1887

Chapter 18 : Genetic Manipulation of Myxobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Genetic Manipulation of Myxobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap18-2.gif

Abstract:

Genome sequencing of a few myxobacteria has revealed genes for the biosynthesis of unidentified secondary metabolites. Considering the need for new drugs to treat a variety of diseases, further exploration of the myxobacteria is imperative. Tools for genetic manipulation of myxobacteria are important for identifying and engineering strains to maximize production of secondary metabolites. Several developments have enabled heterologous gene expression in myxobacteria, including the construction and development of regulated promoters and the identification of strong constitutive promoters. While most genetic tools were first developed for the model myxobacterium , many have been applied to , , and the lesser-known myxobacteria , , , and . This chapter describes these tools and hopes to facilitate the increased use of myxobacteria for applications in biotechnology and drug discovery. Electroporation has become the most common technique to introduce DNA into myxobacteria, including the species , , , , and . Mutagenesis is fundamental to any genetic manipulation. Transposon mutagenesis is critical for myxobacterial genetics due to the ease of mutation identification. Genetic mapping and linkage analysis may be performed using generalized transduction or genomic DNA transformation by electroporation in . Several systems have been used for regulated gene expression in . The regulatory system from was used recently to engineer another regulated promoter in .

Citation: Black W, Julien B, Rodriguez E, Yang Z. 2010. Genetic Manipulation of Myxobacteria, p 262-272. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch18

Key Concept Ranking

Gene Expression and Regulation
0.93859863
Chromosomal DNA
0.52051353
Sodium Dodecyl Sulfate
0.45030144
DNA
0.43665567
0.93859863
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic for insertional inactivation. An internal fragment of the gene to be disrupted is cloned into a nonrep-licative plasmid for integration by homologous recombination ( Table 1 ). Single homologous crossover between the fragment and the chromosome results in plasmid integration and a partial merodiploid with a 3′ and a 5′ truncation of the gene.

Citation: Black W, Julien B, Rodriguez E, Yang Z. 2010. Genetic Manipulation of Myxobacteria, p 262-272. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Diagram of allelic exchange to construct a deletion. A fragment containing the upstream and the downstream DNA of a gene (see text for details) is cloned into an allelic exchange plasmid ( Table 1 ). The first round of homologous recombination, selectable by Kan, results in integration of the plasmid onto the chromosome. This may happen through the 5′ or the 3′ fragment. For simplicity, only integration through the 5′ end is shown here. Kan transformants are plated for the selection of galactose resistance (negative selection) and the loss of the plasmid by a second round of recombination. Kanamycin-sensitive and galactose-resistant colonies may contain either the wild-type allele (A) or the deletion allele (B), depending on whether the second recombination occurred through the 5′ or the 3′ end, respectively.

Citation: Black W, Julien B, Rodriguez E, Yang Z. 2010. Genetic Manipulation of Myxobacteria, p 262-272. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

PCR-based method for creating a deletion fragment. In the first-round PCR, primer pairs F1-R1 and F2-R2 are used to amplify the upstream and the downstream fragments individually. The 20 bases at the 5′ end of primer F2 are complementary to primer R1. The fragments are gel purified, mixed, and subjected to the second round of PCR using only F1 and R2 to produce the deletion allele. For convenience, restriction sites may be engineered into primers F1 and R2 to facilitate cloning.

Citation: Black W, Julien B, Rodriguez E, Yang Z. 2010. Genetic Manipulation of Myxobacteria, p 262-272. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

PCR-based method for introducing point mutations. In the first-round PCR, primer pairs F1-R1 and F2-R2 are used to amplify the upstream and the downstream fragments individually. Primers R1 and F2 contain the desired point mutation at the center and are fully complementary. It is desirable to engineer a restriction site within R1 and F2 for screening purposes in later steps. The fragments are gel purified, mixed, and subjected to the second round of PCR using only F1 and R2. For convenience, restriction sites may be engineered into primers F1 and R2 to facilitate cloning.

Citation: Black W, Julien B, Rodriguez E, Yang Z. 2010. Genetic Manipulation of Myxobacteria, p 262-272. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch18
1. Avery, L., and, D. Kaiser. 1983. In situ transposon replacement and isolation of a spontaneous tandem genetic duplication. Mol. Gen. Genet. 191:99109.
2. Beck, E.,, G. Ludwig,, E. A. Auerswald,, B. Reiss, and, H. Schaller. 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327336.
3. Bierman, M.,, R. Logan,, K. O’Brien,, E. T. Seno,, R. N. Rao, and, B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:4349.
4. Blondelet-Rouault, M. H.,, J. Weiser,, A. Lebrihi,, P. Branny, and, J. L. Pernodet. 1997. Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. Gene 190:315317.
5. Bode, H. B., and, R. Muller. 2006. Analysis of myxobacterial secondary metabolism goes molecular. J. Ind. Microbiol. Biotechnol. 33:577588.
6. Bode, H. B., and, R. Muller. 2008. Secondary metabolism in myxobacteria, p. 259282. In D. E. Whitworth (ed.), Myxobacteria: Multicellularity and Differentiation. ASM Press, Washington, DC.
7. Bolivar, F,, R. L. Rodriguez,, P. J. Greene,, M. C. Betlach,, H. L. Heyneker, and, H. W. Boyer. 1977. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2:95113.
8. Bollag, D. M.,, P. A. McQueney,, J. Zhu,, O. Hensens,, L. Koupal,, J. Liesch,, M. Goetz,, E. Lazarides, and, C. M. Woods. 1995. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 55:23252333.
9. Boysen, A.,, E. Ellehauge,, B. Julien, and, L. Sogaard-Andersen. 2002. The DevT protein stimulates synthesis of FruA, a signal transduction protein required for fruiting body morphogenesis in Myxococcus xanthus. J. Bacteriol. 184:15401546.
10. Breton, A. M.,, I. Buon, and, J. F. Guespin-Michel. 1990. Use of Tn phoA to tag exported proteins in Myxococcus xanthus. FEMS Microbiol. Lett. 67:179186.
11. Breton, A. M.,, S. Jaoua, and, J. Guespin-Michel. 1985. Transfer of plasmid RP4 to Myxococcus xanthus and evidence for its integration into the chromosome. J. Bacteriol. 161:523528.
12. Brown, N. L.,, D. W. Morris, and, J. H. Parish. 1976. DNA of Myxococcus bacteriophage MX-1: macromolecu-lar properties and restriction fragments. Arch. Microbiol. 108:221226.
13. Burchard, R. P., and, M. Dworkin. 1966. A bacteriophage for Myxococcus xanthus: isolation, characterization and relation of infectivity to host morphogenesis. J. Bacteriol. 91:13051313.
14. Campos, J. M.,, J. Geisselsoder, and, D. R. Zusman. 1978. Isolation of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119:167178.
15. Campos, J. M., and, D. R. Zusman. 1975. Regulation of development in Myxococcus xanthus: effect of 3′:5′-cyclic AMP, ADP, and nutrition. Proc. Natl. Acad. Sci. USA 72:518522.
16. Cho, K., and, D. R. Zusman. 1999. AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol. Microbiol. 34:268281.
17. Cho, K., and, D. R. Zusman. 1999. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Microbiol. 34:714725.
18. Cohen, S. N.,, A. C. Chang,, H. W. Boyer, and, R. B. Helling. 1973. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl. Acad. Sci. USA 70:32403244.
19. Crawford, E. W., Jr., and, L. J. Shimkets. 2000. The stringent response in Myxococcus xanthus is regulated by SocE and the CsgA C-signaling protein. Genes Dev. 14:483492.
20. Deuschle, U.,, W. Kammerer,, R. Gentz, and, H. Bujard. 1986. Promoters of Escherichia coli: a hierarchy of in vivo strength indicates alternate structures. EMBO J. 5:29872994.
21. Geisselsoder, J.,, J. M. Campos, and, D. R. Zusman. 1978. Physical characterization of bacteriophage MX4, a generalized transducing phage for Myxococcus xanthus. J. Mol. Biol. 119:179189.
22. Gerth, K.,, O. Perlova, and, R. Muller. 2008. Sorangium cellulosum, p. 329-348. In D. E. Whitworth (ed.), Myxo-bacteria: Multicellularity and Differentiation. ASM Press, Washington, DC.
23. Gerth, K.,, S. Pradella,, O. Perlova,, S. Beyer, and, R. Muller. 2003. Myxobacteria: proficient producers of novel natural products with various biological activities—past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 106:233253.
24. Glomp, I.,, P. Saulnier,, J. Guespin-Michel, and, H. U. Schairer. 1988. Transfer of IncP plasmids into Stigmatella aurantiaca leading to insertional mutants affected in spore development. Mol. Gen. Genet. 214:213217.
25. Goldman, B. S.,, W. C. Nierman,, D. Kaiser,, S. C. Slater,, A. S. Durkin,, J. A. Eisen,, C. M. Ronning,, W. B. Barbazuk,, M. Blanchard,, C. Field,, C. Halling,, G. Hinkle,, O. Iartchuk,, H. S. Kim,, C. Mackenzie,, R. Madupu,, N. Miller,, A. Shvartsbeyn,, S. A. Sullivan,, M. Vaudin,, R. Wiegand, and, H. B. Kaplan. 2006. Evolution of sensory complexity recorded in a myxobacterial genome. Proc. Natl. Acad. Sci. USA 103:1520015205.
26. Goryshin, I. Y.,, J. A. Miller,, Y. V. Kil,, V. A. Lanzov, and, W. S. Reznikoff. 1998. Tn5/IS50 target recognition. Proc. Natl. Acad. Sci. USA 95:1071610721.
27. Gregory, M. A.,, R. Till, and, M. C. Smith. 2003. Integration site for Streptomyces phage φBT1 and development of site-specific integrating vectors. J. Bacteriol. 185:53205323.
28. Groth, A. C,, M. Fish,, R. Nusse, and, M. P. Calos. 2004. Construction of transgenic Drosophila by using the site-specific integrase from phage ΦC31. Genetics 166:17751782.
29. Groth, A. C,, E. C. Olivares,, B. Thyagarajan, and, M. P. Calos. 2000. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97:59956000.
30. Guo, D.,, M. G. Bowden,, R. Pershad, and, H. B. Kaplan. 1996. The Myxococcus xanthus rfbABC operon encodes an ATP-binding cassette transporter homolog required for O-antigen biosynthesis and multicellular development. J. Bacteriol. 178:16311639.
31. Hagen, D. C,, A. P. Bretscher, and, D. Kaiser. 1978. Synergism between morphogenetic mutants of Myxococ-cus xanthus. Dev. Biol. 64:284296.
32. Hodgkin, J., and, D. Kaiser. 1977. Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus. Proc. Natl. Acad. Sci. USA 74:29382942.
33. Hodgson, D. A. 1993. Light-induced carotenogenesis in Myxococcus xanthus: genetic analysis of the carR region. Mol. Microbiol. 7:471488.
34. Hofle, G., and, H. Reichenbach. 2005. Epothilone, a myxobacterial metabolite with promising antitumor activity, p. 413-450. In G. M. L. Cragg,, D. Kingston, and, D. J. Newman (ed.), Antxcancer Agents from Natural Products. Taylor & Francis/CRC Press, Boca Raton, FL.
35. Invitrogen. 1998. pZErO-2, Zero Background Cloning Kit. Invitrogen, Carlsbad, CA. (Online.) http://tools.in-vitrogen.com/content/sfs/manuals/pZero2_plus_man.pdf.
36. Jaoua, S.,, J. F. Guespin-Michel, and, A. M. Breton. 1987. Mode of insertion of the broad-host-range plasmid RP4 and its derivatives into the chromosome of Myxococ-cus xanthus. Plasmid 18:111119.
37. Jaoua, S.,, S. Neff, and, T. Schupp. 1992. Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome. Plasmid 28:157165.
38. Jelsbak, L., and, D. Kaiser. 2005. Regulating pilin expression reveals a threshold for S motility in Myxococcus xanthus. J. Bacteriol. 187:21052112.
39. Julien, B. 2003. Characterization of the integrase gene and attachment site for the Myxococcus xanthus bacteriophage Mx9. J. Bacteriol. 185:63256330.
40. Julien, B., and, R. Fehd. 2003. Development of a mariner-based transposon for use in Sorangium cellulosum. Appl. Environ. Microbiol. 69:62996301.
41. Julien, B.,, A. D. Kaiser, and, A. Garza. 2000. Spatial control of cell differentiation in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 97:90989103.
42. Kaiser, D. 2003. Coupling cell movement to multicel-lular development in myxobacteria. Nat. Rev. Microbiol. 1:4554.
43. Kaiser, D., and, M. Dworkin. 1975. Gene transfer to myxobacterium by Escherichia coli phage P1. Science 187:653654.
44. Kalos, M., and, J. Zissler. 1990. Transposon tagging of genes for cell-cell interactions in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 87:83168320.
45. Kashefi, K., and, P. L. Hartzell. 1995. Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF-defect. Mol. Microbiol. 15:483494.
46. Kopp, M.,, H. Irschik,, F. Gross,, O. Perlova,, A. Sandmann,, K. Gerth, and, R. Muller. 2004. Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mu-tagenesis system. J. Biotechnol. 107:2940.
47. Kopp, M.,, H. Irschik,, S. Pradella, and, R. Muller. 2005. Production of the tubulin destabilizer disorazol in Sorangium cellulosum: biosynthetic machinery and regulatory genes. Chembiochem 6:12771286.
48. Kowalski, R. J.,, P. Giannakakou, and, E. Hamel. 1997. Activities of the microtubule-stabilizing agents epothi-lones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol®). J. Biol. Chem. 272:25342541.
49. Kroos, L., and, D. Kaiser. 1984. Construction of Tn5 lac, a transposon that fuses lacZ expression to exogenous promoters, and its introduction into Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 81:58165820.
50. Kuner, J. M., and, D. Kaiser. 1981. Introduction of transposon Tn5 into Myxococcus for analysis of developmental and other nonselectable mutants. Proc. Natl. Acad. Sci. USA 78:425429.
51. Lanzer, M., and, H. Bujard. 1988. Promoters largely determine the efficiency of repressor action. Proc. Natl. Acad. Sci. USA 85:89738977.
52. Letouvet-Pawlak, B.,, C. Monnier,, S. Barray,, D. A. Hodgson, and, J. F. Guespin-Michel. 1990. Comparison of beta-galactosidase production by two inducible promoters in Myxococcus xanthus. Res. Microbiol. 141:425435.
53. Li, S. F., and, L. J. Shimkets. 1988. Site-specific integration and expression of a developmental promoter in Myxo-coccus xanthus. J. Bacteriol. 170:55525556.
54. Lomovskaya, N. D.,, K. F. Chater, and, N. M. Mkrtu-mian. 1980. Genetics and molecular biology of Streptomyces bacteriophages. Microbiol. Rev. 44:206229.
55. Lu, A.,, K. Cho,, W. P. Black,, X. Y. Duan,, R. Lux,, Z. Yang,, H. B. Kaplan,, D. R. Zusman, and, W. Shi. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol. Microbiol. 55:206220.
56. Manoil, C., and, J. Beckwith. 1985. TnphoA: a transposon probe for protein export signals. Proc. Natl. Acad. Sci. USA 82:81298133.
57. Martin, S.,, E. Sodergren,, T. Masuda, and, D. Kaiser. 1978. Systematic isolation of transducing phages for Myxo-coccus xanthus. Virology 88:4453.
58. McGowan, S. J.,, H. C. Gorham, and, D. A. Hodgson. 1993. Light-induced carotenogenesis in Myxococcus xan-thus: DNA sequence analysis of the carR region. Mol. Microbiol. 10:713735.
59. Mignot, T.,, J. P. Merlie, Jr., and, D. R. Zusman. 2007. Two localization motifs mediate polar residence of FrzS during cell movement and reversals of Myxococcus xanthus. Mol. Microbiol. 65:363372.
60. Morrison, C. E., and, D. R. Zusman. 1979. Myxococcus xanthus mutants with temperature-sensitive, stage-specific defects: evidence for independent pathways in development. J. Bacteriol. 140:10361042.
61. Muller, S.,, H. Shen,, D. Hofmann,, H. U. Schairer, and, J. R. Kirby. 2006. Integration into the phage attachment site, attB, impairs multicellular differentiation in Stigma-tella aurantiaca. J. Bacteriol. 188:17011709.
62. Murphy, K., and, A. Garza. 2008. Genetic tools for studying Myxococcus xanthus biology, p. 491501. In D. E. Whitworth (ed.), Myxobacteria: Multicellularity and Differentiation. ASM Press, Washington, DC.
63. Newton, C. R., and, A. Graham. 1997. PCR, 2nd ed. BIOS Scientific Publishers; Springer-Verlag New York, Inc., New York, NY.
64. O’connor, K. A., and, D. R. Zusman. 1983. Coliphage P1-mediated transduction of cloned DNA from Escherichia coli to Myxococcus xanthus: use for complementation and recombinational analyses. J. Bacteriol. 155:317329.
65. Perlova, O.,, K. Gerth,, S. Kuhlmann,, Y. Zhang, and, R. Muller. 2009. Novel expression hosts for complex secondary metabolite megasynthetases: production of myxochro-mide in the thermopilic isolate Corallococcus macrosporus GT-2. Microb. Cell Fact. 8:1.
66. Plaga, W.,, I. Stamm, and, H. U. Schairer. 1998. Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc. Natl. Acad. Sci. USA 95:1126311267.
67. Pospiech, A., and, B. Neumann. 1995. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet. 11:217218.
68. Pradella, S.,, A. Hans,, C. Sproer,, H. Reichenbach,, K. Gerth, and, S. Beyer. 2002. Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56. Arch. Microbiol. 178:484492.
69. Rachid, S.,, D. Krug,, B. Kunze,, I. Kochems,, M. Scharfe,, T. M. Zabriskie,, H. Blocker, and, R. Muller. 2006. Molecular and biochemical studies of chondr-amide formation—highly cytotoxic natural products from Chondromyces crocatus Cm c5. Chem. Biol. 13:667681.
70. Rachid, S.,, F. Sasse,, S. Beyer, and, R. Muller. 2006. Identification of StiR, the first regulator of secondary metabolite formation in the myxobacterium Cystobacter fuscus Cb f17.1. J. Biotechnol. 121:429441.
71. Reichenbach, H. 2001. Myxobacteria, producers of novel bioactive substances. J. Ind. Microbiol. Biotechnol. 27:149156.
72. Reichenbach, H., and, G. Hofle. 1993. Production of bio-active secondary metabolites, p. 347397. In M. Dworkin and, D. Kaiser (ed.), Myxobacteria II. American Society for Microbiology, Washington, DC.
73. Rubin, E. J.,, B. J. Akerley,, V. N. Novik,, D. J. Lampe,, R. N. Husson, and, J. J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. USA 96:16451650.
74. Sandmann, A.,, F. Sasse, and, R. Muller. 2004. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem. Biol. 11:10711079.
75. Saulnier, P.,, J. Hanquier,, S. Jaoua,, H. Reichenbach, and, J. F. Guespin-Michel. 1988. Utilization of IncP-1 plasmids as vectors for transposon mutagenesis in myxobacteria. J. Gen. Microbiol. 134:28892895.
76. Schneiker, S.,, O. Perlova,, O. Kaiser,, K. Gerth,, A. Alici,, M. O. Altmeyer,, D. Bartels,, T. Bekel,, S. Beyer,, E. Bode,, H. B. Bode,, C. J. Bolten,, J. V. Choudhuri,, S. Doss,, Y. A. Elnakady,, B. Frank,, L. Gaigalat,, A. Goesmann,, C. Groeger,, F. Gross,, L. Jelsbak,, J. Kalinowski,, C. Keg-ler,, T. Knauber,, S. Konietzny,, M. Kopp,, L. Krause,, D. Krug,, B. Linke,, T. Mahmud,, R. Martinez-Arias,, A. C. McHardy,, M. Merai,, F. Meyer,, S. Mormann,, J. Munoz-Dorado,, J. Perez,, S. Pradella,, S. Rachid,, G. Raddatz,, F. Rosenau,, C. Ruckert,, F. Sasse,, M. Scharfe,, S. C. Schuster,, G. Suen,, A. Treuner-Lange,, G. J. Velicer,, F. J. Vorholter,, K. J. Weissman,, R. D. Welch,, S. C. Wenzel,, D. E. Whitworth,, S. Wilhelm,, C. Wittmann,, H. Blocker,, A. Puhler, and, R. Muller. 2007. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat. Biotechnol. 25:12811289.
77. Schupp, T.,, C. Toupet,, B. Cluzel,, S. Neff,, S. Hill,, J. J. Beck, and, J. M. Ligon. 1995. A Sorangium cellulosum (myxobacterium) gene cluster for the biosynthesis of the macrolide antibiotic soraphen A: cloning, characterization, and homology to polyketide synthase genes from actinomycetes. J. Bacteriol. 177:36733679.
78. Spratt, B. G.,, P. J. Hedge,, S. te Heesen,, A. Edelman, and, J. K. Broome-Smith. 1986. Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 41:337342.
79. Stamm, I.,, A. Leclerque, and, W. Plaga. 1999. Purification of cold-shock-like proteins from Stigmatella auran-tiaca—molecular cloning and characterization of the cspA gene. ArcJi. Microbiol. 172:175181.
80. Thyagarajan, B.,, E. C. Olivares,, R. P. Hollis,, D. S. Ginsburg, and, M. P. Calos. 2001. Site-specific genomic integration in mammalian cells mediated by phage φC31 integrase. Mol. Cell. Biol. 21:39263934.
81. Tojo, N.,, K. Sanmiya,, H. Sugawara,, S. Inouye, and, T. Komano. 1996. Integration of bacteriophage Mx8 into the Myxococcus xanthus chromosome causes a structural alteration at the C-terminal region of the IntP protein. J. Bacteriol. 178:40044011.
82. Tu, Y.,, G. P. Chen, and, Y. L. Wang. 2007. Autonomously replicating plasmid transforms Sorangium cellulosum So ce90 and induces expression of green fluorescent protein. J. Biosci. Bioeng. 104:385390.
83. Ueki, T.,, S. Inouye, and, M. Inouye. 1996. Positive-negative KG cassettes for construction of multi-gene deletions using a single drug marker. Gene 183:153157.
84. Vlamakis, H. C,, J. R. Kirby, and, D. R. Zusman. 2004. The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol. Microbiol. 52:17991811.
85. Weinig, S.,, T. Mahmud, and, R. Muller. 2003. Markerless mutations in the myxothiazol biosynthetic gene cluster: a delicate megasynthetase with a superfluous nonribosomal peptide synthetase domain. Chem. Biol. 10:953960.
86. Whitworth, D. E. (ed.). 2008. Myxobacteria: Multicellularity and Differentiation. ASM Press, Washington, DC.
87. Whitworth, D. E.,, S. J. Bryan,, A. E. Berry,, S. J. Mc-Gowan, and, D. A. Hodgson. 2004. Genetic dissection of the light-inducible carQRS promoter region of Myxococcus xanthus. J. Bacteriol. 186:78367846.
88. Wray, L. V., Jr.,, R. A. Jorgensen, and, W. S. Reznikoff. 1981. Identification of the tetracycline resistance promoter and repressor in transposon Tn10. J. Bacteriol. 147:297304.
89. Wu, S. S., and, D. Kaiser. 1995. Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18:547558.
90. Wu, S. S., and, D. Kaiser. 1996. Markerless deletions of pil genes in Myxococcus xanthus generated by counterse-lection with the Bacillus subtilis sacB gene. J. Bacteriol. 178:58175821.
91. Wu, T. T. 1966. A model for three-point analysis of random general transduction. Genetics 54:405410.
92. Xu, D.,, C. Yang, and, H. B. Kaplan. 1998. Myxococcus xanthus sasN encodes a regulator that prevents developmental gene expression during growth. J. Bacteriol. 180:62156223.
93. Xu, Q.,, W. P. Black,, S. M. Ward, and, Z. Yang. 2005. Nitrate-dependent activation of the Dif signaling pathway of Myxococcus xanthus mediated by a NarX-DifA interspecies chimera. J. Bacteriol. 187:64106418.
94. Youderian, P.,, N. Burke,, D. J. White, and, P. L. Hartzell. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol. Microbiol. 49:555570.
95. Zhao, J. Y.,, L. Zhong,, M. J. Shen,, Z. J. Xia,, Q. X. Cheng,, X. Sun,, G. P. Zhao,, Y. Z. Li, and, Z. J. Qin. 2008. Discovery of the autonomously replicating plasmid pMF1 from Myxococcus fulvus and development of a gene cloning system in Myxococcus xanthus. Appl. Environ. Microbiol. 74:19801987.
96. Ziermann, R., and, R. Calendar. 1990. Characterization of the cos sites of bacteriophages P2 and P4. Gene 96:915.
97. Zusman, D. R.,, A. E. Scott,, Z. Yang, and, J. R. Kirby. 2007. Chemosensory pathways, motility and development in Myxococcus xanthus. Nat. Rev. Microbiol. 5:862872.

Tables

Generic image for table
TABLE 1

Selected plasmids for myxobacteria

Citation: Black W, Julien B, Rodriguez E, Yang Z. 2010. Genetic Manipulation of Myxobacteria, p 262-272. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch18
Generic image for table

Citation: Black W, Julien B, Rodriguez E, Yang Z. 2010. Genetic Manipulation of Myxobacteria, p 262-272. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch18
Generic image for table

Citation: Black W, Julien B, Rodriguez E, Yang Z. 2010. Genetic Manipulation of Myxobacteria, p 262-272. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch18
Generic image for table

Citation: Black W, Julien B, Rodriguez E, Yang Z. 2010. Genetic Manipulation of Myxobacteria, p 262-272. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch18
Generic image for table

Citation: Black W, Julien B, Rodriguez E, Yang Z. 2010. Genetic Manipulation of Myxobacteria, p 262-272. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error