R. Hattacharyya,, A. J. Wolfe, and, J. Shiloach. 2005. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses. Biotechnol. Bioeng. 90:805820.
22. Posten, C, and, U. Rinas. 2000. Control strategies for high-cell density cultivation of Escherichia coli, p. 374–390. In K. Schügerl and, K. H. Bellgardt (ed.), Bioreaction Engineering. Modelling and Control. Springer-Verlag, Berlin, Germany.
23. Rinas, U.,, K. Hellmuth,, R. Kang,, A. Seeger, and , H. Schlieker. 1995. Entry of Escherichia coli into stationary phase is indicated by endogenous and exogenous accumulation of nucleobases. Appl. Environ. Microbiol. 61:41474151.
24. Rode, B.,, C. Endres,, C. Ran,, F. Stahl,, S. Beutel,, C. Kasper,, S. Galuska,, R. Geyer,, M. Muhlenhoff,, R. Gerardy-Schahn, and, T. Scheper. 2008. Large-scale production and homogenous purification of long chain polysialic acids from E. coli K1. J. Biotechnol. 135:202-209.
25. Schmidt, M.,, K. R. Babu,, N. Khanna,, S. Marten, and , U. Rinas. 1999. Temperature-induced production of re-combinant human insulin in high-cell density cultures of recombinant Escherichia coli. J. Biotechnol. 68:7183.
26. Schmidt, M.,, E. Viaplana,, F. Hoffmann,, S. Marten,, A. Villaverde, and , U. Rinas. 1999. Secretion-dependent proteolysis of heterologous protein by recombinant Escherichia coli is connected to an increased activity of the energy-generating dissimilatory pathway. Biotechnol. Bioeng. 66:6167.
27. Seeger, A.,, B. Schneppe,, J. E. G. McCarthy,, W.-D. Deckwer, and, U. Rinas. 1995. Comparison of temperature-and isopropyl-β-D-thiogalacto-pyranoside-induced synthesis of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli. Enzyme Microb. Technol. 17:947953.
28. Shiloach, J., and , R. Fass. 2005. Growing E. coli to high cell density—a historical perspective on method development. Biotechnol. Adv. 23:345357.
29. Shiloach, J., and , U. Rinas. 2009. Glucose and acetate metabolism in E. coli—system level analysis and biotechnological applications in protein production processes, p. 377–400. In S. Y. Lee (ed.), Systems Biology and Biotechnology of Escherichia coli. Springer, Berlin, Germany.
30. Simione, F. P., and , E. M. Brown. 1991. ATCC Preservation Methods. American Type Culture Collection, Manassas, VA.
31. Singh, A.,, E. Bruzelius, and, H. Heading. 1976. Streptomycin, a fermentation study. Eur. J. Appl. Microbiol. Biotechnol. 3:97101.
32. Stanbury, P. F.,, A. Whitaker, and, S. J. Hall. 1995. Principles of Fermentation Technology, 2nd ed. Butterworth-Heinemann, Burlington, MA.
33. Subramanian, G. (ed.). 2001. Bioseparation and Bioprocessing: a Handbook. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany.
34. Swartz, J. R. 2001. Advances in Escherichia coli production of therapeutic proteins. Curr. Opin. Biotechnol. 12:195201.
35. Tanaka, K.,, T. Iwasaki, and , S. Kinoshita. 1960. Studies on l-glutamic acid fermentation. Part V. Biotin and l-glutamic acid accumulation by bacteria. J. Agric. Chem. Soc. Jpn. 34:583.
36. Terpe, K. 2006. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 72:211222.
37. Tsuruta, H.,, C. J. Paddon,, D. Eng,, J. R. Lenihan,, T. Horning,, L. C. Anthony,, R. Regentin,, J. D. Keasling,, N. S. Renninger, and, J. D. Newman. 2009. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 4:e4489.
38. Williams, J. A.,, A. E. Carnes, and, C. P. Hodgson. 2009. Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol. Adv. 27:353370.
39. Zhang, X.,, K. Jantama,, J. C. Moore,, K. T. Shanmugam, and, L. O. Ingram. 2007. Production of l-alanine by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77:355366.

Tables

Generic image for table
TABLE 1

Defined medium using glucose as carbon substrate

Citation: Shiloach J, Rinas U. 2010. Bacterial Cultivation for Production of Proteins and Other Biological Products, p 132-144. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch10
Generic image for table
TABLE 2

Defined medium to grow to high cell density using fed-batch culture technique or to grow in continuous culture

Citation: Shiloach J, Rinas U. 2010. Bacterial Cultivation for Production of Proteins and Other Biological Products, p 132-144. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error