1887

Chapter 20 : Genetic Engineering Tools for

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Genetic Engineering Tools for , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap20-2.gif

Abstract:

The yeast is a widely used cell factory. Genetic engineering requires efficient transformation techniques, and many protocols for transformation of have been developed. These include methods involving spheroplast generation, electroporation, and biolistics with DNA coated microprojectiles. For expression of heterologous genes or overexpression of homologous genes in , plasmid vectors are usually employed. Most are shuttle vectors that allow cloning and amplification in . Yeast plasmid vectors can be divided into different types. Probably the most widely used type of selectable markers are ones that confer prototrophy to auxotrophic strains containing mutations in amino acid and/or nucleotide biosynthetic pathways, e.g., and . Several of the prototrophic markers offer this possibility, the most widely used being the marker, which can be selected against using 5-fluoroorotic acid (5FOA). Proper transcription termination is a requirement for mRNA stability and thus also for high expression levels. Protein secretion requires the presence of an N-terminal signal sequence. Gene targeting is particularly efficient in because DNA double-strand breaks are preferentially repaired by homologous recombination as opposed to nonhomologous end joining. Since the codon composition at the gene’s 5’ end seems to be most important, it may be sufficient only to optimize the first 14 to 32 codons to achieve good expression.

Citation: Siewers V, Mortensen U, Nielsen J. 2010. Genetic Engineering Tools for , p 287-301. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch20

Key Concept Ranking

Cell Wall Proteins
0.41987208
0.41987208
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Genomic integration using an integrative plas-mid. and a selective marker, in this case , are cloned into an plasmid. The plasmid is linearized at a site within prior to transformation into a strain. After integration, the gene is duplicated, typically resulting in one functional and one nonfunctional copy. Chromosomal DNA is indicated by the presence of a gray oval representing the centromere.

Citation: Siewers V, Mortensen U, Nielsen J. 2010. Genetic Engineering Tools for , p 287-301. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Substrates for disruption and deletion of (A) Disruption of is achieved by using a linear substrate composed of a selectable marker () flanked by sequences up- and downstream of the integration site in . (B) Deletion of is achieved by using a linear substrate composed of a selectable marker () flanked by sequences up- and downstream of . Original sequence between the up- and downstream sequences will be deleted. (C) Construction of a gene deletion substrate by PCR. In a first round of PCR, fragments containing the up- and downstream sequences of and the marker gene () are generated in three independent PCR reactions. Note that one of the primers in the primer pair used to generate the upstream fragment is extended by a sequence identical to the extreme 5′-upstream section of as indicated by a black line added to the gray primer. The sequence of the extension is complementary to the 5′-primer used to amplify . Similarly, one of the primers used to amplify the downstream fragment is extended by a sequence that is complementary to the 3′-primer used to amplify . The two primer extensions produce sequence overlaps that allow all three fragments to be fused and amplified in a second round of PCR. (D) Construction of a bipartite gene deletion substrate. The up- and downstream sections are generated as shown in panel C. In a first round of PCR, two fragments consisting of the 2/3 upstream and 2/3 downstream parts of URA3 are generated in two individual PCR reactions. The primer extensions added to primers used to generate the up- and downstream sequences allow the up- and downstream fragments to be individually fused to the 5′-2/3 and 3′-2/3 fragments in separate PCR reactions.

Citation: Siewers V, Mortensen U, Nielsen J. 2010. Genetic Engineering Tools for , p 287-301. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Substrates for iterative gene deletion. Direct repeats flanking the selectable marker allow the marker to be eliminated from the genome by recombination. If the selectable marker is , recombinants can be selected using 5-FOA. (A) Construction of a bipartite gene deletion substrate with the marker flanked by a direct repeat (labeled DR). The template for the marker fragments is a plasmid that contains direct repeats flanking the marker. The remaining steps are similar to the legend for Fig. 2D . (B) Genomic integration of a bipartite gene-targeting substrate. Note that homologous recombination completes the selectable marker after cotransforming the two substrate fragments into the cell. (C) Direct repeat recombination eliminates the selectable marker from the genome. Note that one repeat remains in the genome. (D) By varying the sequence content of the DR repeats flanking the marker in the template plasmid, different useful sequences may be introduced between defined up and down sequences, as indicated; see text for details.

Citation: Siewers V, Mortensen U, Nielsen J. 2010. Genetic Engineering Tools for , p 287-301. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Incorporation of GFP DNA sequence into the genome. (A) Universal vector set for incorporating the GFP DNA sequence at any location in the genome using a bipartite gene-targeting substrate. Positions of the primers are indicated. (B) Strategy to extend the protein encoded by C-terminally with GFP. The position of the primer pairs used to amplify the two targeting sequences is indicated. Each fragment will terminate with a sequence tag matching either the 5′ - or the 3′ -end of GFP as indicated. Note that a sequence complementary to a stop codon, shown as an open circle, must be incorporated in the forward primer used to amplify the downstream targeting fragment. This codon is positioned right after the GFP segment of this primer as indicated.

Citation: Siewers V, Mortensen U, Nielsen J. 2010. Genetic Engineering Tools for , p 287-301. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Substrates for introduction of point mutations. Identical direct repeats of sequences containing the relevant mutation flank a selectable marker (). The substrate is shown as a bipartite gene-targeting substrate. Direct repeat recombination between mutant repeats leaves only the mutation in the genome.

Citation: Siewers V, Mortensen U, Nielsen J. 2010. Genetic Engineering Tools for , p 287-301. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch20
1. Akada, R. 2002. Genetically modified industrial yeast ready for application. J. Biosci. Bioeng. 94:536544.
2. Akada, R.,, Y. Shimizu,, Y. Matsushita,, M. Kawahata,, H. Hoshida, and, Y. Nishizawa. 2002. Use of a YAP1 overex-pression cassette conferring specific resistance to cerulenin and cycloheximide as an efficient selectable marker in the yeast Saccharomyces cerevisiae. Yeast 19:1728.
3. Alani, E.,, L. Cao, and, N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541545.
4. Alper, H.,, C. Fischer,, E. Nevoigt, and, G. Stephanopoulos. 2005. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102:1267812683.
5. Amberg, D. C.,, D. Botstein, and, E. M. Beasley. 1995. Precise gene disruption in Saccharomyces cerevisiae by double fusion polymerase chain reaction. Yeast 11:12751280.
6. Armaleo, D.,, G.-N. Ye,, T. M. Klein,, K. B. Shark,, J. C. Sanford, and, S. A. Johnston. 1990. Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr. Genet. 17:97103.
7. Asadollahi, M. A.,, J. Maury,, K. Møller,, K. F. Nielsen,, M. Schalk,, A. Clark, and, J. Nielsen. 2007. Production of plant sesquiterpenes in Saccharomyces cerevisiae: effect of ERG9 repression on sesquiterpene biosynthesis. Biotechnol. Bioeng. 99:666677.
8. Ayub, M. A. Z.,, S. Astolfi-Filho,, F. Mavituna, and, S. G. Oliver. 1992. Studies on plasmid stability, cell metabolism and superoxide dismutase production by Pgk- strains of Saccharo-myces cerevisiae. Appl. Microbiol. Biotechnol. 37:615620.
9. Bae, J. Y.,, J. Laplaza, and, T. W. Jeffries. 2008. Effects of gene orientation and use of multiple promoters on the expression of XYL1 and XYL2 in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 145:6978.
10. Baldari, C,, J. A. H. Murray,, P. Ghiara,, G. Cesareni, and, C. L. Galeotti. 1987. A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 β in Saccharomyces cerevisiae. EMBO J. 6:229234.
11. Baudin, A.,, O. Ozier-Kalogeropoulos,, A. Denouel,, F. Lacroute, and, C. Cullin. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21:33293330.
12. Bellí, G.,, E. Garí,, L. Piedrafita,, M. Aldea, and, E. Herrero. 1998. An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast. Nucleic Acids Res. 26:942947.
13. Bendoni, B.,, D. Cavalieri,, E. Casalone,, M. Polsinelli, and, C. Barberio. 1999. Trifluoroleucine resistance as a dominant molecular marker in transformation of strains of Saccharomyces cerevisiae isolated from wine. FEMS Microbiol. Lett. 180:229233.
14. Boeke, J. D.,, F. LaCroute, and, G. R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345346.
15. Böer, E.,, G. Steinborn,, A. Matros,, H.-P. Mock,, G. Gellissen, and, G. Kunze. 2007. Production of interleukin-6 in Arxula adeninivorans, Hansenula polymorpha and Saccharomyces cerevisiae by applying the wide-range yeast vector (CoMed™) system to simultaneous comparative assessment. FEMS Yeast Res. 7:11811187.
16. Bonneaud, N.,, O. Ozier-Kalogeropoulos,, G. Li,, M. Labouesse,, L. Minvielle-Sebastia, and, F. Lacroute. 1991. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609615.
17. Brachmann, C. B.,, A. Davies,, G. J. Cost,, E. Caputo,, J. Li,, P. Hieter, and, J. D. Boeke. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115132.
18. Brake, A. J.,, J. P. Merryweather,, D. G. Coit,, U. A. He-berlein,, F. R. Masiarz,, G. T. Mullenbach,, M. S. Urdea,, P. Valenzuela, and, P. J. Barr. 1984. a-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 81:46424646.
19. Cardona, F.,, P. Carrasco,, J. E. Pérez-Ortín,, M. L. del Olmo, and, A. Aranda. 2007. A novel approach for the improvement of stress resistance in wine yeasts. Int. J. Food Microbiol. 114:8391.
20. Cha, H. J.,, H. J. Chae,, S. S. Choi, and, Y. J. Yoo. 2000. Production and secretion patterns of cloned glucoamy-lase in plasmid-harboring and chromosome-integrated recombinant yeasts employing an SLJC2 promoter. Appl. Biochem. Biotechnol. 87:8192.
21. Chattoo, B. B.,, F. Sherman,, D. A. Azubalis,, T. A. Fjellstedt,, D. Mehnert, and, M. Ogur. 1979. Selection of lys2 mutants of the yeast Saccharomyces cerevisiae by the utilization of α-aminoadipate. Genetics 93:5165.
22. Christianson, T. W.,, R. S. Sikorski,, M. Dante,, J. H. Shero, and, P. Hieter. 1992. Multifunctional yeast high-copy-shuttle vectors. Gene 100:119122.
23. Compagno, C,, A. Tura,, B. M. Ranzi,, L. Alberghina, and, E. Martegani. 1993. Copy number modulation in an autoselection system for stable plasmid maintenance in Saccharomyces cerevisiae. Biotechnol. Prog. 9:594599.
24. Cost, G. J., and, J. D. Boeke. 1996. A useful colony colour phenotype associated with the yeast selectable/counter-selectable marker MET15. Yeast 12:939941.
25. Delorme, E. 1989. Transformation of Saccharomyces cerevisiae by electroporation. Appl. Environ. Microbiol. 55:22422246.
26. del Pozo, L.,, D. Abarca,, M. G. Claros, and, A. Jiménez. 1991. Cycloheximide resistance as a yeast cloning marker. Curr. Genet. 19:353358.
27. Doignon, F.,, M. Aigle, and, P. Ribereau-Gayon. 1993. Resistance to imidazoles and triazoles in Saccharomyces cerevisiae as a new dominant marker. Plasmid 30:224233.
28. Erdeniz, N.,, U. H. Mortensen, and, R. Rothstein. 1997. Cloning-free PCR-based allele replacement methods. Genome Res. 7:11741183.
29. Erhart, E., and, C. P. Hollenberg. 1983. The presence of a defective LELJ2 gene on 2µ DNA recombinant plasmids of Saccharomyces cerevisiae is responsible for curing and high copy number. J. Bacteriol. 156:625635.
30. Featherstone, C., and, S. P. Jackson. 1999. DNA double-strand break repair. Curr. Biol. 9:R759-R761.
31. Fink, G.,, J. Trueheart, and, E. A. Elion. November, 1991. DNA fragment containing a pheromone-inducible yeast promoter useful for transforming yeast cells to produce foreign proteins, which may be toxic to yeast cells. U.S. patent 5063154.
32. Fukuda, H., and, Y. Kizaki. 1999. A new transformation system of Saccharomyces cerevisiae with blasticidin S deaminase gene. Biotechnol. Lett. 21:969971.
33. Fukuda, K.,, M. Watanabe,, K. Asano,, K. Ouchi, and, S. Takasawa. 1992. Molecular breeding of a sake yeast with a mutated AR04 gene which causes both resistance to o-fluoro-Dl-phenylalanine and increased production of (β-phenethyl alcohol. J. Ferment. Bioeng. 73:366369.
34. Garí, E.,, L. Piedrafita,, M. Aldea, and, E. Herrero. 1997. A set of vectors with a tetracycline-regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae. Yeast 13:837848.
35. Geymonat, M.,, A. Spanos, and, S. G. Sedgwick. 2007. A Saccharomyces cerevisiae autoselection system for optimised recombinant protein expression. Gene 399:120128.
36. Gietz, R. D., and, R. H. Schiestl. 2007. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2:3134.
37. Gietz, R. D., and, R. H. Schiestl. 2007. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2:3537.
38. Gietz, R. D., and, A. Sugino. 1988. New yeast-Esc Jiericliia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527534.
39. Goffeau, A.,, B. G. Barrell,, H. Bussey,, R. W. Davis,, B. Dujon,, H. Feldmann,, F. Galibert,, J. D. Hoheisel,, C. Jacq,, M. Johnston,, E. J. Louis,, H. W. Mewes,, Y. Murakami,, P. Philippsen,, H. Tettelin, and, S. G. Oliver. 1996. Life with 6000 genes. Science 274:546, 563-567.
40. Goldstein, A. L., and, J. H. McCusker. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:15411553.
41. Goldstein, A. L.,, X. Pan, and, J. H. McCusker. 1999. Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae. Yeast 15:507511.
42. Gueldener, U.,, J. Heinisch,, G. J. Koehler,, D. Voss, and, J. H. Hegemann. 2002. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30:e23.
43. Giildener, U.,, S. Heck,, T. Fielder,, J. Beinhauer, and, J. H. Hegemann. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24:25192524.
44. Hadfield, C.,, A. M. Cashmore, and, P. A. Meacock. 1986. An efficient chloramphenicol-resistance marker for Saccha-romyces cerevisiae and Escherichia coli. Gene 45:149158.
45. Hamilton, R.,, C. K. Watanabe, and, H. A. de Boer. 1987. Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res. 15:35813593.
46. Hartzog, P. E.,, B. P. Nicholson, and, J. H. McCusker. 2005. Cytosine deaminase MX cassettes as positive/ negative selectable markers in Saccharomyces cerevisiae. Yeast 22:789798.
47. Hashida-Okado, T.,, A. Ogawa,, I. Kato, and, K. Takesako. 1998. Transformation system for prototrophic industrial yeasts using the ALJR1 gene as a dominant selection marker. FEBS Lett. 425:117122.
48. Hinnen, A.,, J. B. Hicks, and, G. R. Fink. 1978. Transformation of yeast. Proc. Natl, Acad. Sci. USA 75:19291933.
49. Hottiger, T.,, J. Kuhla,, G. Pohlig,, P. Fürst,, A. Spielmann,, M. Garn,, S. Haemmerli, and, J. Heim. 1995. 2-(μm vectors containing the Saccharomyces cerevisiae metallothionein gene as a selectable marker: excellent stability in complex media, and high-level expression of a recombinant protein from a CUPl -promoter-controlled expression cassette in cis. Yeast 11:114.
50. Ito, H.,, Y. Fukuda,, K. Murata, and, A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163168.
51. Ito-Harashima, S., and, J. H. McCusker. 2004. Positive and negative selection LYS5MX gene replacement cassettes for use in Saccharomyces cerevisiae. Yeast 21:5361.
52. Jansen, G.,, C. Wu,, B. Schade,, D. Y. Thomas, and, M. Whiteway. 2005. Drag&Drop cloning in yeast. Gene 344:4351.
53. Jeppsson, M.,, B. Johansson,, P. R. Jensen,, B. Hahn-Häg-erdal, and, M. F. Gorwa-Grauslund. 2003. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20:12631272.
54. Kanai, T.,, H. Atomi,, K. Umemura,, H. Ueno,, Y. Teranishi,, M. Ueda, and, A. Tanaka. 1996. A novel het-erologous gene expression system in Saccharomyces cerevisiae using the isocitrate lyase gene promoter from Candida tropicalis. Appl. Microbiol. Biotechnol. 44:759765.
55. Kawasaki, G. H., and, L. Bell. February, 1999. Production of proteins in yeast host cells by transforming cells with DNA which complements a deficiency present in the cells and DNA encoding the proteins. U.S. patent 5871957.
56. Klein, C. J. L.,, L. Olsson, and, J. Nielsen. 1998. Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions. Microbiology 144:1324.
57. Klein, H. L. 1995. Genetic control of intrachromosomal recombination. Bioessays 17:147159.
58. Kolariková, K.,, P. Galuszka,, I. Sedlárová,, M. Šebela, and, I. Frébort. 2009. Functional expression of amine oxidase from Aspergillus niger (AO-I) in Saccharomyces cerevisiae. Mol. Biol. Rep. 36:1320.
59. Kunze, G.,, R. Bode,, H. Rintala, and, J. Hofemeister. 1989. Heterologous gene expression of the glyphosate resistance marker and its application in yeast transformation. Curr. Genet. 15:9198.
60. Labbé, S., and, D. J. Thiele. 1999. Copper ion inducible and repressible promoter systems in yeast. Methods Enzy-mol. 306:145153.
61. Lacková, D., and, J. Šubík. 1999. Use of mutated PDR3 gene as a dominant selectable marker in transformation of prototrophic yeast strains. Folia Microbiol. 44:171176.
62. Lai, M.-T.,, D. Y.-T. Liu, and, T.-H. Hseu. 2007. Cell growth restoration and high level protein expression by the promoter of hexose transporter, HXT7, from Saccharomyces cerevisiae. Biotechnol. Lett. 29:12871292.
63. Lang, G. I., and, A. W. Murray. 2008. Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 178:6782.
64. Längle-Rouault, F., and, E. Jacobs. 1995. A method for performing precise alterations in the yeast genome using a recyclable selectable marker. Nucleic Acids Res. 23:30793081.
65. Lee, J.-W.,, D.-O. Kang,, B.-Y. Kim,, W.-K. Oh,, T.-I. Mheen,, Y.-R. Pyun, and, J.-S. Ahn. 2000. Mutagenesis of the glucoamylase signal peptide of Saccharomyces dia-staticus and functional analysis in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 193:711.
66. Lee, K. M., and, N. A. Da Silva. 2005. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis. Yeast 22:431440.
67. Lee, S. Y.,, Y. C. Park,, H. S. Cho,, K. S. Ra,, H. S. Baik,, S.-Y. Paik,, J. W. Yun,, H. S. Park, and, J. W. Choi. 2003. Expression of an artificial polypeptide with a repeated tripeptide glutamyl-tryptophanyl-lysine in Saccharomyces cerevisiae. Lett. Appl. Microbiol. 36:121128.
68. Lee, T.-H.,, M.-D. Kim,, S.-Y. Shin,, H.-K. Lim, and, J.-H. Seo. 2006. Disruption of hexokinase II (HXK2) partly relieves glucose repression to enhance production of human kringle fragment in gratuitous recombinant Saccharomyces cerevisiae. J. Biotechnol. 126:562567.
69. Lind, K., and, J. Norbeck. 2009. A QPCR-based reporter system to study post-transcriptional regulation via the 3′ untranslated region of mRNA in Saccharomyces cerevisiae. Yeast 26:407413.
70. Lisby, M.,, R. Rothstein, and, U. H. Mortensen. 2001. Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl. Acad. Sci. USA 98:82768282.
71. Lopes, T. S.,, J. Klootwijk,, A. E. Veenstra,, P. C. van der Aar,, H. van Heerikhuizen,, H. A. Raúe, and, R. J. Planta. 1989. High-copy-number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high- level expression. Gene 79:199206.
72. Lorenz, M. C.,, R. S. Muir,, E. Lim,, J. McElver,, S. C. Weber, and, J. Heitman. 1995. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158:113117.
73. Manivasakam, P.,, S. C. Weber,, J. McElver, and, R. H. Schiestl. 1995. Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res. 23:27992800.
74. Martens, C.,, B. Krett, and, P. J. Laybourn. 2001. RNA polymerase II and TBP occupy the repressed CYC1 promoter. Mol. Microbiol. 40:10091019.
75. Maya, D.,, M. J. Quintero,, M. D. Muñoz-Centeno, and, S. Chávez. 2008. Systems for applied gene control in Saccharomyces cerevisiae. Biotechnol. Lett. 30:979987.
76. McGonigal, T.,, P. Bodelle,, C. Schopp, and, A. V. Sarthy. 1998. Construction of a sorbitol-based vector for expression of heterologous proteins in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 64:793794.
77. Meyerhans, A.,, J. P. Vartanian, and, S. Wain-Hobson. 1990. DNA recombination during PCR. Nucleic Acids Res. 18:16871691.
78. Miyajima, A.,, I. Miyajima,, K.-I. Arai, and, N. Arai. 1984. Expression of plasmid R388-encoded type II dihydrofolate reductase as a dominant selective marker in Saccharomyces cerevisiae. Mol Cell. Biol. 4:407414.
79. Monfort, A.,, S. Finger,, P. Sanz, and, J. A. Prieto. 1999. Evaluation of different promoters for the efficient production of heterologous proteins in baker’s yeast. Biotechnol. Lett. 21:225229.
80. Mumberg, D.,, R. Müller, and, M. Funk. 1994. Regulat-able promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22:57675768.
81. Mumberg, D.,, R. Müller, and, M. Funk. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119122.
82. Murata, K.,, Y. Fukuda,, M. Shimosaka,, K. Watanabe,, T. Saikusa, and, A. Kimura. 1985. Phenotypic character of the methylglyoxal resistance gene in Saccharomyces cerevisiae: expression in Escherichia coli and application to breeding wild-type yeast strains. Appl. Environ. Microbiol. 50:12001207.
83. Mutka, S. C.,, S. M. Bondi,, J. R. Carney,, N. A. Da Silva, and, J. T. Kealey. 2006. Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res. 6:4047.
84. Nacken, V.,, T. Achstetter, and, E. Degryse. 1996. Probing the limits of expression levels by varying promoter strength and plasmid copy number in Saccharomyces cerevisiae. Gene 175:253260.
85. Napp, S. J., and, N. A. Da Silva. 1993. Enhancement of cloned gene product synthesis via autoselection in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 41:801810.
86. Napp, S. J., and, N. A. Da Silva. 1994. Enhanced productivity through gratuitous induction in recombinant yeast fermentations. Biotechnol. Prog. 10:125128.
87. Nevoigt, E. 2008. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 72:379412.
88. Nevoigt, E.,, C. Fischer,, O. Mucha,, F. Matthäus,, U. Stahl, and, G. Stephanopoulos. 2006. Engineering promoter regulation. Biotechnol. Bioeng. 96:550558.
89. Nielsen, J., and, M. C. Jewett. 2008. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Res. 8:122131.
90. Nieto, A.,, J. A. Prieto, and, P. Sanz. 1999. Stable high-copy-number integration of Aspergillus oryzae a-amylase cDNA in an industrial baker’s yeast strain. Biotechnol. Prog. 15:459466.
91. Nishizawa, M.,, F. Ozawa, and, F. Hishinuma. 1989. Construction of yeast secretion vectors designed for production of mature proteins using the signal sequence of yeast invertase. Appl. Microbiol. Biotechnol. 32:317322.
92. Novak Frazer, L., and, R. T. O’Keefe. 2007. A new series of yeast shuttle vectors for the recovery and identification of multiple plasmids from Saccharomyces cerevisiae. Yeast 24:777789.
93. Olesen, K.,, P. F. Johannesen,, L. Hoffmann,, S. B. Sorensen,, C. Gjermansen, and, J. Hansen. 2000. The pYC plasmids, a series of cassette-based yeast plasmid vectors providing means of counter-selection. Yeast 16:10351043.
94. Orr-Weaver, T. L.,, J. W. Szostak, and, R. J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:63546358.
95. Ostergaard, S.,, L. Olsson, and, J. Nielsen. 2000. Metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64:3450.
96. Parekh, R. N.,, M. R. Shaw, and, K. D. Wittrup. 1996. An integrating vector for tunable, high copy, stable integration into the dispersed Ty delta sites of Saccharomyces cerevisiae. Biotechnol. Prog. 12:1621.
97. Park, H.,, N. I. Lopez, and, A. T. Bakalinsky. 1999. Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker. Curr. Genet. 36:339344.
98. Pirkov, I.,, E. Albers,, J. Norbeck, and, C. Larsson. 2008. Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae. Metab. Eng. 10:276280.
99. Pronk, J. T. 2002. Auxotrophic yeast strains in fundamental and applied research. Appl. Environ. Microbiol. 68:20952100.
100. Raymond, M.,, S. Ruetz,, D. Y. Thomas, and, P. Gros. 1994. Functional expression of P-glycoprotein in Saccharomyces cerevisiae confers cellular resistance to the immunosuppressive and antifungal agent FK520. Mol. Cell. Biol. 14:277286.
101. Rech, S. B.,, L. I. Stateva, and, S. G. Oliver. 1992. Complemetation of the Saccharomyces cerevisiae srb1-1 mutation: an autoselection system for stable plasmid maintenance. Curr. Genet. 21:339344.
102. Regenberg, B., and, J. Hansen. 2000. GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae. Yeast 16:11111119.
103. Reid, R. J.,, M. Lisby, and, R. Rothstein. 2002. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol. 350:258277.
104. Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202211.
105. Ruohonen, L.,, M. K. Aalto, and, S. Keränen. 1995. Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. J. Biotechnol. 39:193203.
106. Sadowski, I.,, T.-C. Su, and, J. Parent. 2007. Disintegrator vectors for single-copy yeast chromosomal integration. Yeast 24:447455.
107. Sauer, B. 1987. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7:20872096.
108. Sauer, N., and, J. Stolz. 1994. SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker’s yeast and identification of the histidine-tagged protein. Plant J. 6:6777.
109. Shimoi, H.,, M. Okuda, and, K. Ito. 2000. Molecular cloning and application of a gene complementing pan-tothenic acid auxotrophy of sake yeast Kyokai no. 7. J. Biosci. Bioeng. 90:643647.
110. Sikorski, R. S., and, P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:1927.
111. Slibinskas, R.,, D. Samuel,, A. Gedvilaite,, J. Staniulis, and, K. Sasnauskas. 2004. Synthesis of the measles virus nucleoprotein in yeast Pichia pastoris and Saccharomyces cerevisiae. J. Biotechnol. 107:115124.
112. Solow, S. P.,, J. Sengbusch, and, M. W. Laird. 2005. Heterologous protein production from the inducible MET25 promoter in Saccharomyces cerevisiae. Biotechnol. Prog. 21:617620.
113. Symington, L. S. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66:630670.
114. Thim, L.,, M. T. Hansen,, K. Norris,, I. Hoegh,, E. Boel,, J. Forstrom,, G. Ammerer, and, N. P. Fiil. 1986. Secretion and processing of insulin precursors in yeast. Proc. Natl. Acad. Sci. USA 83:67666770.
115. Toyn, J. H.,, P. L. Gunyuzlu,, W. H. White,, L. A. Thompson, and, G. F. Hollis. 2000. A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. Yeast 16:553560.
116. Ugolini, S.,, V. Tosato, and, C. V. Bruschi. 2002. Selective fitness of four episomal shuttle-vectors carrying HIS3, LEU2, TRP1, and URA3 selectable markers in Saccharomyces cerevisiae. Plasmid 47:94107.
117. Unternährer, S.,, D. Pridmore, and, A. Hinnen. 1991. A new system for amplifying 2 µm plasmid copy number in Saccharomyces cerevisiae. Mol. Microbiol. 5:15391548.
118. Van Arsdell, S.,, R. S. Daves, and, R. R. Yocum. July, 1996. Hybrid yeast promoter containing ENO2 promoter and second upstream activator provides high level expression of heterologous genes in yeast, especially glucoamylase for production of low-calorie beer. U.S. patent 5541084.
119. van den Berg, M. A., and, H. Y. Steensma. 1997. Expression cassettes for formaldehyde and fluoroacetate resistance, two dominant markers in Saccharomyces cerevisiae. Yeast 13:551559.
120. Van Mullem, V.,, M. Wery,, X. De Bolle, and, J. Vandenhaute. 2003. Construction of a set of Saccharomyces cerevisiae vectors designed for recombinational cloning. Yeast 20:739746.
121. Vellanki, R. N.,, N. Komaravelli,, R. Tatineni, and, L. N. Mangamoori. 2007. Expression of hepatitis B surface antigen in Saccharomyces cerevisiae utilizing glycer-aldehyde-3-phosphate dehydrogenase promoter of Pichia pastoris. Biotechnol. Lett. 29:313318.
122. Vorachek-Warren, M. K., and, J. H. McCusker. 2004. DsdA (D-serine deaminase): a new heterologous MX cassette for gene disruption and selection in Saccharomyces cerevisiae. Yeast 21:163171.
123. Wach, A.,, A. Brachat,, C. Alberti-Segui,, C. Rebischung, and, P. Philippsen. 1997. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:10651075.
124. Wach, A.,, A. Brachat,, R. Pöhlmann, and, P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:17931808.
125. Wang, X.,, Z. Wang, and, N. A. Da Silva. 1996. G418 selection and stability of cloned genes integrated at chromosomal δ sequences of Saccharomyces cerevisiae. Biotechnol. Bioeng. 49:4551.
126. Xie, Q., and, A. Jiménez. 1996. Molecular cloning of a novel allele of SMR1 which determines sulfometuron methyl resistance in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 137:165168.
127. Yun, D.-R,, T. M. Laz,, J. M. Clements, and, F. Sherman. 1996. mRNA sequences influencing translation and the selection of AUG initiator codons in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 19:12251239.
128. Zhang, Z.,, M. Moo-Young, and, Y. Chisti. 1996. Plas-mid stability in recombinant Saccharomyces cerevisiae. Biotechnol. Adv. 14:401435.

Tables

Generic image for table
TABLE 1

Marker genes

Citation: Siewers V, Mortensen U, Nielsen J. 2010. Genetic Engineering Tools for , p 287-301. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch20
Generic image for table
TABLE 2

Promoters for heterologous gene expression

Citation: Siewers V, Mortensen U, Nielsen J. 2010. Genetic Engineering Tools for , p 287-301. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch20
Generic image for table
TABLE 3

Available plasmid expression vector

Citation: Siewers V, Mortensen U, Nielsen J. 2010. Genetic Engineering Tools for , p 287-301. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error