1887

Chapter 19 : Strain Improvement of To Enhance Recombinant Protein Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Strain Improvement of To Enhance Recombinant Protein Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap19-2.gif

Abstract:

Typically, the biotechnological basis for strain improvement to enhance recombinant protein production relies on the permanent implementation of desirable traits into the production strain to stimulate both cell growth and functional expression of the target gene during the cultivation. This chapter reviews the major technical issues associated with strain engineering to enhance recombinant protein production and directs the reader to protocols appropriate for specific applications. Theoretically, strategies based on enhancing the limiting step can lead to an overall improvement in recombinant protein production. Stationary-phase genes encode proteins that may lead to a reduction in cellular and metabolic activity, which can negatively affect recombinant protein production, and as such, these genes are targets for strain improvement. The recently commercialized recombineering protocol from Gene Bridges, also based on λ Redmediated recombination, allows versatile chromosomal engineering, including gene disruption, deletion, insertion, point mutation, modification, and even promoter fine-tuning, and can serve as a versatile manipulation tool for strain improvement and even optimization. The general guidelines for strain improvement are (i) to ensure the genetic stability of the host/vector system, (ii) to maximize the synthesis fluxes for all the gene expression steps (i.e., transcription, translation, and posttranslational processing steps), (iii) to ensure the flux balance of these protein synthesis steps, (iv) to stabilize all the expression intermediates and final products, and (v) to minimize the physiological impact associated with high-level gene expression and high-cell density cultivation.

Citation: Pyne M, Sukhija K, Chou C. 2010. Strain Improvement of To Enhance Recombinant Protein Production, p 273-286. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch19

Key Concept Ranking

Type II Secretion System
0.4221953
Type III Secretion System
0.41211298
0.4221953
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Flowchart for strain improvement to enhance recombinant protein production. The strategies depend on identification of the specific factors limiting the overall recombinant protein yield and include optimization of the host/vector system, expression variables, and expression sequence. Refer to Table 1 for a list of technical limitations and how to deal with them. DO, dissolved oxygen.

Citation: Pyne M, Sukhija K, Chou C. 2010. Strain Improvement of To Enhance Recombinant Protein Production, p 273-286. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Molecular events associated with recombinant protein production in . Recom-binant protein production involves a series of complex molecular mechanisms, such as replication of the expression vector, transcription and translation of the gene of interest, and various post-translational processing steps (including protein secretion, folding, and disulfide bond formation). Production can be limited by low efficiency at any one of these steps or by an abnormal event that diverts protein synthesis into a nonproductive pathway (e.g., protein misfolding or degradation of DNA, mRNA, or protein).

Citation: Pyne M, Sukhija K, Chou C. 2010. Strain Improvement of To Enhance Recombinant Protein Production, p 273-286. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

A typical expression vector (i.e., plasmid) for recombinant protein production. Several expression and cloning features are shown, including Reg (gene encoding the regulator, either transcriptional activator or repressor), P (promoter), O (operator), rbs (ribosome binding site), SP (signal peptide), N-tag (N-terminal fusion tag), C-tag (C-terminal fusion tag), T (terminator), CS (cloning site), MCS (multiple cloning sites), Ori (replication origin), DRUG (drug resistance gene), ATG (initiation codon encoding methionine), P-ase (protease cleavage site), and End (stop codon). Note that, depending on the cloning site(s) for insertion of a target gene (i.e., open reading frame [ORF]), a transcriptional or translational fusion vector can be constructed to express a gene product (either ORF or ORF-fusion) containing various feature domains and targeting in the cytoplasm or extracytoplasmic compartment.

Citation: Pyne M, Sukhija K, Chou C. 2010. Strain Improvement of To Enhance Recombinant Protein Production, p 273-286. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Chromosomal engineering of based on homologous recombination for either site-specific gene knockout or gene insertion. The target allele/site is first selected and the exogenous segment is prepared in vitro (e.g., by PCR). Because is artificially transformable, the exogenous DNA can be delivered into the recipient cell through electroporation. The efficiency of in vivo recombination can be enhanced by expressing key enzyme(s) associated with the recombination. A drug resistance marker is often introduced as the major replacing cassette or cotransduced with a new gene for selection of transformed cells, and can be subsequently deleted in vivo (e.g., by FLP recombination).

Citation: Pyne M, Sukhija K, Chou C. 2010. Strain Improvement of To Enhance Recombinant Protein Production, p 273-286. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Chromosomal engineering of based on the intron gene-targeting system for either site-specific gene knockout or gene insertion. The target allele/site is first selected and the gene sequence is entered into the EcI5 computer algorithm to obtain putative insertion sites and corresponding mutagenesis primers. The intron is then retargeted, ligated into a targetron vector, and expressed within the appropriate host strain. The pACD3-EcI5 vectors contain a convenient MluI restriction site for inserting cargo genes such as a drug marker for knockout selection or a foreign gene for chromosomal expression in .

Citation: Pyne M, Sukhija K, Chou C. 2010. Strain Improvement of To Enhance Recombinant Protein Production, p 273-286. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch19
1. Aldor, I. S.,, D. C. Krawitz,, W. Forrest,, C. Chen,, J. C. Nishihara,, J. C. Joly, and, K. M. Champion. 2005. Pro-teomic profiling of recombinant Escherichia coli in high-cell-density fermentations for improved production of an antibody fragment biopharmaceutical. Appl. Environ. Microbiol. 71:17171728.
2. Alexeyev, M. F., and, I. N. Shokolenko. 1995. Mini-Tn10 transposon derivatives for insertion mutagenesis and gene delivery into the chromosome of gram-negative bacteria. Gene 160:5962.
3. Baba, T.,, T. Ara,, M. Hasegawa,, Y. Takai,, Y. Okumura,, M. Baba,, K. A. Datsenko,, M. Tomita,, B. L. Wanner, and, H. Mori. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2:2006.0008.
4. Baneyx, F., and, G. Georgiou. 1991. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high-molecular-weight substrates in vivo. J. Bacteriol. 173:26962703.
5. Baneyx, F., and, M. Mujacic. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22:13991408.
6. Bell, C. E. 2005. Structure and mechanism of Escherichia coli RecA ATPase. Mol. Microbiol. 58:358366.
7. Benito, A.,, M. Vidal, and, A. Villaverde. 1993. Enhanced production of Pl-controlled recombinant proteins and plasmid stability in Escherichia coli RecA+ strains. J. Biotechnol. 29:299306.
8. Bentley, W. E.,, N. Mirjalili,, D. C. Andersen,, R. H. Davis, and, D. S. Kompala. 2009. Plasmid-encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol. Bioeng. 102:12841297.
9. Bergmann, S.,, D. Wild,, O. Diekmann,, R. Frank,, D. Bracht,, G. S. Chhatwal, and, S. Hammerschmidt. 2003. Identification of a novel plasmin(ogen)-binding motif in surface displayed a-enolase of Streptococcus pneumoniae. Mol. Microbiol. 49:411423.
10. Binet, R.,, S. Letoffe,, J. M. Ghigo,, P. Delepelaire, and, C. Wandersman. 1997. Protein secretion by Gram-negative bacterial ABC exporters: a review. Gene 192:711.
11. Boer, H. A.,, L. J. Comstock, and, M. Vasser. 1983. The tac promoter: a functional hybrid derived from the trp and lac promoters. Proc. Natl. Acad. Sci. USA 80:2125.
12. Cashel, M., and, K. E. Rudd. 1987. The stringent response, p. 1410-1438. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter, and, H. E. Um-barger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, DC.
13. Chakiath, C. S., and, D. Esposito. 2007. Improved recom-binational stability of lentiviral expression vectors using reduced-genome Escherichia coli. BioTechniques 43:466, 468, 470.
14. Chao, Y. P.,, C. J. Chiang, and, W. B. Hung. 2002. Stringent regulation and high-level expression of heterologous genes in Escherichia coli using T7 system controllable by the araBAD promoter. Biotechnol. Prog. 18:394400.
15. Chen, J. Q.,, T. B. Acton,, S. K. Basu,, G. T. Montelione, and, M. Inouye. 2002. Enhancement of the solubility of proteins overexpressed in Escherichia coli by heat shock. J. Mol. Microbiol. Biotechnol. 4:519524.
16. Cherepanov, P. P., and, W. Wackernagel. 1995. Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:914.
17. Cho, S. H.,, D. Shin,, G. E. Ji,, S. Heu, and, S. Ryu. 2005. High-level recombinant protein production by overexpression of Mlc in Escherichia coli. J. Biotechnol. 119:197203.
18. Choi, J. H., and, S. Y. Lee. 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64:625635.
19. Chou, C.-H.,, G. N. Bennett, and, K.-Y. San. 1996. Genetic manipulation of stationary-phase genes to enhance recombinant protein production in Escherichia coli. Biotechnol. Bioeng. 50:636642.
20. Chou, C. P. 2007. Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl. Microbiol. Biotechnol. 76:521532.
21. Datsenko, K. A., and, B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97:66406645.
22. Davis, S. J., and, R. D. Vierstra. 1998. Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol. Biol. 36:521528.
23. De Anda, R.,, A. R. Lara,, V. Hernandez,, V. Hernandez-Montalvo,, G. Gosset,, F. Bolivar, and, O. T. Ramirez. 2006. Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of Escherichia coli for recombinant protein production without impairment of growth rate. Metab. Eng. 8:281290.
24. de Marco, A. 2009. Strategies for successful recombinant expression of disulfide bond-dependent proteins in Escherichia coli. Microb. Cell Fact. 8:26.
25. De Mey, M.,, J. Maertens,, G. J. Lequeux,, W. K. Soetaert, and, E. J. Vandamme. 2007. Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnol. 7:34.
26. de Smit, M. H., and, J. van Duin. 1990. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl. Acad. Sci. USA 87:76687672.
27. Diaz-Acosta, A.,, M. L. Sandoval,, L. Delgado-Olivares, and, J. Membrillo-Hernandez. 2006. Effect of anaerobic and stationary phase growth conditions on the heat shock and oxidative stress responses in Escherichia coli K-12. Arch. Microbiol. 185:429438.
28. Feldman, M. F.,, M. Wacker,, M. Hernandez,, P. G. Hitchen,, C. L. Marolda,, M. Kowarik,, H. R. Morris,, A. Dell,, M. A. Valvano, and, M. Aebi. 2005. Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. USA 102:30163021.
29. Fernandez, L. A.,, I. Sola,, L. Enjuanes, and, V. de Lorenzo. 2000. Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli cultures by use of the hemolysin system. Appl. Environ. Microbiol. 66:50245029.
30. Flores, S.,, R. de Anda-Herrera,, G. Gosset, and, F. G. Bolivar. 2004. Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol. Bioeng. 87:485494.
31. Franchini, A. G., and, T. Egli. 2006. Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions. Microbiology 152(Pt. 7):21112127.
32. Georgiou, G., and, L. Segatori. 2005. Preparative expression of secreted proteins in bacteria: status report and future prospects. Curr. Opin. Biotechnol. 16:538545.
33. Goryshin, I. Y.,, J. Jendrisak,, L. M. Hoffman,, R. Meis, and, W. S. Reznikoff. 2000. Insertional transposon muta-genesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 18:97100.
34. Gosset, G. 2005. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb. Cell Fact. 4:14.
35. Grabherr, R., and, K. Bayer. 2002. Impact of targeted vector design on ColE1 plasmid replication. Trends Biotechnol. 20:257260.
36. Gumpert, J., and, C. Hoischen. 1998. Use of cell wall-less bacteria (l-forms) for efficient expression and secretion of heterologous gene products. Curr. Opin. Biotechnol. 9:506509.
37. Guzman, L.-M.,, D. Belin,, M. J. Carson, and, J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177:41214130.
38. Haddadin, F. T., and, S. W. Harcum. 2005. Transcriptome profiles for high-cell-density recombinant and wild-type Escherichia coli. Biotechnol. Bioeng. 90:127153.
39. Hagg, P.,, J. W. de Pohl,, F. Abdulkarim, and, L. A. Isaksson. 2004. A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in Escherichia coli. J. Biotechnol. 111:1730.
40. Harcum, S. W., and, W. E. Bentley. 1993. Response dynamics of 26-, 34-, 39-, 54-, and 80-kDa proteases in induced cultures of recombinant Escherichia coli. Biotechnol. Bioeng. 42:675685.
41. Heo, M. A.,, S. H. Kim,, S. Y. Kim,, Y. J. Kim,, J. H. Chung,, M. K. Oh, and, S. G. Lee. 2006. Functional expression of single-chain variable fragment antibody against c-Met in the cytoplasm of Escherichia coli. Protein Expr. Purif. 47:203209.
42. Hoffmann, R, and, U. Rinas. 2004. Roles of heat-shock chaperones in the production of recombinant proteins in Escherichia coli. Adv. Biochem. Eng. Biotechnol. 89:143161.
43. Hoffmann, F.,, J. van den Heuvel,, N. Zidek, and, U. Rinas. 2004. Minimizing inclusion body formation during recombinant protein production in Escherichia coli at bench and pilot plant scale. Enzyme Microb. Technol. 34:235241.
44. Hoffmann, R,, J. Weber, and, U. Rinas. 2002. Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 1. Readjustment of metabolic enzyme synthesis. Biotechnol. Bioeng. 80:313319.
45. Ihssen, J., and, T. Egli. 2004. Specific growth rate and not cell density controls the general stress response in Escherichia coli. Microbiology 150(Pt. 6):16371648.
46. Jeong, K. J.,, J. H. Choi,, W. M. Yoo,, K. C. Keum,, N. C. Yoo,, S. Y. Lee, and, M. H. Sung. 2004. Constitutive production of human leptin by fed-batch culture of recombinant rpoS- Escherichia coli. Protein Expr. Purif. 36:150156.
47. Kadokura, H.,, H. Kawasaki,, K. Yoda,, M. Yamasaki, and, K. Kitamoto. 2001. Efficient export of alkaline phospha-tase overexpressed from a multicopy plasmid requires degP, a gene encoding a periplasmic protease of Escherichia coli. J. Gen. Appl. Microbiol. 47:133141.
48. Kemmer, C., and, P. Neubauer. 2006. Antisense RNA based down-regulation of RNaseE in E. coli. Microb. Cell Fact. 5:38.
49. Kim, J. Y. H., and, H. J. Cha. 2003. Down-regulation of acetate pathway through antisense strategy in Escherichia coli: improved foreign protein production. Biotechnol. Bioeng. 83:841853.
50. Kleber-Janke, T., and, W.-M. Becker. 2000. Use of modified BL21(DE3) Escherichia coli cells for high-level expression of recombinant peanut allergens affected by poor codon usage. Protein Expr. Purif. 19:419424.
51. Kolaj, O.,, S. Spada,, S. Robin, and, J. G. Wall. 2009. Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb. Cell Fact. 8:9.
52. Kofisnychenko, V.,, G. Plunkett,, C. D. Herring,, T. Feher,, J. Posfai,, F. R. Blattner, and, G. Posfai. 2002. Engineering a reduced Escherichia coli genome. Genome Res. 12:640647.
53. Kudla, G.,, A. W. Murray,, D. Tollervey, and, J. B. Plotkin. 2009. Coding-sequence determinants of gene expression in Escherichia coli. Science 324:255258.
54. Kurland, C. G., and, H. J. Dong. 1996. Bacterial growth inhibition by overproduction of protein. Mol. Microbiol. 21:14.
55. Kurokawa, Y.,, H. Yanagi, and, T. Yura. 2000. Overex-pression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66:39603965.
56. Kyratsous, C. A.,, S. J. Silverstein,, C. R. DeLong, and, C. A. Panagiotidis. 2009. Chaperone-fusion expression plasmid vectors for improved solubility of recombinant proteins in Escherichia coli. Gene 440:915.
57. Langdon, R. H.,, J. Cuccui, and, B. W. Wren. 2009. N-linked glycosylation in bacteria: an unexpected application. Future Microbiol. 4:401412.
58. Lee, E.-C,, D. Yu,, J. Martinez de Velasco,, L. Tessarollo,, D. A. Swing,, D. L. Court,, N. A. Jenkins, and, N. G. Copeland. 2001. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:5665.
59. Reference deleted.
60. Lee, J. H.,, B. H. Sung,, M. S. Kim,, F. R. Blattner,, B. H. Yoon,, J. H. Kim, and, S. C. Kim. 2009. Metabolic engineering of a reduced-genome strain of Escherichia coli for l-threonine production. Microb. Cell Fact. 8:2.
61. Lee, S. Y. 1996. High cell density culture of Escherichia coli. Trends Biotechnol. 14:98105.
62. Lee, S. Y.,, J. H. Choi, and, Z. Xu, 2003. Microbial cell-surface display. Trends Biotechnol. 21:4552.
63. LeThanh, H.,, P. Neubauer, and, F. Hoffmann. 2005. The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies. Microb. Cell Fact. 4:6.
64. Lopez, P. J.,, I. Marchand,, S. A. Joyce, and, M. Dreyfus. 1999. The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol. Microbiol. 33:188199.
65. Lynch, M. D.,, T. Warnecke, and, R. T. Gill. 2007. SCALEs: multiscale analysis of library enrichment. Nat. Methods 4:8793.
66. Malissard, M., and, E. G. Berger. 2001. Improving the solubility of the catalytic domain of human (β-1,4-galac-tosyltransferase 1 through rationally designed amino-acid replacements. Eur. J. Biochem. 268:43524358.
67. March, J. C,, M. A. Eiteman, and, E. Altman. 2002. Expression of an anaplerotic enzyme, pyruvate carboxylase, improves recombinant protein production in Escherichia coli. Appl. Environ. Microbiol. 68:56205624.
68. Matsuura, M.,, R. Saldanha,, H. W. Ma,, H. Wank,, J. Yang,, G. Mohr,, S. Cavanagh,, G. M. Dunny,, M. Belfort, and, A. M. Lambowitz. 1997. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Genes Dev. 11:29102924.
69. Meerman, H. J., and, G. Georgoiu. 1994. Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Bio/Technology 12:11071110.
70. Miller, J. H. 1992. A Short Course in Bacterial Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
71. Miroux, B., and, J. E. Walker. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260:289298.
72. Mogensen, J. E., and, D. E. Otzen. 2005. Interactions between folding factors and bacterial outer membrane proteins. Mol. Microbiol. 57:326346.
73. Mori, H.,, K. Isono,, T. Horiuchi, and, T. Miki. 2000. Functional genomics of Escherichia coli in Japan. Res. Microbiol. 151:121128.
74. Nakamura, Y.,, T. Gojobori, and, T. Ikemura. 2000. Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res.28:292.
75. Narayanan, N., and, C. P. Chou. 2009. Alleviation of proteolytic sensitivity to enhance recombinant lipase production in Escherichia coli. Appl. Environ. Microbiol. 75:54245427.
76. Neubauer, P.,, H. Y. Lin, and, B. Mathiszik. 2003. Metabolic load of recombinant protein production: inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli. Biotechnol. Bioeng. 83:5364.
77. Pan, K.-L.,, H.-C. Hsiao,, C.-L. Weng,, M.-S. Wu, and, C. P. Chou. 2003. Roles of DegP in prevention of protein misfolding in the periplasm upon overexpression of penicillin acylase in Escherichia coli. J. Bacteriol. 185:30203030.
78. Patnaik, R. 2008. Engineering complex phenotypes in industrial strains. Biotechnol. Prog. 24:3847.
79. Phue, J.-N.,, S. J. Lee,, L. Trinh, and, J. Shiloach. 2008. Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5). Biotechnol. Bioeng. 101:831836.
80. Phue, J. N.,, S. B. Noronha,, R. Hattacharyya,, A. J. Wolfe, and, J. Shiloach. 2005. Glucose metabolism at high density growth of E. coli B and E. coli K: differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and Northern blot analyses. Biotechnol. Bioeng. 90:805820.
81. Posfai, G.,, G. Plunkett,, T. Feher,, D. Frisch,, G. M. Keil,, K. Umenhoffer,, V. Kolisnychenko,, B. Stahl,, S. S. Sharma,, M. de Arruda,, V. Burland,, S. W. Harcum, and, F. R. Blattner. 2006. Emergent properties of reduced-genome Escherichia coli. Science 312:10441046.
82. Rabhi-Essafi, I.,, A. Sadok,, N. Khalaf, and, D. M. Fathallah. 2007. A strategy for high-level expression of soluble and functional human interferon α as a GST-fusion protein in E. coli. Protein Eng. Des. Sel. 20:201209.
83. Raman, B.,, M. P. Nandakumar,, V. Muthuvijayan, and, M. R. Marten. 2005. Proteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditions. Biotechnol. Bioeng. 92:384392.
84. Rich, J. R., and, S. G. Withers. 2009. Emerging methods for the production of homogeneous human glycoproteins. Nat. Chem. Biol. 5:206215.
85. Rong, R.,, M. M. Slupska,, J.-H. Chiang, and, J. H. Miller. 2004. Engineering large fragment insertions into the chromosome of Escherichia coli. Gene 336:7380.
86. San, K. Y.,, G. N. Bennett,, S. J. Berrios-Rivera,, R. V. Vadali,, Y. T. Yang,, E. Horton,, F. B. Rudolph,, B. Sariyar, and, K. Blackwood. 2002. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab. Eng. 4:182192.
87. Sandee, D.,, S. Tungpradabkul,, Y. Kurokawa,, K. Fukui, and, M. Takagi. 2005. Combination of Dsb coexpression and an addition of sorbitol markedly enhanced soluble expression of single-chain Fv in Escherichia coli. Biotechnol. Bioeng. 91:418424.
88. Santos, C. N., and, G. Stephanopoulos. 2008. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr. Opin. Chem. Biol. 12:168176.
89. Sharma, S. S.,, F. R. Blattner, and, S. W. Harcum. 2007. Recombinant protein production in an Escherichia coli reduced genome strain. Metab. Eng. 9:133141.
90. Shokri, A.,, A. M Sande’n, and, G. Larsson. 2003. Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. ycAppl. Microbiol. Biotechnol. 60:654664.
91. Skerra, A. 1994. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151:131135.
92. Sorensen, H. P., and, K. K. Mortensen. 2005. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J. Biotechnol. 115:113128.
93. Stewart, E. J.,, F. Aslund, and, J. Beckwith. 1998. Di-sulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J. 17:55435550.
94. Studier, F. W. 1991. Use of bacteriophage-T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 219:3744.
95. Studier, F. W., and, B. A. Moffatt. 1986. Use of bacterio-phage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189:113130.
96. Studier, F. W.,, A. H. Rosenberg,, J. J. Dunn, and, J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct the expression of cloned genes. Methods Enzymol. 185:6089.
97. Terpe, K. 2003. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60:523533.
98. Thomas, N. A., and, B. B. Finlay. 2003. Establishing order for type III secretion substrates—a hierarchical process. Trends Microbiol. 11:398403.
99. Togna, A. P.,, M. L. Shuler, and, D. B. Wilson. 1993. Effects of plasmid copy number and runaway plasmid replication on overproduction and excretion of (β-lactamase from Escherichia coli. Biotechnol. Prog. 9:3139.
100. Tolia, N. H., and, L. Joshua-Tor. 2006. Strategies for protein coexpression in Escherichia coli. Nat. Methods 3:5564.
101. Tzschaschel, B. D.,, C. A. Guzman,, K. N. Timmis, and, V. de Lorenzo. 1996. An Escherichia coli hemolysin transport system-based vector for the export of polypeptides: export of Shiga-like toxin IIeB subunit by Salmonella typhimurium aroA. Nat. Biotechnol. 14:765769.
102. van der Wal, F. J.,, C. M. ten Hagen-Jongman,, B. Oudega, and, J. Luirink. 1995. Optimization of bacteriocin-release-protein-induced protein release by Escherichia coli: extracellular production of the periplas-mic molecular chaperone FaeE. Appl. Microbiol. Biotechnol. 44:459465.
103. Vemuri, G. N.,, M. A. Eiteman, and, E. Altman. 2006. Increased recombinant protein production in Escherichia coli strains with overexpressed water-forming NADH oxi-dase and a deleted ArcA regulatory protein. Biotechnol. Bioeng. 94:538542.
104. Vind, J.,, M. A. Sorensen,, M. D. Rasmussen, and, S. Pedersen. 1993. Synthesis of proteins in Escherichia coli is limited by the concentration of free ribosomes: expression from reporter genes does not always reflect functional mRNA levels. J. Mol. Biol. 231:678688.
105. Wagner, S.,, M. M. Klepsch,, S. Schlegel,, A. Appel,, R. Draheim,, M. Tarry,, M. Hagbom,, K. J. van Wijk,, D. J. Slotboom,, J. O. Persson, and, J.-W. de Gier. 2008. Tuning Escherichia coli for membrane protein overexpression. Proc. Natl. Acad. Sci. USA 105:1437114376.
106. Wan, E. W., and, F. Baneyx. 1998. TolAIII co-overexpression facilitates the recovery of periplasmic recombinant proteins into the growth medium of Escherichia coli. Protein Expr. Purif. 14:1322.
107. Waugh, D. S. 2005. Making the most of affinity tags. Trends Biotechnol. 23:316320.
108. Welch, M.,, A. Villalobos,, C. Gustafsson, and, J. Minshull. 2009. You’re one in a googol: optimizing genes for protein expression. J. R. Soc. Interface 6(Suppl. 4): S467-S476.
109. Wood, T. K., and, S. W. Peretti. 1991. Construction of a specialized-ribosome vector for cloned-gene expression in E. coli. Biotechnol. Bioeng. 38:891906.
110. Wu, M. S.,, K. L. Pan, and, C. P. Chou. 2007. Effect of heat-shock proteins for relieving physiological stress and enhancing the production of penicillin acylase in Escherichia coli. Biotechnol. Bioeng. 96:956966.
111. Yoon, S. H.,, M. J. Han,, S. Y. Lee,, K. J. Jeong, and, J. S. Yoo. 2003. Combined transcriptome and proteome analysis of Escherichia coli during high cell density culture. Biotechnol. Bioeng. 81:753767.
112. Yu, B. J.,, K. H. Kang,, J. H. Lee,, B. H. Sung,, M. S. Kim, and, S. C. Kim. 2008. Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res. 36:e84.
113. Yu, D.,, H. M. Ellis,, E.-C. Lee,, N. A. Jenkins,, N. G. Copeland, and, D. L. Court. 2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97:59785983.
114. Zhang, Y. M.,, F. Buchholz,, J. P. Muyrers, and, A. F. Stewart. 1998. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20:123128.
115. Zhuang, F. L.,, M. Karberg,, J. Perutka, and, A. M. Lambowitz. 2009. EcI5, a group IIB intron with high retrohoming frequency: DNA target site recognition and use in gene targeting. RNA 15:432449.

Tables

Generic image for table
TABLE 1

Factors limiting recombinant protein production in and corresponding strategies for overcoming these limitations

Citation: Pyne M, Sukhija K, Chou C. 2010. Strain Improvement of To Enhance Recombinant Protein Production, p 273-286. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch19
Generic image for table
TABLE 2

Genetic elements found in a typical expression vector used for recombinant protein production

Citation: Pyne M, Sukhija K, Chou C. 2010. Strain Improvement of To Enhance Recombinant Protein Production, p 273-286. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error