1887

Chapter 27 : Genetic Engineering of Acidic Lipopeptide Antibiotics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Genetic Engineering of Acidic Lipopeptide Antibiotics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap27-2.gif

Abstract:

The term combinatorial biosynthesis embraces a broad set of methodologies—including genetic engineering, the use of mutants blocked in specific biosynthetic steps, and the exploitation of natural variations in substrates and feeding unnatural substrates—to expand the numbers of compounds generated beyond what can be achieved by genetic engineering alone. For relatively small antibiotic gene clusters, it is possible to isolate complete biosynthetic gene clusters on individual cosmids. Another approach is to clone antibiotic gene clusters in bacterial artificial chromosome (BAC) vectors, which can accommodate DNA inserts of >100 kb. The methods discussed in this chapter include some that are specific to nonribosomal peptide synthetases (NRPSs) engineering, including (i) splicing at intermodule or interpeptide linker sites; (ii) recognizing and exploiting the correct type of C domain when coupling fatty acids to L-amino acids (C), D-amino acids to L-amino acids (C), or L-amino acids to L-amino acids (C); and (iii) maintaining the integrity of T-TE didomains when engineering terminal modules. The chapter points out that both and can be readily manipulated by the genetic engineering methods described. As such, they may be useful hosts for the expression and engineering of other secondary metabolic pathways, particularly other NRPS pathways. For example, the A54145 gene cluster was expressed successfully in an strain deleted for daptomycin biosynthetic genes.

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27

Key Concept Ranking

Pulsed-Field Gel Electrophoresis
0.4220847
0.4220847
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Structures of lipopeptide antibiotics and of NRPS subunits. (Top) A21978C factors naturally produced by A21978.6 and A21978.65 ( Table 1 ), and daptomycin, which is produced by feeding decanoic acid during fermentation. (Bottom) A54145 factors naturally produced by A54145.

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Functional organization of NRPS. The condensation domains designated as C (or C), C (or C), and C (or C) normally couple -amino acids, -amino acids, and long-chain fatty acids to -amino acids, respectively. The shaded modules show CATE structures followed by C (C) condensation domains. A, adenylation domain; E, epimerase domain; M, methyltransfer-ase domain; T, thiolation domain; TE, thioesterase domain. Figure modified from reference .

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Ectopic -complementation systems for and . (Top) The genes on BAC pCV1 are shown in black. strains deleted for different genes (dotted lines) and plasmids containing different sets of genes (pDA300, pLT02, pKN24, and pRB04), (pMF23), and (pMF30) are also shown (see Table 1 for plasmid details). (Bottom) The genes on BACpCB01 are shown in black, and deletion mutants and plasmids for -complementation are shown below.

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4a
FIGURE 4a

λ Red-mediated recombination in (A) BAC pCB01 containing the complete gene cluster is engineered to delete by λ Red-mediated insertion of an Am- cassette. The recombinant BAC can be transferred to by conjugation via and recombinants can be selected for Am. Other manipulations include (B) the insertion of a terminator cassette, (C) deletion and insertion of a promoter, and (D) insertion of a conjugation/integration cassette.

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4b
FIGURE 4b

λ Red-mediated recombination in (A) BAC pCB01 containing the complete gene cluster is engineered to delete by λ Red-mediated insertion of an Am- cassette. The recombinant BAC can be transferred to by conjugation via and recombinants can be selected for Am. Other manipulations include (B) the insertion of a terminator cassette, (C) deletion and insertion of a promoter, and (D) insertion of a conjugation/integration cassette.

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

λ Red-mediated recombination to generate a C-A-T tridomain exchange and gene fusion in and

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch27
1. Alexander, D. C.,, D. J. Devlin,, D. D. Hewitt,, A. C. Horan, and, T. J. Hosted. 2003. Development of the Micromonospora carbonacea var. africana ATCC 39149 bacteriophage pMLP1 integrase for site-specific integration in Micromonospora spp. Microbiology 149:24432453.
2. Arbeit, R. D.,, D. Maki,, F. P. Tally,, E. Campanaro, and, B. I. Eisenstein. 2004. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin. Infect. Dis. 38:16731681.
3. Baltz, R. H. 1997. Molecular genetic approaches to yield improvement in actinomycetes, p. 4962. In W. R. Strohl (ed.), Biotechnology of Industrial Antibiotics, 2nd ed. Marcel Dekker, Inc., New York, NY.
4. Baltz, R. H. 2006. Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat. Biotechnol. 24:15331540.
5. Baltz, R. H. 2006. Combinatorial biosynthesis of novel antibiotics and other secondary metabolites in actinomycetes. SIM News 56:148160.
6. Baltz, R. H. 2008. Biosynthesis and genetic engineering of lipopeptide antibiotics related to daptomycin. Curr. Top. Med. Chem. 8:618638.
7. Baltz, R. H. 2008. Renaissance in antibacterial discovery from actinomycetes. Curr. Opin. Pharmacol. 8:557563.
8. Baltz, R. H. 2009. Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr. Opin. Chem. Biol. 13:18.
9. Baltz, R. H.,, V. Miao, and, S. K. Wrigley. 2005. Natural products to drugs: daptomycin and related lipopeptide antibiotics. Nat. Prod. Rep. 22:717741.
10. Bibb, M. J.,, G. R. Janssen, and, J. M. Ward. 1985. Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus. Gene 38:215226.
11. Bibb, M. J.,, J. White,, J. M. Ward, and, G. R. Janssen. 1994. The mRNA for the 23S rRNA methylase encoded by the ermE gene of Saccharopolyspora erythraea is translated in the absence of a conventional ribosome-binding site. Mol. Microbiol. 14:533545.
12. Bierman, M.,, R. Logan,, K. O’Brien,, E. T. Seno,, R. N. Rao, and, B. E. Schoner. 1992. Plasmid cloning vectors for conjugal transfer from Escherichia coli to Streptomyces spp. Gene 116:4349.
13. Boeck, L. D.,, H. R. Papiska,, R. W. Wetzel,, J. S. Myn-derse,, D. S. Fukuda,, F. P. Mertz, and, D. M. Berry. 1990. A54145, a new lipopeptide antibiotic complex: discovery, taxonomy, fermentation and HPLC. J. Antibiot. 43:587593.
14. Boeck, L. D., and, R. W. Wetzel. 1990. A54145, a new lipopeptide antibiotic complex: factor control through precursor directed biosynthesis. J. Antibiot. 43:607615.
15. Coëffet-Le Gal, M.-F.,, L. Thurston,, P. Rich,, V. Miao, and, R. H. Baltz. 2006. Complementation of daptomycin dptA and dptD deletion mutations in-trans and production of hybrid lipopeptide antibiotics. Microbiology 152:29933001.
16. Counter, F.T.,, N. E. Allen,, D. S. Fukuda,, J. N. Hobbs,, J. Ott,, P. W. Ensminger,, J. S. Mynderse,, D. A. Preston, and, C. Y. Wu. 1990. A54145, a new lipopeptide antibiotic complex: microbiological evaluation. J. Antibiot. 43:616622.
17. Cox, K. L., and, R. H. Baltz. 1984. Restriction of bacteriophage plaque formation in Streptomyces spp. J. Bacteriol. 159:499504.
18. Datsenko, K. A., and, B. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97:66406645.
19. Debono, M.,, M Barnhart,, C. B. Carrell,, J. A. Hoffmann,, J. L. Occolowitz,, B. J. Abbott,, D. S. Fukuda,, R. L. Hamill,, K. Biemann, and, W. C. Herlihy. 1987. A21978C, a complex of new acidic peptide antibiotics: isolation, chemistry, and mass spectral structure elucidation. J. Antibiot. 40:761777.
20. Doekel, S.,, M.-F. Coëffet-Le Gal,, J.-Q. Gu,, M. Chu,, R. H. Baltz, and, P. Brian. 2008. Non-ribosomal peptide syn-thetase module fusions to produce derivatives of daptomycin in Streptomyces roseosporus. Microbiology 154:28722880.
21. Fischbach, M. A., and, C. T. Walsh. 2006. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106:34683496.
22. Ford, L. M.,, T. E. Eaton, and, O. W. Godfrey. 1990. Selection for Streptomyces ambofaciens mutants that produce large quantities of spiramycin and determination of optimal conditions for spiramycin production. Appl. Environ. Microbiol. 56:35113514.
23. Fowler, V. G.,, H. W. Boucher,, G. R. Corey,, E. Abrutyn,, A. W. Karchmer,, M. E. Rupp,, D. P. Levine,, H. F. Chambers,, F. P. Tally,, G. A. Vigliani,, C. H. Cabell,, A. S. Link,, I. DeMeyer,, G. S. Filler,, M. Zervos,, P. Cook,, J. Parsonnet,, J. M. Bernstein,, C. S. Price,, G. N. Forrest,, G. Fätkenheure,, M. Gareca,, S. J. Rehm,, H. R. Brodt,, A. Tice,, S. E. Cosgrove, and S. aureus Endocarditis and Bacteremia Study Group. 2006. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med. 355:653655.
24. Frijters, A. C. J.,, Z. Zhang,, M. van Damme,, G.-L. Wang,, P. C. Ronald, and, R. W. Michelmore. 1997. Construction of a bacterial artificial chromosome library containing large EcoRI and HindIII genome fragments of lettuce. Theor. Appl. Genet. 94:390399.
25. Frueh, D. P.,, H. Arthanari,, A. Koglin,, D. A. Vosburg,, A. E. Bennett,, C. T. Walsh, and, G. Wagner. 2008. Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454:903906.
26. Geistlich, M.,, R. Losick,, J. R. Turner, and, R. N. Rao. 1992. Characterization of a novel regulatory gene governing the expression of a polyketide synthase gene in Streptomyces ambofaciens. Mol. Microbiol. 6:20192029.
27. Gregory, M. A.,, R. Till, and, M. C. M. Smith. 2003. Integration site for Streptomyces phage φBT1 and development of site-specific integrating vectors. J. Bacteriol. 185:53205323.
28. Gu, J.-Q.,, K. T. Nguyen,, C. Gandhi,, V. Rajgarhia,, R. H. Baltz, and, M. Chu. 2007. Structural characterization of daptomycin analogues A21978C1-3(D-Asn11) produced by a recombinant Streptomyces roseosporus strain. J. Nat. Prod. 70:233240.
29. Gust, B.,, G. L. Challis,, K. Fowler,, T. Kieser, and, K. F. Chater. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100:15411546.
30. Hahn, D. R.,, P. J. Solenberg, and, R. H. Baltz. 1991. Tn5099, a xylE promoter probe transposon for Streptomyces spp. J. Bacteriol. 173:55735577.
31. Hojati, Z.,, C. Milne,, B. Harvey,, L. Gordon,, M. Borg,, F. Flett,, B. Wilkinson,, P. J. Sidebottom,, B. A. M. Rudd,, M. A. Hayes,, C. P. Smith, and, J. Michlefield. 2002. Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. Chem. Biol. 9:11751187.
32. Hosted, T. J., and, R. H. Baltz. 1997. Use of rpsL for dominance selection and gene replacement in Streptomyces roseosporus. J. Bacteriol. 179:180186.
33. Huber, F. M.,, R. L. Pieper, and, A. J. Tietz. 1988. The formation of daptomycin by supplying decanoic acid to Streptomyces roseosporus cultures producing the antibiotic complex A21978C. J. Biotechnol. 7:283292.
34. Kieser, T.,, M. J. Bibb,, M. J. Buttner,, K. F. Chater, and, D. A. Hopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, United Kingdom.
35. Kuhstoss, S., and, R. N. Rao. 1991. Analysis of the integration function of the streptomycete bacteriophage ΦC31. J. Mol. Biol. 222:897908.
36. Landman, D.,, C. Georgescu,, D. A. Martin, and, J. Quale. 2008. Polymyxins revisited. Clin. Microbiol. Rev. 21:449465.
37. Lee, E.,, D. Yu,, J. M. de Velasco,, L. Tessarollo,, D. A. Swing,, D. L. Court,, N. A. Jenkins, and, N. G. Copeland. 2001. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:5665.
38. Mahlert, C,, F. Kopp,, J. Thirlway,, J. Micklefield, and, M. A. Marahiel. 2007. Stereospecific enzymatic transformation of ̒-ketoglutarate to (2S,3R)-3-methyl glutamate during acidic lipopeptide biosynthesis. J. Am. Chem. Soc. 129:1201112018.
39. Matsushima, P., and, R. H. Baltz. 1985. Efficient plasmid transformation of Streptomyces ambofaciens and Streptomyces fradiae protoplasts. J. Bacteriol. 163:180185.
40. Matsushima, P., and, R. H. Baltz. 1986. Protoplast fusion, p. 170-183. In A. L. Demain and, N. A. Solomon (ed.), Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology, Washington, DC.
41. McHenney, M. A., and, R. H. Baltz. 1988. Transduction of plasmid DNA in Streptomyces spp. and related genera by bacteriophage FP43. J. Bacteriol. 170:22762282.
42. McHenney, M. A., and, R. H. Baltz. 1996. Gene transfer and transposition mutagenesis in Streptomyces roseosporus: mapping of insertions that influence daptomycin or pigment production. Microbiology 142:23632373.
43. McHenney, M. A.,, T. J. Hosted,, B. S. Dehoff,, P. R. Rosteck, Jr., and, R. H. Baltz. 1998. Molecular cloning and physical mapping of the daptomycin gene cluster from Streptomyces roseosporus. J. Bacteriol. 180:143151.
44. Miao, V.,, M.-F. Coëffet-LeGal,, P. Brian,, R. Brost,, J. Penn,, A. Whiting,, S. Martin,, R. Ford,, I. Parr,, M. Bouchard,, C. J. Silva,, S. K. Wrigley, and, R. H. Baltz. 2005. Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151:15071523.
45. Miao, V.,, R. Brost,, J. Chapple,, M.-F. Coëffet-LeGal, and, R. H. Baltz. 2006. The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae. J. Ind. Microbiol. Biotechnol. 33:129140.
46. Miao, V.,, M.-F. Coëffet-LeGal,, K. Nguyen,, P. Brian,, J. Penn,, A. Whiting,, J. Steele,, D. Kau,, S. Martin,, R. Ford,, T. Gibson,, M. Bouchard,, S. K. Wrigley, and, R. H. Baltz. 2006. Genetic engineering in Streptomyces roseosporus to produce hybrid lipopeptide antibiotics. Chem. Biol. 13:269276.
47. Motamedi, H.,, A. Shafiee, and, S. J. Cai. 1995. Integrative vectors for heterologous gene expression in Streptomyces spp. Gene 160:2531.
48. Müller, C,, S. Nolden,, P. Gebhardt,, E. Heinzelmann,, C. Lange,, O. Puk,, K. Wetzel,, W. Wohlleben, and, D. Schwartz. 2007. Sequencing and analysis of the biosynthetic gene cluster of the lipopeptide antibiotic friulimicin in Actinoplanes friuliensis. Antimicrob. Agents Chemother. 51:10281037.
49. Nguyen, K. T.,, D. Kau,, J.-Q. Gu,, P. Brian,, S. W. Wrigley,, R. H. Baltz, and, V. Miao. 2006. Identification of a glutamic acid 3-methyltransferase gene by functional analysis of an accessory gene locus important for daptomycin biosynthesis in Streptomyces roseosporus. Mol. Microbiol. 61:12941307.
50. Nguyen, K.,, D. Ritz,, J.-Q. Gu,, D. Alexander,, M. Chu,, V. Miao,, P. Brian, and, R. H. Baltz. 2006. Combinatorial biosynthesis of lipopeptide antibiotics related to daptomycin. Proc. Natl. Acad. Sci. USA 103:1746217467.
51. Ochi, K. 2006. From microbial differentiation to ribosome engineering. Biosci. Biotechnol. Biochem. 71:13731386.
52. Penn, J.,, A. Whiting,, S. K. Wrigley,, M. Latif,, T. Gibson,, C. J. Silva,, X. Li,, V. Miao,, P. Brian, and, R. H. Baltz. 2006. Heterologous production of daptomycin in Streptomyces lividans. J. Indust. Microbiol. Biotechnol. 33:121128.
53. Pertel, P. E.,, P. Bernardo,, C. Fogerty,, P. Matthews,, R. Northland,, M. Benvenuto,, G. M. Thorne,, S. A. Luperchio,, R. D. Arbeit, and, J. Alder. 2008. Effects of prior effective therapy on the efficacy of daptomycin and ceftriaxone for the treatment of community-acquired pneumonia. Clin. Infect. Dis. 46:11421151.
54. Richardson, M. A.,, S. Kuhstoss,, M. L. B. Huber,, L. Ford,, O. Godfrey,, J. R. Turner, and, R. N. Rao. 1990. Cloning of spiramycin biosynthetic genes and their use in constructing Streptomyces ambofaciens mutants defective in spiramycin biosynthesis. J. Bacteriol. 172:37903798.
55. Sambrook, J.,, E. F. Fritsch, and, T. Maniatis. 1989. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
56. Sieber, S. A., and, M. A. Marahiel. 2005. Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem. Rev. 105:715738.
57. Silverman, J. A.,, L. I. Morton,, A. D. Vanpraagh,, T. Li, and, J. Alder. 2005. Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact. J. Infect. Dis. 191:21492152.
58. Solenberg, P. J.,, P. Matsushima,, D. R. Stack,, S. C. Wilkie,, R. C. Thompson, and, R. H. Baltz. 1997. Production of hybrid glycopeptide antibiotics in vitro and in Streptomyces toyocaensis. Chem. Biol. 4:195202.
59. Straus, S. K., and, R. E. W. Hancock. 2006. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim. Biophys. Acta 1758:12151223.
60. Streiker, M.,, F. Kopp,, C. Mahlert,, L. O. Essen, and, M. A. Marahiel. 2007. Mechanistic and structural basis of stereospecific C(β-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide. ACS Chem. Biol. 2:152154.
61. Streiker, M., and, M. A. Marahiel. 2009. The structural diversity of acidic lipopeptide antibiotics. ChemBiolChem 10:607616.
62. Tanovic, A.,, S. S. Samel,, L.-O. Essen, and, M. A. Marahiel. 2008. Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321:659663.
63. Wittman, M.,, U. Linne,, V. Pohlmann, and, M. A. Marahiel. 2008. Role of DptE and DptF in the lipidation reaction of daptomycin. FEBS J. 275:53435354.
64. Zaas, A. K. 2008. Echinocandins: a wealth of choice—how clinically different are they? Curr. Opin. Infect. Dis. 21:426432.
65. Zhou, Z.,, J. R. Lai, and, C. T. Walsh. 2006. Interdomain communication between the thiolation and thioesterase domains of EntF explored by combinatorial mutagenesis and selection. Chem. Biol. 13:869879.

Tables

Generic image for table
TABLE 1

Key strains and plasmids used for genetic engineering of lipopeptide biosynthesis

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table
TABLE 2

-complementation systems in and to express daptomycin and A54145 biosynthetic genes from different chromosomal sites

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table
TABLE 3

Lipopeptide antibiotics generated by combinatorial biosynthesis

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27
Generic image for table

Citation: Baltz R, Nguyen K, Alexander D. 2010. Genetic Engineering of Acidic Lipopeptide Antibiotics, p 391-410. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch27

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error