1887

Chapter 25 : Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap25-2.gif

Abstract:

Biotechnology offers multiple means for improving artemisinin production. Synthetic biology and metabolic engineering of microbes offer an attractive alternative to natural sources as a means for inexpensive pharmaceutical production. The isoprenoid precursors used in artemisinin biosynthesis are common to both prokaryotes and eukaryotes; consequently, model microbes, such as and , can be used to convert simple, cheap sugar to artemisinin precursors. Optimal metabolite analysis depends on the detection of all engineered pathway intermediates, the carbon source, and the common metabolites. Chromatography, both gas and liquid, and capillary electrophoresis were the main techniques used to separate the metabolites of interest from the rest of the metabolites present. In general, these methods were coupled to mass spectrometry (MS) for identification. Mutagenic and combinatorial methods are powerful tools for optimizing metabolically engineered systems. Optimal pathway gene expression is dependent on a wide variety of factors including, but not limited to, gene product toxicity, solubility, codon usage, mRNA secondary structure, mRNA stability, and translational efficiency. Protein engineering of P450 BM-3 yielded selective oxidation of amorpha-4,11-diene at a high rate to produce artemisinic epoxide at titers of 250 mg/liter.

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25

Key Concept Ranking

Environmental Microbiology
0.57609934
Acetyl Coenzyme A
0.49289504
Fatty Acid Biosynthesis
0.4358317
0.57609934
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Biosynthetic routes to polyprenyl pyrophosphate isoprenoid biosynthetic pathways in and . Dxs, DXP synthase; IspC, DXP reductoisomerase; IspD, 4-diphosphocytidyl-2--methyl--erythritol synthase; IspE, 4-diphosphocytidyl-2--methyl--erythritol kinase; IspF, 2--methyl--erythritol 2,4-cyclodiphosphate synthase; IspG, 1-hydroxy-2-methyl-2-()-butenyl 4-diphosphate synthase; IspH, 1-hydroxy-2-methyl-2-()-butenyl 4-diphosphate reductase; AtoB, acetoacetyl-CoA thiolase; HMGS, 3-hydroxymethylglutaryl-CoA synthase; HMGR, 3-hydroxymethylglutaryl-CoA reductase 1; MK, mevalonate kinase; PMK, phospho-mevalonate kinase; MPD, mevalonate pyrophosphate decarboxylase; Idi, isopentenyl pyrophosphate isomerase. Adapted from ( ) with permission of the publisher.

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Production of amorpha-4,11-diene via the DXP or mevalonate isoprenoid pathway and depiction of the synthetic operons used by Martin et al. ( ). The amorpha-4,11-diene pathway was separated into three plasmids, with one plasmid carrying the steps from acetyl-CoA to mevalonate, the second plasmid expressing the steps from mevalonate to FPP, and the third plasmid encoding amorpha-4,11-diene synthase (ADS). Several intermediate plasmids converting mevalonate to mevalonate-5-diphosphate (pMKPMK), to IPP (pMevB), and to DMAPP (pMBI) were constructed for comparison to pMBIS. tHMGR, truncated form of HMGR gene; A-CoA, acetyl-CoA; AA-CoA, acetoacetyl-CoA; MK, mevalonate kinase gene; PMK, phosphomevalonate kinase gene; MPD, mevalonate pyrophosphate decarboxylase gene; Mev-P, mevalonate phosphate; Mev-PP, mevalonate diphosphate; OPP, pyrophosphate; IPPHp, IPP, isopentenyl pyrophosphate; G3P, glyceraldehyde-3-phosphate; MEP, 2--methyl--erythritol 4-phosphate; CDP-ME, 4-diphosphocytidyl-2--methyl--erythritol; CDP-ME2P, 4-diphosphocytidyl-2--methyl--erythritol 2-phosphate; ME-2,4cPP, 2--methyl--erythri-tol 2,4-cyclodiphosphate; HMB4PP, 1-hydroxy-2-methyl-2-()-butenyl 4-diphosphate.

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Growth curves for showing the inhibition effects caused by increasing concentrations of DL-mevalonate in Luria-Bertani medium. Strains expressing plasmids pBBR1MCS-3 (open squares), pMKPMK (circles), pMevB (diamonds), pMBI (triangles), and pMBIS (solid squares). OD600, optical density at 600 nm. Reprinted from ( ) with permission of the publisher.

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Growth of with increasing expression of the MevT operon. DP10 cells harbored the following plasmids (in order of increasing expression of the MevT genes): pMevT (black circles), pBAD33MevT (gray squares), and pBAD24MevT (black triangles). Cells expressing pLac33 (open circles), pBAD33 (open squares), and pBAD24 (multiplication signs) were the respective empty-plasmid controls. Reprinted from ( ) with permission of the publisher.

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Mevalonate biosensor screening strategy. (a) Screening methodology. Mevalonate producers were grown in a 96-well format in C medium with inducers for 24 h. Producer cells were removed by centrifugation, and the spent medium was passed to new cultures inoculated with the biosensor. Wells containing the most mevalonate were the most fluorescent (they showed the greatest intensity of white on the plates). GFP, green fluorescent protein. (b) Mevalonate library. Seven 96-well plates are shown 15 h post-biosensor inoculation. The four white wells on each plate are mevalonate controls. Reprinted from ( ) with permission of the publisher.

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Effect of amorphadiene synthase (ADS) expression on the growth of harboring pMBIS. Cells carried pMBIS and the empty expression vector pTrc99A (without the gene) (top) or pADS expressing the amorphadiene synthase (bottom). Luria-Bertani medium was supplemented with 0, 5, 10, 20, or 40 mM DL-mevalonate. Reprinted from ( ) with permission of the publisher. OD, optical density at 600 nm.

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Flow chart of systems biology applied to achieving a production target. A host organism is selected and metabolically engineered to produce the molecule(s) of interest. The results of metabolic engineering are evaluated, for example, by monitoring phenotypes demonstrated by growth curves and product titers determined by GC. Cellular profiling is performed using measurements at all levels of the system, including mRNA, proteins, and metabolites, and flux analysis to identify bottlenecks in the pathway. Once bottlenecks are identified, another round of engineering is carried out to overcome the limitations. The cycle is completed once the desired production level has been achieved. OD, optical density at 600 nm. Reprinted from ( ) with permission of the publisher.

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Transcript profiles of the initial steps of type II FAB in . Malonyl-CoA is synthesized from acetyl-CoA by the action of acetyl-CoA carboxylase, a heterotetramer composed of subunits encoded by . The malonate moiety is transferred from CoA to the acyl carrier protein (ACP) by the action of malonyl-CoA:ACP transacylase (FabD). Also shown (inset) are the expression values and scores (in parentheses) for FAB genes that exhibited biologically significant upregulation in the mevalonate-producing strain ( DP10 containing pBAD33MevT and pBAD18) relative to the inactive-pathway control strain [ DP10 containing pMevT(C159A) and pBAD18] in the microarray analysis. Values for the control strain were set at 1.0. Adapted from ( ).

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Flow chart of metabolic engineering efforts for the high-level production of precursors to artemisinin.

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch25
1. Abdin, M. Z.,, M. Israr,, R. U. Rehman, and, S. K. Jain. 2003. Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Med. 69:289299.
2. Ajikumar, P. K.,, K. Tyo,, S. Carlsen,, O. Mucha,, T. H. Phon, and, G. Stephanopoulos. 2008. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol. Pharm. 5:167190.
3. Alper, H.,, C. Fischer,, E. Nevoigt, and, G. Stephanopou-los. 2005. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102:1267812683.
4. Alper, H.,, K. Miyaoku, and, G. Stephanopoulos. 2005. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol. 23:612616.
5. Anthony, J. R.,, L. C. Anthony,, F. Nowroozi,, G. Kwon,, J. D. Newman, and, J. D. Keasling. 2009. Optimization of the mevalonate-based isoprenoid bio-synthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene. Metab. Eng. 11:1319.
6. Appel, D.,, S. Lutz-Wahl,, P. Fischer,, U. Schwaneberg, and, R. D. Schmid. 2001. A P450 BM-3 mutant hydrox-ylates alkanes, cycloalkanes, arenes and heteroarenes. J. Biotechnol. 88:167171.
7. Balint, G. A. 2001. Artemisinin and its derivatives: an important new class of antimalarial agents. Pharmacol. Ther. 90:261265.
8. Baneyx, F. 1999. Recombinant protein expression in Esch-erichia coli. Curr. Opin. Biotechnol. 10:411421.
9. Barnes, H. J.,, M. P. Arlotto, and, M. R. Waterman. 1991. Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proc. Natl. Acad. Sci. USA 88:55975601.
10. Barrick, D.,, K. Villanueba,, J. Childs,, R. Kalil,, T. D. Schneider,, C. E. Lawrence,, L. Gold, and, G. D. Stormo. 1994. Quantitative analysis of ribosome binding sites in E. coli. Nucleic Acids Res. 22:12871295.
11. Bertea, C. M.,, J. R. Freije,, H. van der Woude,, R W. Ver-stappen,, L. Perk,, V. Marquez,, J. De Kraker,, M. A. Post-humus,, B. J. Jansen,, A. de Groot,, M. C. Franssen, and, H. J. Bouwmeester. 2005. Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua. Planta Med. 71:4047.
12. Betts, J. C,, A. McLaren,, M. G. Lennon,, F. M. Kelly,, P. T. Lukey,, S. J. Blakemore, and, K. Duncan. 2003. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 47:29032913.
13. Bouwmeester, H. J.,, T. E. Wallaart,, M. H. Janssen,, B. van Loo,and, B. J. Jansen.and, M. A. Posthumus.and, C. O. Schmidt., J. W. De Kraker,, W. A. König, and, M. C. Franssen. 1999. Amorpha-4,11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52:843854.
14. Carmichael, A. B., and, L. L. Wong. 2001. Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur. J. Biochem. 268:31173125.
15. Chang, M. C. Y.,, R. A. Eachus,, W. Trieu,, D. Ro, and, J. D. Keasling. 2007. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nat. Chem. Biol. 3:274277.
16. Chang, M. C. Y., and, J. D. Keasling. 2006. Production of isoprenoid pharmaceuticals by engineered microbes. Nat. Chem. Biol. 2:674681.
17. Connolly, D. M., and, M. E. Winkler. 1989. Genetic and physiological relationships among the miaA gene, 2-methylthio-N -(A -isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12. J. Bacteriol. 171:32333246.
18. Covello, P. S. 2008. Making artemisinin. Phytochemistry 69:28812885.
19. Craft, D. L.,, K. M. Madduri,, M. Eshoo, and, C. R. Wilson. 2003. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to a,to-dicar-boxylic acids. Appl. Environ. Microbiol. 69:59835991.
20. Das, A.,, S. Yoon,, S. Lee,, J. Kim,, D. Oh, and, S. Kim. 2007. An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl. Microbiol. Biotechnol. 77:505512.
21. de Smit, M. H., and, J. van Duin. 1994. Control of translation by mRNA secondary structure in Escherichia coli. A quantitative analysis of literature data. J. Mol. Biol. 244:144150.
22. de Smit, M. H., and, J. van Duin. 1990. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl. Acad. Sci. USA 87:76687672.
23. Dietrich, J.,, Y. Yoshikuni,, K. Fisher,, F. Woolard,, D. Ockey,, D. McPhee,, N. Renninger,, M. Chang,, D. Baker, and, J. D. Keasling. 2009. A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450(BM3). ACS Chem. Biol. 4:261267.
24. Dietrich, M.,, T. A. Do,, R. D. Schmid,, J. Pleiss, and, V. B. Urlacher. 2009. Altering the regioselectivity of the subterminal fatty acid hydroxylase P450 BM-3 towards gamma- and delta-positions. J. Biotechnol. 139:115-117.
25. Eisenreich, W.,, F. Rohdich, and, A. Bacher. 2001. De-oxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6:7884.
26. Enserink, M. 2005. Infectious diseases. Source of new hope against malaria is in short supply. Science 307:33.
27. Flores, S.,, R. de Anda-Herrera,, G. Gosset, and, F. G. Bolívar. 2004. Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway. Biotechnol. Bioeng. 87:485494.
28. Glieder, A.,, E. T. Farinas, and, F. H. Arnold. 2002. Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20:11351139.
29. Guzman, L. M.,, D. Belin,, M. J. Carson, and, J. Beckwith. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177:41214130.
30. Hammer, K.,, I. Mijakovic, and, P. R. Jensen. 2006. Synthetic promoter libraries—tuning of gene expression. Trends Biotechnol. 24:5355.
31. Harker, M., and, P. M. Bramley. 1999. Expression of pro-karyotic 1-deoxy-D-xylulose-5-phosphatases in Escherichia coli increases carotenoid and ubiquinone biosynthesis. FEBS Lett. 448:115119.
32. Haynes, R. K. 2006. From artemisinin to new artemis-inin antimalarials: biosynthesis, extraction, old and new derivatives, stereochemistry and medicinal chemistry requirements. Curr. Top. Med. Chem. 6:509537.
33. Hilker, B. L.,, H. Fukushige,, C. Hou, and, D. Hildebrand. 2008. Comparison of Bacillus monooxygenase genes for unique fatty acid production. Prog. Lipid Res. 47:114.
34. Hofheinz, W.,, H. Bürgin,, E. Gocke,, C. Jaquet,, R. Masciadri,, G. Schmid,, H. Stohler, and, H. Urwyler. 1994. Ro 42-1611 (arteflene), a new effective antimalarial: chemical structure and biological activity. Trop. Med. Parasitol. 45:261265.
35. Hunter, W. N. 2007. The non-mevalonate pathway of iso-prenoid precursor biosynthesis. J. Biol. Chem. 282:2157321577.
36. Jackowski, S., and, C. O. Rock. 1986. Consequences of reduced intracellular coenzyme A content in Escherichia coli. J. Bacteriol. 166:866871.
37. Jana, S., and, J. K. Deb. 2005. Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67:289298.
38. Jensen, P. R., and, K. Hammer. 1998. Artificial promoters for metabolic optimization. Biotechnol. Bioeng. 58:191195.
39. Jones, K. L.,, S. W. Kim, and, J. D. Keasling. 2000. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2:328338.
40. Kang, M. J.,, Y. M. Lee,, S. H. Yoon,, J. H. Kim,, S. W. Ock,, K. H. Jung,, Y. C. Shin,, J. D. Keasling, and, S. W. Kim. 2005. Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method. Biotechnol. Bioeng. 91:636642.
41. Keasling, J. D. 2008. Synthetic biology for synthetic chemistry. ACS Chem. Biol. 3:6476.
42. Kim, S. W., and, J. D. Keasling. 2001. Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production. Biotechnol. Bioeng. 72:408415.
43. Kirby, J., and, J. D. Keasling. 2008. Metabolic engineering of microorganisms for isoprenoid production. Nat. Prod. Rep. 25:656661.
44. Kizer, L.,, D. J. Pitera,, B. F. Pfleger, and, J. D. Keasling. 2008. Application of functional genomics to pathway optimization for increased isoprenoid production. Appl. Environ. Microbiol. 74:32293241.
45. Klayman, D. L. 1985. Qinghaosu (artemisinin): an anti-malarial drug from China. Science 228:10491055.
46. Klayman, D. L.,, A. J. Lin,, N. Acton,, J. P. Scovill,, J. M. Hoch,, W. K. Milhous,, A. D. Theoharides, and, A. S. Dobek. 1984. Isolation of artemisinin (qinghaosu) from Artemisia annua growing in the United States. J. Nat. Prod. 47:715717.
47. Klein-Marcuschamer, D.,, P. K. Ajikumar, and, G. Steph-anopoulos. 2007. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol. 25:417424.
48. Koeller, K. M., and, C. H. Wong. 2001. Enzymes for chemical synthesis. Nature 409:232240.
49. Kuchner, O., and, F. H. Arnold. 1997. Directed evolution of enzyme catalysts. Trends Biotechnol. 15:523530.
50. Kuzuyama, T.,, S. Takahashi, and, H. Seto. 1999. Construction and characterization of Escherichia coli disruptants defective in the yaeM gene. Biosci. Biotechnol. Biochem. 63:776778.
51. Kuzuyama, T. 2002. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci. Biotechnol. Biochem. 66:16191627.
52. Landwehr, M.,, L. Hochrein,, C. R. Otey,, A. Kasrayan,, J. Bäckvall, and, F. H. Arnold. 2006. Enantioselective alpha-hydroxylation of 2-arylacetic acid derivatives and buspirone catalyzed by engineered cytochrome P450 BM-3. J. Am. Chem. Soc. 128:60586059.
53. Li, Q. S.,, U. Schwaneberg,, P. Fischer, and, R. D. Schmid. 2000. Directed evolution of the fatty-acid hydroxylase P450 BM-3 into an indole-hydroxylating catalyst. Chemistry 6:15311536.
54. Liu, C.,, Y. Zhao, and, Y. Wang. 2006. Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl. Microbiol. Biotechnol. 72:1120.
55. Martin, V. J.,, Y. Yoshikuni, and, J. D. Keasling. 2001. The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnol. Bioeng. 75:497503.
56. Martin, V. J. J.,, D. J. Pitera,, S. T. Withers,, J. D. Newman, and, J. D. Keasling. 2003. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21:796802.
57. Martinez-Morales, F.,, A. C. Borges,, A. Martinez,, K. T. Shanmugam, and, L. O. Ingram. 1999. Chromosomal integration of heterologous DNA in Escherichia coli with precise removal of markers and replicons used during construction. J. Bacteriol. 181:71437148.
58. McNeil, D. November 14, 2004. Plant shortage leaves campaigns against malaria at risk. N. Y. Times vol. CLIV.
59. Mercke, P.,, M. Bengtsson,, H. J. Bouwmeester,, M. A. Posthumus, and, P. E. Brodelius. 2000. Molecular cloning, expression, and characterization of amorpha-4,11-di-ene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Arch. Biochem. Biophys. 381:173180.
60. Mukhopadhyay, A.,, A. M. Redding,, B. J. Rutherford, and, J. D. Keasling. 2008. Importance of systems biology in engineering microbes for biofuel production. Curr. Opin. Biotechnol. 19:228234.
61. Munro, A. W.,, D. G. Leys,, K. J. McLean,, K. R. Marshall,, T. W. B. Ost,, S. Daff,, C. S. Miles,, S. K. Chapman,, D. A. Lysek,, C. C. Moser,, C. C. Page, and, P. L. Dutton. 2002. P450 BM3: the very model of a modern flavocyto-chrome. Trends Biochem. Sci. 27:250257.
62. Newman, J. D.,, J. Marshall,, M. Chang,, F. Nowroozi,, E. Paradise,, D. Pitera,, K. L. Newman, and, J. D. Keasling. 2006. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol. Bioeng. 95:684691.
63. Newman, K. L.,, R. P. P. Almeida,, A. H. Purcell, and, S. E. Lindow. 2004. Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc. Natl. Acad. Sci. USA 101:17371742.
64. Newton, P., and, N. White. 1999. Malaria: new developments in treatment and prevention. Annu. Rev. Med. 50:179192.
65. Noble, M. A.,, C. S. Miles,, S. K. Chapman,, D. A. Lysek,, A. C. MacKay,, G. A. Reid,, R. P. Hanzlik, and, A. W. Munro. 1999. Roles of key active-site residues in flavocy-tochrome P450 BM3. Biochem. J. 339(Pt. 2):371379.
66. Peters, M. W.,, P. Meinhold,, A. Glieder, and, F. H. Arnold. 2003. Regio- and enantioselective alkane hydrox-ylation with engineered cytochromes P450 BM-3. J. Am. Chem. Soc. 125:1344213450.
67. Pfleger, B. F.,, D. J. Pitera,, J. D. Newman,, V. J. J. Martin, and, J. D. Keasling. 2007. Microbial sensors for small molecules: development of a mevalonate biosensor. Metab. Eng. 9:3038.
68. Pfleger, B. F.,, D. J. Pitera,, C. D. Smolke, and, J. D. Keasling. 2006. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24:10271032.
69. Pitera, D. J.,, C. J. Paddon,, J. D. Newman, and, J. D. Keasling. 2007. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab. Eng. 9:193207.
70. Ro, D.,, E. M. Paradise,, M. Ouellet,, K. J. Fisher,, K. L. Newman,, J. M. Ndungu,, K. A. Ho,, R. A. Eachus,, T. S. Ham,, J. Kirby,, M. C. Y. Chang,, S. T. Withers,, Y. Shiba,, R. Sarpong, and, J. D. Keasling. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940943.
71. Rohlin, L.,, M. K. Oh, and, J. C. Liao. 2001. Microbial pathway engineering for industrial processes: evolution, combinatorial biosynthesis and rational design. Curr. Opin. Microbiol. 4:330335.
72. Rokosz, L. L.,, D. A. Boulton,, E. A. Butkiewicz,, G. Sanyal,, M. A. Cueto,, P. A. Lachance, and, J. D. Hermes. 1994. Human cytoplasmic 3-hydroxy-3-methylglutaryl coenzyme A synthase: expression, purification, and characterization of recombinant wild-type and Cys129 mutant enzymes. Arch. Biochem. Biophys. 312:113.
73. Roosild, T. P.,, J. Greenwald,, M. Vega,, S. Castronovo,, R. Riek, and, S. Choe. 2005. NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science 307:13171321.
74. Roth, R. J., and, N. Acton. 1989. A simple conversion of artemisinic acid into artemisinin. J. Nat. Prod. 52:11831185.
75. Sandhu, P.,, Z. Guo,, T. Baba,, M. V. Martin,, R. H. Tukey, and, F. P. Guengerich. 1994. Expression of modified human cytochrome P450 1A2 in Escherichia coli: stabilization, purification, spectral characterization, and catalytic activities of the enzyme. Arch. Biochem. Bio-phys. 309:168177.
76. Santos, C. N. S., and, G. Stephanopoulos. 2008. Combinatorial engineering of microbes for optimizing cellular phenotype. Curr. Opin. Chem. Biol. 12:168176.
77. Schafmeister, C. E.,, L. J. Miercke, and, R. M. Stroud. 1993. Structure at 2.5 A of a designed peptide that maintains solubility of membrane proteins. Science 262:734738.
78. Schmid, G., and, W. Hofheinz. 1983. Total synthesis of qinghaosu. J. Am. Chem. Soc. 105:624625.
79. Schoch, G. A.,, R. Attias,, M. Belghazi,, P. M. Dansette, and, D. Werck-Reichhart. 2003. Engineering of a water-soluble plant cytochrome P450, CYP73A1, and NMR-based orientation of natural and alternate substrates in the active site. Plant Physiol. 133:11981208.
80. Shimazu, M.,, L. Vetcher,, J. L. Galazzo,, P. Licari, and, D. V. Santi. 2004. A sensitive and robust method for quantification of intracellular short-chain coenzyme A esters. Anal. Biochem. 328:5159.
81. Stephanopoulos, G., and, J. J. Vallino. 1991. Network rigidity and metabolic engineering in metabolite overproduction. Science 252:16751681.
82. Sueyoshi, T.,, L. J. Park,, R. Moore,, R. O. Juvonen, and, M. Negishi. 1995. Molecular engineering of microsomal P450 2a-4 to a stable, water-soluble enzyme. Arch. Bio-chem. Biophys. 322:265271.
83. Suthers, P. F.,, A. P. Burgard,, M. S. Dasika,, F. Nowroozi,, S. Van Dien,and, J. D. Keasling. and, C. D. Maranas. 2007. Metabolic flux elucidation for large-scale models using 13C labeled isotopes. Metab. Eng. 9:387405.
84. Teoh, K. H.,, D. R. Polichuk,, D. W. Reed,, G. Nowak, and, P. S. Covello. 2006. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cyto-chrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett. 580:14111416.
85. Tsuruta, H.,, C. J. Paddon,, D. Eng,, J. R. Lenihan,, T. Horning,, L. C. Anthony,, R. Regentin,, J. D. Keasling,, N. S. Renninger, and, J. D. Newman. 2009. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS ONE 4:e4489.
86. Turner, N. J. 2003. Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol. 21:474478.
87. Van Geldre, E.,, A. Vergauwe, and, E. Van den Eeckhout. 1997. State of the art of the production of the antimalarial compound artemisinin in plants. Plant Mol. Biol. 33:199209.
88. Warman, A. J.,, O. Roitel,, R. Neeli,, H. M. Girvan,, H. E. Seward,, S. A. Murray,, K. J. McLean,, M. G. Joyce,, H. Toogood,, R. A. Holt,, D. Leys,, N. S. Scrutton, and, A. W. Munro. 2005. Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme. Biochem. Soc. Trans. 33:747753.
89. Withers, S. T.,, S. S. Gottlieb,, B. Lieu,, J. D. Newman, and, J. D. Keasling. 2007. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity. Appl. Environ. Microbiol. 73:62776283.
90. Withers, S. T., and, J. D. Keasling. 2007. Biosynthesis and engineering of isoprenoid small molecules. Appl. Microbiol. Biotechnol. 73:980990.
91. Xing-Xiang, X.,, Z. Jie,, H. Da-Zhong, and, Z. Wei-Shan. 1986. Total synthesis of arteannuin and deoxyarteannuin. Tetrahedron 42:819828.
92. Yoon, S.,, H. Park,, J. Kim,, S. Lee,, M. Choi,, J. Kim,, D. Oh,, J. D. Keasling, and, S. Kim. 2007. Increased beta-carotene production in recombinant Escherichia coli harboring an engineered isoprenoid precursor pathway with mevalonate addition. Biotechnol. Prog. 23:599-605.
93. Yoshikuni, Y.,, T. E. Ferrin, and, J. D. Keasling. 2006. Designed divergent evolution of enzyme function. Nature 440:10781082.
94. Yuan, L. Z.,, P. E. Rouvière,, R. A. Larossa, and, W. Suh. 2006. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab. Eng. 8:7990.
95. Zhang, L.,, F. Jing,, F. Li,, M. Li,, Y. Wang,, G. Wang,, X. Sun, and, K. Tang, 2009. Development of transgenic Artemisia annua (Chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing. Biotechnol. Appl. Biochem. 52:199207.
96. Zhang, Y.,, K. H. Teoh,, D. W. Reed,, L. Maes,, A. Goos-sens,, D. J. H. Olson,, A. R. S. Ross, and, P. S. Covello. 2008. The molecular cloning of artemisinic aldehyde A11(13) reductase and its role in glandular trichome-de-pendent biosynthesis of artemisinin in Artemisia annua. J. Biol. Chem. 283:2150121508.

Tables

Generic image for table
TABLE 1

Plasmids used for metabolic engineering of for production of precursors to artemisinin

Citation: Petzold C, Keasling J. 2010. Metabolic Engineering of for the Production of a Precursor to Artemisinin, an Antimalarial Drug, p 364-379. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error