1887

Chapter 33 : Industrial Applications of Enzymes as Catalysts

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Industrial Applications of Enzymes as Catalysts, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap33-2.gif

Abstract:

The industrial use of enzymes exploded in the late 1960s with the development of protease additives to detergents in the detergent industry and the use of a fungal glucoamylase (hydrolase) in the breakdown of starch into glucose in the food industry. This chapter describes some of the industrial-scale applications of biocatalysis. Biocatalysts have been increasingly used in the chemical industry. Regioselective catalysis using acrylamide, niacinamide and 5-cyanovaleramide have been discussed in the chapter. The hydantoin-converting pathway was optimized by adjusting expression levels of the respective enzymes and by inverting the enantioselectivity of the d-selective hydantoinase by directed evolution. Antiviral drugs includes abacavir, BMS-186318 and lobucavir have been discussed in the chapter. Ibuprofen, or 2-(4-isobutylphenyl)propionic acid, is a nonsteroidal anti-inflammatory drug that inhibits the binding of arachidonic acid to prostaglandin H2 synthase-1 and prevents the synthesis of prostaglandins acting on the inflammatory response. The enzymes can be evolved to be highly active, to be thermostable, and to have altered substrate specificity. The breadth and depth of knowledge in the biocatalysis area is undoubtedly still limited compared with traditional chemical catalysis. However, in years to come, the expanding biocatalytic and biomolecular toolbox and better understanding of enzymes and cell stability in industrial environments, such as large reactors and organic solvents, will soon make it easier to develop many more efficient industrial bioprocesses.

Citation: Nair N, Lin Tang W, Eriksen D, Zhao H. 2010. Industrial Applications of Enzymes as Catalysts, p 480-494. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch33

Key Concept Ranking

Urinary Tract Infections
0.41222772
Hepatitis B virus
0.40446433
0.41222772
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schemes for use of biocatalysis to synthesize industrially important chemicals including acrylamide , niacinamide , 5-cyanovaleramide , 6-hydroxynicotinic acid , 1,5-dimethyl-2-piperidone , ()-mandelic acid , and -pantolactone .

Citation: Nair N, Lin Tang W, Eriksen D, Zhao H. 2010. Industrial Applications of Enzymes as Catalysts, p 480-494. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schemes for use of biocatalysis to synthesize industrially important chemicals including (2,5)-hexanediol , (2,5)-hexanediol , aspartame , ()-terminal epoxide , ()--phenoxybenzaldehyde cyanohydrin , and -malic acid .

Citation: Nair N, Lin Tang W, Eriksen D, Zhao H. 2010. Industrial Applications of Enzymes as Catalysts, p 480-494. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schemes for use of biocatalysis to synthesize chiral intermediates for the production of pharmaceuticals, including β-lactam antibiotics (a), abacavir (b), and omapatrilat (c).

Citation: Nair N, Lin Tang W, Eriksen D, Zhao H. 2010. Industrial Applications of Enzymes as Catalysts, p 480-494. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Flow diagram of the main processes in the pulp and paper industry, with indication of enzymes applied at an industrial scale. (a) Cellulases, (b) xylanases, (c) lipases, and (d) cellulases.

Citation: Nair N, Lin Tang W, Eriksen D, Zhao H. 2010. Industrial Applications of Enzymes as Catalysts, p 480-494. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch33
1. Aehle, W.,, H. Waldmann,, C. Schultz,, H. Gröger,, C. Dinkel, and, K. Drauz. 2008. Enzymes. 5. Enzymes in organic synthesis. Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed. John Wiley & Sons, Inc., Hoboken, NJ.
2. Anastas, P. T., and, J. C. Warner. 2000. Green Chemistry: Theory and Practice. Oxford University Press, New York, NY.
3. Araujo, R.,, M. Casal, and, A. Cavaco-Paulo. 2008. Application of enzymes for textile fibres processing. Biocatal. Biotransform. 26:332349.
4. Bajpai, P. 1999. Application of enzymes in the pulp and paper industry. Biotechnol. Prog. 15:147157.
5. Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18:355383.
6. Bommarius, A. S., and, B. R. Riebel. 2004. Application of enzymes as catalysts: basic chemicals, fine chemicals, food, crop protection, bulk pharmaceuticals, p. 159208. In A. S. Bommarius and, B. R. Riebel (ed.), Biocatalysis: Fundamentals and Applications, vol. 1. Wiley-VCH, Wein-heim, Germany.
7. Brady, D.,, A. Beeton,, J. Zeevaart,, C. Kgaje,, F. Rantwijk, and, R. A. Sheldon. 2004. Characterisation of nitrilase and nitrile hydratase biocatalytic systems. Appl. Microbiol. Biotechnol. 64:7685.
8. Bruggink, A.,, E. C. Roos, and, E. de Vroom. 1998. Penicillin acylase in the industrial production of β-lactam antibiotics. Org. Process Res. Dev. 2:128133.
9. Butt, M. S.,, M. Tahir-Nadeem,, Z. Ahmad, and, M. T. Sultan. 2008. Xylanases and their applications in baking industry. Food Technol. Biotechnol. 46:2231.
10. Camps, P., and, D. Munoz-Torrero. 2004. Synthesis and applications of (R)- and (S)-pantolactone as chiral auxiliaries. Curr. Org. Chem. 8:13391380.
11. Carey, J. S.,, D. Laffan,, C. Thomson, and, M. T. Williams. 2006. Analysis of the reactions used for the preparation of drug candidate molecules. Org. Biomol. Chem. 4:23372347.
12. Chang, C. S., and, S. W. Tsai. 1999. Lipase-catalyzed dynamic resolution of naproxen thioester by thiotransesteri-fication in isooctane. Biochem. Eng. J. 3:239242.
13. Cherry, J. R., and, A. L. Fidantsef. 2003. Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14:438443.
14. Chibata, I. 1978. Immobilized Enzymes. John Wiley & Sons Inc., Hoboken, NJ.
15. Cooling, F. B.,, S. K. Fager,, R. D. Fallon,, P. W. Folsom,, F. G. Gallagher,, J. E. Gavagan,, E. C. Hann,, F. E. Herkes,, R. L. Phillips,, A. Sigmund,, L. W. Wagner,, W. Wu, and, R. DiCosimo. 2001. Chemoenzymatic production of 1,5-dimethyl-2-piperidone. J. Mol. Catal. B Enzym. 11:295306.
16. Courtin, C. M., and, J. A. Delcour. 2002. Arabinoxylans and endoxylanases in wheat flour bread-making. J. Cereal Sci. 35:225243.
17. Declerck, N.,, P. Joyet,, J. Y. Trosset,, J. Garnier, and, C. Gaillardin. 1995. Hyperthermostable mutants of Bacillus licheniformis alpha-amylase: multiple amino acid replacements and molecular modelling. Protein Eng. 8:10291037.
18. Dogan, I. 2002. Dynamic rheological properties of dough as affected by amylases from various sources. Nahrung/Food 46:399403.
19. Effenberger, F.,, S. Forster, and, H. Wajant. 2000. Hy-droxynitrile lyases in stereoselective catalysis. Curr. Opin. Biotechnol. 11:532539.
20. Effenberger, F.,, B. W. Graef, and, S. Osswald. 1997. Preparation of (S)-naproxen by enantioselective hydrolysis of racemic naproxen amide with resting cells of Rhodococcus erythropolis MP50 in organic solvents. Tetrahedron Asymmetry 8:27492755.
21. Ellis, L. B. M.,, C. D. Hershberger,, E. M. Bryan, and, L. P. Wackett. 2001. The University of Minnesota Bio-catalysis/Biodegradation Database: emphasizing enzymes, vol. 29,p. 340343.
22. Faber, K., and, R. Patel. 2000. Chemical biotechnology: a happy marriage between chemistry and biotechnology: asymmetric synthesis via green chemistry. Curr. Opin. Biotechnol. 11:517519.
23. Fox, R. J.,, S. C. Davis,, E. C. Mundorff,, L. M. Newman,, V. Gavrilovic,, S. K. Ma,, L. M. Chung,, C. Ching,, S. Tam,, S. Muley,, J. Grate,, J. Gruber,, J. C. Whitman,, R. A. Sheldon, and, G. W. Huisman. 2007. Improving catalytic function by ProSAR-driven enzyme evolution. Nat. Biotechnol. 25:338344.
24. Fu, G.,, A. Chan, and, D. Minns. 2005. Preliminary assessment of the environmental benefits of enzyme bleach boosting for pulp and paper making. Int. J. Life Cycle Assess. 10:136142.
25. Furuhashi, K. 1988. Microbial production of optically-active epoxide. Nippon Nogeikagaku Kaishi-J. Jpn. Soc. Biosci. Biotechnol. Agrochem. 62:772774.
26. Furuhashi, K. 1987. Production of optically-active epox-ides by microbial oxidation of olefins. J. Synthet. Organ. Chem. Jpn. 45:162168.
27. Furuhashi, K.,, A. Taoka,, S. Uchida,, I. Karube, and, S. Suzuki. 1981. Production of 1,2-epoxyalkanes from 1-alkenes by Nocardia corallina B-276. Eur. J. Appl. Microbiol. Biotechnol. 12:3945.
28. Gallagher, S. C.,, R. Cammack, and, H. Dalton. 1997. Alkene monooxygenase from Nocardia corallina B-276 is a member of the class of dinuclear iron proteins capable of stereospecific epoxygenation reactions. Eur. J. Biochem. 247:635641.
29. Gerrard, J. A.,, D. Every,, K. H. Sutton, and, M. J. Gilpin. 1997. The role of maltodextrins in the staling of bread. J. Cereal Sci. 26:201209.
30. Griengl, H.,, H. Schwab, and, M. Fechter. 2000. The synthesis of chiral cyanohydrins by oxynitrilases. Trends Biotechnol. 18:252256.
31. Hagen, J. 2006. Aspartame through enzymatic peptide synthesis, p. 9495. In Industrial Catalysis: a Practical Approach. Wiley-VCH, Weinheim, Germany.
32. Hann, E. C.,, A. Eisenberg,, S. K. Fager,, N. E. Perkins,, F. G. Gallagher,, S. M. Cooper,, J. E. Gavagan,, B. Stieglitz,, S. M. Hennessey, and, R. DiCosimo. 1999. 5-Cyanovaleramide production using immobilized Pseudo-monas chlororaphis B23. Bioorg. Med. Chem. 7:22392245.
33. Hann, E. C.,, A. E. Sigmund,, S. M. Hennessey,, J. E. Gavagan,, D. R. Short,, A. Ben-Bassat,, S. Chauhan,, R. D. Fallon,, M. S. Payne, and, R. DiCosimo. 2002. Optimization of an immobilized-cell biocatalyst for production of 4-cyanopentanoic acid. Org. Process Res. Dev. 6:492496.
34. Hanson, R. L.,, M. D. Schwinden,, A. Banerjee,, D. B. Brzozowski,, B. C. Chen,, B. P. Patel,, C. G. McNamee,, G. A. Kodersha,, D. R. Kronenthal,, R. N. Patel, and, L. J. Szarka. 1999. Enzymatic synthesis of l-6-hydroxynorleucine. Bioorg. Med. Chem. 7:22472252.
35. Hanson, R. L.,, Z. Shi,, D. B. Brzozowski,, A. Banerjee,, T. P. Kissick,, J. Singh,, A. J. Pullockaran,, J. T. North,, J. Fan,, J. Howell,, S. C. Durand,, M. A. Montana,, D. R. Kronenthal,, R. H. Mueller, and, R. N. Patel. 2000. Regioselective enzymatic aminoacylation of lobucavir to give an intermediate for lobucavir prodrug. Bioorg. Med. Chem. 8:26812687.
36. Herrero, A. M.,, M. I. Cambero,, J. A. Ordonez,, L. De la Hoz, and, P. Carmona. 2008. Raman spectroscopy study of the structural effect of microbial transglutaminase on meat systems and its relationship with textural characteristics. Food Chem. 109:2532.
37. Heveling, J.,, E. Armbruster,, L. Utiger,, M. Rohner,, H.-R. Dettwiler, and, R. J. Chuck. February, 1998. Process for preparing nicotinamide. U.S. patent 5,719,045.
38. Hilterhaus, L., and, A. Liese. 2007. Building blocks, p. 133173. In R. Ulber and, D. Sell (ed.), White Biotechnology. Springer, Berlin, Germany.
39. Houde, A.,, A. Kademi, and, D. Leblanc. 2004. Lipases and their industrial applications. Appl. Biochem. Biotechnol. 118:155170.
40. Hurh, B.,, M. Ohshima,, T. Yamane, and, T. Nagasawa. 1994. Microbial production of 6-hydroxynicotinic acid, an important building block for the synthesis of modern insecticides. J. Ferment. Bioeng. 77:382385.
41. Ibrahim, N. A.,, M. El-Hossamy,, M. S. Morsy, and, B. M. Eid. 2004. Optimization and modification of enzymatic desizing of starch-size. Polymer-Plastics Technol. Eng. 43:519538.
42. Ichikawa, Y.,, R. Wang, and, C. H. Wong. 1994. Regeneration of sugar nucleotide for enzymatic oligosaccharide synthesis. Methods Enzymol. 247:107127.
43. Jiang, Z. Q.,, S. Q. Yang,, S. S. Tan,, L. T. Li, and, X. T. Li. 2005. Characterization of a xylanase from the newly isolated thermophilic Thermomyces lanuginosus CAU44 and its application in bread making. Lett. Appl. Microbiol. 41:6976.
44. Johnson, D. V.,, A. A. Zabelinskaja-Mackova, and, H. Griengl. 2000. Oxynitrilases for asymmetric C-C bond formation. Curr. Opin. Chem. Biol. 4:103109.
45. Joyet, P.,, N. Declerck, and, C. Gaillardin. 1992. Hyper-thermostable variants of a highly thermostable alpha-amy-lase. Bio-Technology 10:15791583.
46. Kademi, A.,, D. Leblanc, and, A. Houde. 2004. Microbial Enzymes: Production and Applications. The Haworth Press, Binghamton, NY.
47. Kashyap, D. R.,, P. K. Vohra,, S. Chopra, and, R. Tewari. 2001. Applications of pectinases in the commercial sector: a review. Bioresource Technol. 77:215227.
48. Khandeparkar, R., and, N. B. Bhosle. 2007. Application of thermoalkalophilic xylanase from Arthrobacter sp MTCC 5214 in biobleaching of kraft pulp. Bioresource Technol. 98:897903.
49. Kirk, O.,, T. V. Borchert, and, C. C. Fuglsang. 2002. Industrial enzyme applications. Curr. Opin. Biotechnol. 13:345351.
50. Kobayashi, M.,, T. Nagasawa, and, H. Yamada. 1992. Enzymatic synthesis of acrylamide—a success story not yet over. Trends Biotechnol. 10:402408.
51. Koizumi, S.,, T. Endo,, K. Tabata, and, A. Ozaki. 1998. Large-scale production of UDP-galactose and globotriose by coupling metabolically engineered bacteria. Nature Biotechnol. 16:827850.
52. Koul, S.,, R. Parshad,, S. C. Taneja, and, G. N. Qazi. 2003. Enzymatic resolution of naproxen. Tetrahedron Asymmetry 14:24592465.
53. Kulkarni, N.,, A. Shendye, and, M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23:411456.
54. Lee, C. K.,, I. Darah, and, C. O. Ibrahim. 2007. Enzymatic deinking of laser printed office waste papers: some governing parameters on deinking efficiency. Bioresource Technol. 98:16841689.
55. Machius, M.,, N. Declerck,, R. Huber, and, G. Wiegand. 2003. Kinetic stabilization of Bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface. J. Biol. Chem. 278:1154611553.
56. Mahmoudian, M. 2000. Biocatalytic production of chi-ral pharmaceutical intermediates. Biocatal. Biotransform. 18:105118.
57. Mahmoudian, M.,, A. Lowdon,, M. Jones,, M. Dawson, and, C. Wallis. 1999. A practical enzymatic procedure for the resolution of N-substituted 2-azabicyclo[2.2.1]hept-5-en-3-one. Tetrahedron Asymmetry 10:12011206.
58. Martin, M. L., and, R. C. Hoseney. 1991. A mechanism of bread firming. 2. Role of starch hydrolyzing enzymes. Cereal Chem. 68:503507.
59. May, O.,, P. T. Nguyen, and, F. H. Arnold. 2000. Inverting enantioselectivity by directed evolution of hydantoinase for improved production of l-methionine. Nat. Biotechnol. 18:317320.
60. May, O.,, S. Verseck,, A. Bommarius, and, K. Drauz. 2002. Development of dynamic kinetic resolution processes for biocatalytic production of natural and nonnatural l-amino acids. Org. Process Res. Dev. 6:452457.
61. Miettinen-Oinonen, A.,, J. Londesborough,, V. Joutsjoki,, R. Lantto,, J. Vehmaanpera, and Primalco Ltd. Biotec. 2004. Three cellulases from Melanocarpus albomyces for textile treatment at neutral pH. Enzyme Microb. Technol. 34:332341.
62. Miller, B. S. J.,, J. A.; Palmer,, D. L. 1953. A comparison of cereal, fungal, and bacterial R-amylases as supplements for breadmaking. Food Technol. Biotechnol. 7:3842.
63. Motoki, M., and, N. Nio. 1983. Crosslinking between different food proteins by transglutaminase. J. Food Sci. 48:561566.
64. Nagasawa, T., and, H. Yamada. 1995. Interrelations of chemistry and biotechnology. 6. Microbial-production of commodity chemicals. Pure Appl. Chem. 67:12411256.
65. Nagasawa, T., and, H. Yamada. 1989. Microbial transformations of nitriles. Trends Biotechnol. 7:153158.
66. Nanduri, V. B.,, A. Banerjee,, J. M. Howell,, D. B. Brzozowski,, R. F. Eiring, and, R. N. Patel. 2000. Purification of a stereospecific 2-ketoreductase from Gluconobacter oxydans. J. Ind. Microbiol. Biotechnol. 25:171175.
67. Palacios, H. R.,, P. B. Schwarz, and, B. L. D’Appolonia. 2004. Effect of alpha-amylases from different sources on the retrogradation and recrystallization of concentrated wheat starch gels: relationship to bread staling. J. Agric. Food Chem. 52:59785986.
68. Park, K. H.,, T. J. Kim,, T. K. Cheong,, J. W. Kim,, B. H. Oh, and, B. Svensson. 2000. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. Biochim. Biophys. Acta 1478:165185.
69. Patel, R.,, A. Banerjee,, V. Nanduri,, A. Goswami, and, F. Comezoglu. 2000. Enzymatic resolution of racemic secondary alcohols by lipase B from Candida antarctica. J. Am. Oil ’Chem. Soc. 77:10151019.
70. Patel, R.,, R. Hanson,, A. Goswami,, V. Nanduri,, A. Banerjee,, M. J. Donovan,, S. Goldberg,, R. Johnston,, D. Brzozowski,, T. Tully,, J. Howell,, D. Cazzulino, and, R. Ko. 2003. Enzymatic synthesis of chiral intermediates for pharmaceuticals. J. Ind. Microbiol. Biotechnol. 30:252.
71. Patel, R. N. 1998. Tour de paclitaxel: biocatalysis for semisynthesis. Annu. Rev. Microbiol. 52:361395.
72. Patel, R. N.,, A. Banerjee,, C. G. McNamee,, D. B. Brzozowski, and, L. J. Szarka. 1997. Preparation of chiral synthon for HIV protease inhibitor: stereoselective microbial reduction of N-protected [alpha]-aminochloroketone. Tetrahedron Asymmetry 8:25472552.
73. Patel, R. N.,, R. S. Robison,, L. J. Szarka,, J. Kloss,, J. K. Thottathil, and, R. H. Mueller. 1991. Stereospecific microbial reduction of 4,5-dihydro-4-(4-methoxyphenyl)-6-(trifluoromethyl-1H-1)-benzazepin-2-one. Enzyme Mi-crob. Technol. 13:906912.
74. Pere, J.,, M. Siika-Aho, and, L. Viikari. 2000. Biomechan-ical pulping with enzymes: response of coarse mechanical pulp to enzymatic modification and secondary refining. Tappi J. 83:18.
75. Pritchard, P. E. 1992. Studies on the bread-improving mechanism of fungal alpha-amylase. J. Biol. Educ. 26:1218.
76. Quarroz, D. December, 1985. Process for the production of 2-halopyridine derivatives. E.P. patent 0,084,118 B1.
77. Rasor, J. P., and, E. Voss. 2001. Enzyme-catalyzed processes in pharmaceutical industry. Appl. Catal. A Gen. 221:145158.
78. Richardson, T. H.,, X. Q. Tan,, G. Frey,, W. Callen,, M. Cabell,, D. Lam,, J. Macomber,, J. M. Short,, D. E. Robertson, and, C. Miller. 2002. A novel, high performance enzyme for starch liquefaction—discovery and optimization of a low pH, thermostable alpha-amylase. J. Biol. Chem. 277:2650126507.
79. Rouau, X. 1993. Investigations into the effects of an enzyme preparation for baking on wheat-flour dough pentosans. J. Cereal Sci. 18:145157.
80. Rubingh, D. N. 1997. Protein engineering from a bioin-dustrial point of view. Curr. Opin. Biotechnol. 8:417422.
81. Sakamoto, K.,, H. Yamada, and, S. Shimizu. January, 1994. Process for the preparation of D-pantolactone. U.S. patent 5,275,949.
82. Sarioglu, K.,, N. Demir,, J. Acar, and, M. Mutlu. 2001. The use of commercial pectinase in the fruit juice industry. 2: Determination of the kinetic behaviour of immobilized commercial pectinase. J. Food Eng. 47:271274.
83. Sauerberg, P. O., and, H. Preben. May, 1995. Heterocy-clic compounds and their preparation and use. U.S. patent 5,418,240.
84. Schmid, A.,, J. Dordick,, B. Hauer,, A. Kiener,, M. Wubbolts, and, B. Witholt. 2001. Industrial biocatalysis today and tomorrow. Nature 409:258268.
85. Schmidt, M., and, H. Griengl. 1999. Oxynitrilases: from cyanogenesis to asymmetric synthesis. Biocatal. Discovery Appl. 200:193226.
86. Shaw, N. M.,, K. T. Robins, and, A. Kiener. 2003. Lonza: 20 years of biotransformations. Adv. Synthesis Catal. 345:425435.
87. Shimizu, S., and, M. Kataoka. 1996. Optical resolution of pantolactone by a novel fungal enzyme, lactonohydrolase. Ann. N. Y. Acad. Sci. 799:650658.
88. Skals, P. B.,, A. Krabek,, P. H. Nielsen, and, H. Wenzel. 2008. Environmental assessment of enzyme assisted processing in pulp and paper industry. Int. J. Life Cycle Assess. 13:124132.
89. Straathof, A. J. J.,, S. Panke, and, A. Schmid. 2002. The production of fine chemicals by biotransformations. Curr. Opin. Biotechnol. 13:548556.
90. Taylor, M. B. 1999. Summary of mandelic acid for the improvement of skin conditions. Cosmet. Dermatol. 21:2628.
91. Thayer, A. M. 2006. Competitors want to get a piece of Lipitor. Chem. Eng. News 84:2627.
92. Thayer, A. M. 2006. Enzymes at work. Chem. Eng. News 84:1525.
93. Thoden, J. B.,, E. A. T. Ringia,, J. B. Garrett,, J. A. Gerlt,, H. M. Holden, and, I. Rayment. 2004. Evolution of enzymatic activity in the enolase superfamily: structural studies of the promiscuous o-succinylbenzoate synthase from Amycolatopsis. Biochemistry 43:57165727.
94. Thomas, S. M.,, R. DiCosimo, and, A. Nagarajan. 2002. Biocatalysis: applications and potentials for the chemical industry. Trends Biotechnol. 20:238242.
95. Tzanov, T.,, M. Calafell,, G. M. Guebitz, and, A. Cavaco-Paulo. 2001. Bio-preparation of cotton fabrics. Enzyme Microb. Technol. 29:357362.
96. Vanderwerf, M.,, W. J. J. Vandentweel, and, S. Hartmans. 1992. Screening for microorganisms producing D-malate from maleate. Appl. Environ. Microbiol. 58:28542860.
97. van Pelt, S.,, S. Quignard,, D. Kubac,, Y. S. B. Dimitry,, F. van Rantwijk, and, R. A. Sheldon. 2008. Nitrile hydratase CLEAs: the immobilization and stabilization of an industrially important enzyme. Green Chem. 10:395400.
98. Vanputten, P. L. 1979. Mandelic-acid and urinary-tract infections. Antonie Van Leeuwenhoek J. Microbiol. 45:622623.
99. Vihinen, M., and, P. Mantsala. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24:329418.
100. Violet, M., and, J. C. Meunier. 1989. Kinetic-study of the irreversible thermal-denaturation of Bacillus licheni-formis alpha-amylase. Biochem. J. 263:665670.
101. Wandrey, C,, R. Wichmann,, W. Leuctenberger,, M.-R. Kula, and, A. Bueckmann. December, 1981. A process for the continuous enzymatic change of water soluble α-ketocarboxylic acids into the corresponding amino acids. U.S. patent 4,304,858.
102. Wieser, M.,, K. Heinzmann, and, A. Kiener. 1997. Bio-conversion of 2-cyanopyrazine to 5-hydroxypyrazine-2-carboxylic acid with Agrobacterium sp. DSM 6336. Appl. Microbiol. Biotechnol. 48:174176.
103. Wong, C.-H.,, S. L. Haynie, and, G. M. Whitesides. 1982. Enzyme-catalyzed synthesis of N-acetyllactosamine with in situ regeneration of uridine 5′-diphosphate glucose and uridine 5′-diphosphate galactose. J. Org. Chem. 47:54165418.
104. Xin, J. Y.,, S. B. Li,, X. H. Chen,, L. L. Wang, and, Y. Xu, 2000. Improvement of the enantioselectivity of lipase-catalyzed naproxen ester hydrolysis in organic solvent. Enzyme Microb. Technol. 26:137141.
105. Yokoyama, K.,, N. Nio, and, Y. Kikuchi. 2004. Properties and applications of microbial transglutaminase. Appl. Microbiol. Biotechnol. 64:447454.
106. Zhu, Y,, A. Rinzema, and, J. Tramper. 1995. Microbial transglutaminase—a review of its production and application in food processing. Appl. Microbiol. Biotechnol. 44:277282.

Tables

Generic image for table
TABLE 1

Biotransformations developed by the pharmaceutical industry (89)

Citation: Nair N, Lin Tang W, Eriksen D, Zhao H. 2010. Industrial Applications of Enzymes as Catalysts, p 480-494. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch33

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error