1887

Chapter 14 : Plant Cell Culture

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Plant Cell Culture, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap14-2.gif

Abstract:

Plant cell culture has found wide applications ranging from studies on basic plant biochemistry and molecular biology to mass propagation and genetic engineering of crop species. This chapter talks about basic requirements for common procedures in plant cell culture. Successful plant cell culture requires extremely close attention to proper sterile technique and temperature control. Some laboratories use containment hoods when introducing microbes into plant cell cultures, such as during genetic transformation or inoculation with plant pathogens. Continuous light is sometimes detrimental to whole-plant growth and is rarely used in plant cell cultures. Many methods have been used to estimate the growth of plant cell cultures both directly and indirectly. The method chosen will depend on the requirements for maintaining the sterility of the culture and the speed and accuracy of the measurement. Assays in which the stain (such as fluorescein diacetate [FDA] or triphenyltetrazolium chloride [TTC]) is meant to be taken up only by living cells are known to sometimes give false-positive results with cells that no longer divide. One application of plant cell cultures is the study of plant secondary-metabolite biosynthesis and the commercial production of such valuable natural products.

Citation: Paiva N. 2010. Plant Cell Culture, p 196-211. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch14

Key Concept Ranking

Sodium Dodecyl Sulfate
0.43080756
Amino Acid Synthesis
0.40771398
0.43080756
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Growth of opium poppy cell suspension cultures in 250-ml shake flasks. The inoculum ( L. cv. Marianne, PBI 2009) ( ) was 10 g (wet fresh weight) (13% [wt/vol]) per 75 ml of medium per 250-ml flask. Cells were cultured at 25°C and 150 rpm. The medium was 1B5C (B5 salts supplemented with 20 g of sucrose per liter, 1 mg of 2,4-D per ml, and 1 g of casein [NZ-Amine] per liter; pH 5.5). The initial sucrose level was less than 20 g/liter, due to dilution by sucrose-depleted medium in the inoculum.

Citation: Paiva N. 2010. Plant Cell Culture, p 196-211. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch14
1. Aldemita, R. R., and , T. K. Hodges. 1996. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199:612617.
2. Ammirato, P. V.,, D. A. Evans,, W. R. Sharp, and, Y. Yamada. 1984. Handbook of Plant Cell Culture, vol. 3. Crop Species. MacMillan Publishing Co., New York, NY.
3. An, G.,, S. Lee,, S. H. Kim, and, S. R. Kim. 2005. Molecular genetics using T-DNA in rice. Plant Cell Physiol. 46:1422.
4. Bajaj, Y. P. S., and, J. Reinert. 1977. Cryobiology of plant cell cultures and establishment of gene banks, p. 757–777. In J. Reinert and, Y. P. S. Bajaj (ed.), Applied and Fundamental Aspects of Plant Cell, Tissue, and Organ Culture. Springer-Verlag, Berlin, Germany.
5. Balsevich, J., and , G. Bishop. 1989. Distribution of catharanthine, vindoline and 3′,4′-anhydrovinblastine in the aerial parts of some Catharanthus roseus plants and the significance thereof in relation to alkaloid production in cultured cells, p. 149–153. In W. G. W. Kurz (ed.), Primary and Secondary Metabolism of Plant Cell Cultures II. Springer-Verlag, New York, NY.
6. Burger, D. W. 1988. Guidelines for autoclaving media used in plant tissue culture. Hort. Sci. 23:10661068.
7. Cahoon, E. B.,, T. J. Carlson,, K. G. Ripp,, B. J. Schweiger,, G. A. Cook,, S. E. Hall, and, A. J. Kinney. 1999. Biosynthetic origin of conjugated double bonds: production of fatty acid components of high-value drying oils in transgenic soybean embryos. Proc. Natl. Acad. Sci. USA 96:1293512940.
8. Cline, S. D., and , C. J. Coscia. 1988. Stimulation of sanguinarine production by combined fungal elicitation and hormonal deprivation in cell suspension cultures of Papaver bracteatum. Plant Physiol. 86:161165.
9. Curtin, M. E. 1983. Harvesting profitable products from plant tissue culture. Bio/Technology 1:649657.
10. Damude, H. G.,, H. Zhang,, L. Farrall,, K. G. Ripp,, J.-F Tomb,, D. Hollerbach, and, N. S. Yadav. 2006. Identification of bifunctional A12/to3 fatty acid desaturases for improving the ratio of to3 to to6 fatty acids in microbes and plants. Proc. Natl. Acad. Sci. USA 103:94469451.
11. Darvill, A. G., and , P. Albersheim. 1984. Phytoalexins and their elicitors—a defense against microbial infection in plants. Annu. Rev. Plant Physiol. 35:243275.
12. Deus-Neumann, B., and, M. H. Zenk. 1984. Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Med. 50:427431.
13. DiCosmo, F, and, M. Misawa. 1996. Plant Cell Culture Secondary Metabolism: Toward Industrial Application. CRC Press, Inc., Boca Raton, FL.
14. Dixon, R. A., and , R. A. Gonzales. 1994. Plant Cell Culture. A Practical Approach. Oxford University Press, Oxford, United Kingdom.
15. Dougall, D. K., and , D. L. Vogelien. 1987. The stability of accumulated anthocyanin in suspension cultures of the parental line and high and low accumulating subclones of wild carrot. Plant Cell Tissue Org. Cult. 8:113123.
16. Ebel, J.,, A. R. Ayers, and, P. Albersheim. 1976. Hostpathogen interactions XII. Response of suspension-cultured soybean cells to the elicitor isolated from Phytophthora megasperma var. sojae, a fungal pathogen of soybeans. Plant Physiol. 57:775779.
17. Eilert, U.,, W. G. W. Kurz, and, F. Constabel. 1984. Stimulation of sanguinarine accumulation in Papaver somniferum cell cultures by fungal elicitors. J. Plant Physiol. 119:6576.
18. Evans, D. A.,, W. R. Sharp,, P. V. Ammirato, and, Y. Yamada. 1983. Handbook of Plant Cell Culture, vol. 1. Techniques for Propagation and Breeding. Macmillan Publishing Co., New York, NY.
19. Funk, C,, K. Gügler, and, P. Brodelius. 1987. Increased secondary product formation in plant cell suspension cultures after treatment with a yeast carbohydrate preparation (elicitor). Phytochemistry 26:401405.
20. Gamborg, O. L.,, R. A. Miller, and, K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151158.
21. George, E. F.,, D. J. M. Puttock, and, H. J. George. 1987. Plant Culture Media, vol. 1. Formulations and Uses. Exegetics Ltd., Edington, United Kingdom.
22. Goodwin, T. W., and , E. I. Mercer. 1983. Introduction to Plant Biochemistry. Pergamon Press, Oxford, United Kingdom.
23. Hay, C. A.,, L. A. Anderson,, M. F. Roberts, and, J. D. Phillipson. 1988. Alkaloid production by plant cell cultures, p. 97-140. In A. Mizrahi (ed.), Biotechnology in Agriculture. Alan R. Liss, Inc., New York, NY.
24. Hirasuna, T. J.,, M. L. Shuler,, V. K. Lackney, and, R. M. Spanswick. 1991. Enhanced anthocyanin production in grape cell cultures. Plant Sci. 78:107120.
25. Hirasuna, T. J.,, L. J. Pestchanker,, V. Srinivasan, and , M. L. Shuler. 1996. Taxol production in suspension cultures of Taxus baccata. Plant Cell Tissue Org. Cult. 44:95102.
26. Ichikawa, T.,, M. Nakazawa,, M. Kawashima,, S. Muto,, K. Gohda,, K. Suzuki,, A. Ishikawa,, H. Kobayashi,, T. Yoshizumi,, Y. Tsumoto,, Y. Tsuhara,, H. Iizumi,, Y. Goto, and, M. Matsui. 2003. Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation tagging lines that showed phenotypes in T1 generation. Plant J. 36:421429.
27. Kato, A.,, S. Kawazoe,, M. Iijima, and, Y. Shimizu. 1976. Continuous culture of tobacco cells. J. Ferment. Technol. 54:8287.
28. Kurz, W. G. W. 1989. Primary and Secondary Metabolism of Plant Cell Cultures II. Springer-Verlag, New York, NY.
29. Kurz, W. G. W.,, N. L. Paiva, and, R. T. Tyler. 1990. Biosynthesis of sanguinarine by elicitation of surfaceimmonilized cells of Papaver somniferum L, p. 682–688. In H. J. J. Nikamp,, L. H. W. VanDerPlas, and, J. Van Aartrijk (ed.), Progress in Plant Cellular and Molecular Biology. Kluwer, Boston, MA.
30. Kutchan, T. M.,, S. Ayabe,, R. J. Krueger,, E. M. Coscia, and, C. J. Coscia. 1983. Cytodifferentiation and alkaloid accumulation in cultured cells of Papaver bracteatum. Plant Cell Rep. 2:281284.
31. Lindbo, J. A., and , W. G. Dougherty. 2005. Plant pathology and RNAi: a brief history. Annu. Rev. Phytopathol. 43:191204.
32. Maxwell, C. A.,, M. A. Restrepo-Hartwig,, A. O. Hession, and, B. McGonigle. 2004. Secondary metabolism in model systems: chapter eight. Metabolic engineering of soybean for improved flavor and health benefits. Recent Adv. Phytochem. 38:153176.
33. Murashige, T., and , F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473497.
34. Nagata, T.,, Y. Nemoto, and, S. Hesazawa. 1992. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int. Rev. Cytol. 132:130.
35. Napoli, C.,, C. Lemieux, and, R. Jorgensen. 1990. Introduction of a chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279289.
36. Neumann, K.-H.,, W. Barz, and, E. Reinhard. 1985. Primary and Secondary Metabolism of Plant Cell Cultures. Springer-Verlag, Berlin, Germany.
37. Paiva, N. L. 2002. Engineering resveratrol glucoside accumulation into alfalfa: crop protection and nutraceutical applications, p. 118–130. In K. Rajasekaran,, T. J. Jacks, and , J. W. Finley (ed.), Crop Biotechnology (American Chemical Society Symposium Series 829). Oxford University Press, New York, NY.
38. Parr, A. J. 1988. Secondary products from plant cell culture, p. 1–34. In A. Mizrahi (ed.), Biotechnology in Agriculture. Alan R. Liss, Inc., New York, NY.
39. Paszkowski, J., and , M. W. Saul. 1986. Direct gene transfer to plants. Methods Enzymol. 118:668684.
40. Register, J. C., III, and, R. N. Beachy. 1988. Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology 166:524532.
41. Rogers, S. G.,, R. B. Horsch, and, R. T. Fraley. 1986. Gene transfer in plants: production of transformed plants using Ti plasmid vectors. Methods Enzymol. 118:627640.
42. Russell, D. R.,, K. M. Wallace,, J. H. Bathe,, B. J. Martinell, and, D. E. McCabe. 1993. Stable transformation of Phaseolus vulgaris via electric-discharge mediated particle acceleration. Plant Cell Rep. 12:165169.
43. Sanford, J. C.,, F. D. Smith, and, J. A. Russell. 1993. Optimizing the biolistic process for different biological applications. Methods Enzymol. 217:483509.
44. Sato, F., and, Y. Yamada. 1984. High berberine-producing cultures of Coptis japonica cells. Phytochemistry 23:281285.
45. Schenk, R. U., and , A. C. Hildebrandt. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:199204.
46. Schripsema, J., and , R. Verpoorte. 1995. Primary and Secondary Metabolism of Plants and Cell Cultures III. Kluwer Academic Publishers, Dordrecht, The Netherlands.
47. Schumacher, H.-M.,, H. Gundlach,, F. Fiedler, and, M. H. Zenk. 1987. Elicitation of benzophenanthridine alkaloid synthesis in Eschscholtzia cell cultures. Plant Cell Rep. 6:410413.
48. Shargool, P. D., and , T. T. Ngo (ed.). 2001. Biotechno-logical Applications of Plant Cultures. CRC Press, Inc., Boca Raton, FL.
49. Shneyour, Y.,, A. Zelcer,, S. Izhar, and, J. S. Beckmann. 1984. A simple feeder-layer technique for the plating of plant cells and protoplasts at low densities. Plant Sci. Lett. 33:293302.
50. Staba, E. J. 1980. Plant Tissue Culture as a Source of Bio-chemicals. CRC Press, Inc., Boca Raton, FL.
51. Staba, E. J. 1985. Milestones in plant tissue culture systems for the production of secondary products. J. Nat. Prod. 48:203209.
52. Thorpe, T. A. 1981. Plant Tissue Culture. Methods and Applications in Agriculture. Academic Press, New York, NY.
53. Trigiano, R. N., and , D. J. Gray. 1996. Plant Tissue Culture Concepts and Laboratory Exercises. CRC Press, Inc., Boca Raton, FL.
54. Weeks, J. T.,, O. D. Anderson, and, A. E. Blechl. 1993. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102:10771084.
55. Wetter, L. R., and , F. Constabel (ed.). 1982. Plant Tissue Culture Methods, 2nd ed. National Research Council of Canada, Prairie Regional Laboratories, Saskatoon, Saskatchewan, Canada.
56. White, P. R. 1937. Vitamin B1 in the nutrition of excised tomato roots. Plant Physiol. 12:803811.
57. Widholm, J. M. 1972. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 47:189194.
58. Wierman, R. 1981. Secondary plant products and cell and tissue differentiation. p. 85–116. In E. E. Conn (ed.), The Biochemistry of Plants, vol. 7. Academic Press, New York, NY.
59. Winkler, R. G.,, M. R. Frank,, D. W. Galbraith,, R. Feyereisen, and, K. A. Feldmann. 1998. Systematic reverse genetics of transfer-DNA-tagged lines of Arabidopsis: isolation of mutations in the cytochrome P450 gene superfamily. Plant Physiol. 118:743750.
60. Yamakawa, T.,, S. Kato,, K. Ishida,, T. Kodama, and, Y. Minoda. 1983. Formation and identification of anthocyanins in cultured cells of Vitis sp. Agric. Biol. Chem. 47:997-1001.
61. Ye, X.,, S. Al-Babili,, A. Klöti,, J. Zhang,, P. Lucca,, P. Beyer, and, I. Potrykus. 2000. Engineering provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303305.

Tables

Generic image for table
TABLE 1

Composition of common plant cell culture media

Citation: Paiva N. 2010. Plant Cell Culture, p 196-211. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch14
Generic image for table
TABLE 2

Growth regulators and additives commonly used in plant tissue cultures

Citation: Paiva N. 2010. Plant Cell Culture, p 196-211. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch14
Generic image for table
TABLE 3

Preparation of SH frozen stock

Citation: Paiva N. 2010. Plant Cell Culture, p 196-211. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error