1887

Chapter 38 : Bioprocess Development

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Bioprocess Development, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap38-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap38-2.gif

Abstract:

Within bioprocesses, organic compounds are converted by either isolated enzymes or whole-cell biocatalysts. Biotransformations can be differentiated into enzymatic and metabolic bioconversions. A bioprocess is based on a biological catalyst that is used to conduct a chemical reaction leading to a defined product. In the early times of bioprocess engineering, water was used principally for the reaction medium, because it was assumed that a higher stability and activity can be reached in the natural medium of enzymes. Metabolic bioconversions need the metabolic system of living and growing microorganisms, e.g., bacteria, yeasts, or fungi. A goal of systems biology is predictive metabolic engineering, where genes within metabolic pathways are purposefully amplified or deleted based on the consideration of the metabolic network as an entirety. Microreaction technology is an interdisciplinary field combining natural science and engineering. Bioprocess engineering must focus on downstream processing in addition to the reaction progress. Starting at the reaction itself, a selective synthesis circumvents complicated downstream processing. The enzymatic synthesis of fatty acid ester-based care specialties is a prime example of a modern, innovative, and sustainable technology. Effective reactions are characterized by the use of a minimum of reactants but high product amounts. Biocatalytic processes are especially useful to achieve this goal of high atom efficiency. In all bioprocesses, cyclization, retention, and separation of catalyst and product are arbitrative parameters to implement an economically successful bioprocess.

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38

Key Concept Ranking

Methyl Ethyl Ketone
0.4269141
0.4269141
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Terms of sustainable development.

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Rational process design.

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Specific activity of immobilized wild-type benzoyl formate decarboxylase at different temperatures ( ).

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Schematic illustration of concentration profiles versus time and space for the different ideal reactor types.

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

The general steps in bioprocess modeling.

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Comparison of pilot plant and miniplant: costs for process development versus time ( ).

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Comparison of different membrane process setups.

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Polarization of concentration at a membrane: c, concentration profile; p, pressure profile; w, flow profile; M, membrane; C, cover layer; B, boundary layer; CF, core flow; J, permeate flow; y, membrane distance ( ).

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

The enzyme-bimembrane reactor for the synthesis of 1-phenyl-2-propanol consists of STR, ultrafiltration module, extraction module, and distillation column.

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Synthesis of α-cyclodextrin by selective adsorption applying a batch process. Here, a sequence of STR, heat exchanger modules, and adsorption step is used.

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Processes within the catalytic reaction at porous carriers.

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12
FIGURE 12

Internal and external modes of ISPR operation with direct and indirect catalyst contact. In the internal setup, the reaction media are in contact with a second, product-removing phase that is present in the reactor, whereas in the external setup, the reaction media are in contact via a loop with a product-removing phase in an external unit. Direct and indirect contact can be differentiated in both cases.

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch38
1. Arnold, F. H.,, P. L. Wintrode,, K. Miyazaki, and, A. Gershenson. 2001. How enzymes adapt: lessons from directed evolution. Trends Biochem. Sci. 26:100106.
2. Bailey, J. E. 1991. Toward a science of metabolic engineering. Science 252:16681675.
3. Behr, A.,, V. A. Brehme,, C. L. J. Ewers,, H. Gron,, T. Kimmel,, S. Kuppers, and, I. Symietz. 2004. New developments in chemical engineering for the production of drug substances. Eng. Life Sci. 4:1524.
4. Belfort, G.,, R. H. Davis, and, A. L. Zydney. 1994. The behaviour of suspensions and macromolecular solutions in cross-flow microfiltration. J. Memb. Sci. 96:158.
5. Blumenberg, B. 1994. Development of techniques today. Nachr. Chem. Tech. Lab. 5:480485.
6. Bommarius, A. S., and, A. Karau. 2005. Deactivation of formate dehydrogenase (FDH) in solution and at gas-liquid interfaces. Biotechnol. Prog. 21:16631672.
7. Bommarius, A. S.,, M. Scharm, and, K. Drauz. 1998. Biocatalysis to amino acid-based chiral pharmaceuticals—examples and perspectives. J. Mol. Catal. B Enzym. 5:111.
8. Briechle, S.,, M. Howaldt,, T. Röthig, and, A. Liese. 2006. Enzymatische Prozesse, p. 361408. In H. Chmiel (ed.), Bioprozesstechnik: Einführung in die Bioverfahrenstechnik. Elsevier, Spektrum Akad., Munich, Germany.
9. Buque-Taboada, E. M.,, A. J. J. Straathof,, J. J. Heijnen, and, L. A. M. van der Wielen. 2004. In-situ product removal using crystallization loop in the asymmetric reduction of 4-oxoisophorone by Saccharomyces cerevisiae. Biotechnol. Bioeng. 86:795800.
10. Cao, L. 2005. Carrier-Bound Immobilized Enzymes. Wiley-VCH, Weinheim, Germany.
11. Deibele, L., and, R. Dohrm (ed.). 2006. Miniplant-Technik. Wiley-VCH, Weinheim, Germany.
12. Ergan, F.,, M. Trani, and, G. Andre. 1990. Production of glycerides from glycerol and fatty acid by immobilized lipases in non-aqueous media. Biotechnol. Bioeng. 35:195200.
13. Faber, K. 2004. Biotransformations in Organic Chemistry: a Textbook, 4th ed. Springer, Berlin, Germany.
14. Foresti, M. L., and, M. L. Ferreira. 2005. Solvent-free ethyl oleate synthesis mediated by lipase from Candida antarctica B adsorbed on polypropylene powder. Catal. Today 107–08:2330.
15. Giorno, L. and, E. Drioli. 2000. Biocatalytic membrane reactors: applications and perspectives. Trends Biotechnol. 18:339349.
16. Goswami, A.,, J. M. Howell,, E. Y. Hua,, K. D. Mirfakhrae,, M. C. Soumeillant,, S. Swaminathan,, X. H. Qian,, F. A. Quiroz,, T. C. Vu,, X. B. Wang,, B. Zheng,, D. R. Kronenthal, and, R. N. Patel. 2001. Chemical and enzymatic resolution of (R,S)-N-(tertbutoxycarbonyl)-3-hydroxymethylpiperi-dine. Org. Proc. Res. Dev. 5:415420.
17. Guisan J. M. (ed.). 2006. Immobilization of Enzymes and Cells. Humana Press, New York, NY.
18. Hanefeld, U.,, L. Gardossi, and, E. Magner. 2009. Understanding enzyme immobilization. Chem. Soc. Rev. 38:453468.
19. Heinzle, E.,, A. P. Biwer, and, C. L. Cooney. 2006. Development of Sustainable Bioprocesses: Modeling and Assessment. Wiley, Chichester, United Kingdom.
20. Hessel, V.,, H. Löwe,, A. Müller, and, G. Kolb. 2004. Chemical Micro Process Engineering. Wiley-VCH, Weinheim, Germany.
21. Hilterhaus, L., and, A. Liese. 2009. Applications of reaction engineering to industrial biotransformations, p. 6588. In J. Tao,, G. Lin, and, A. Liese (ed.), Biocatalysis for the Pharmaceutical Industry. John Wiley & Sons Asia, Singapore.
22. Hilterhaus, L.,, B. Minow,, J. Muller,, M. Berheide,, H. Quitmann,, M. Katzer,, O. Thum,, G. Antranikian,, A. P. Zeng, and, A. Liese. 2008. Practical application of different enzymes immobilized on Sepabeads. Bioproc. Biosys. Eng. 31:163171.
23. Hilterhaus, L.,, O. Thum, and, A. Liese. 2008. A reactor concept for lipase-catalyzed solvent-free conversion of highly viscous reactants forming two-phase systems. Org. Proc. Res. Dev. 12:618625.
24. Hobbs, H. R., and, N. R. Thomas. 2007. Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem. Rev. 107:27862820.
25. Huang, H.-J.,, S. Ramaswamy,, U. W. Tschirner, and, B. V. Ramarao. 2008. A review of separation technologies in current and future biorefineries. Sep. Pur. Technol. 62:121.
26. Ingham, J.,, I. J. Dunn,, E. Heinzle,, J. E. Prenosil, and, J. B. Snape. 2007. Chemical Engineering Dynamics: an Introduction to Modelling and Computer Simulation, 3rd ed. Wiley-VCH, Weinheim, Germany.
27. Jarzebski, A. B., and, J. J. Malinoski. 1995. Potentials and prospects for application of supercritical-fluid technology in bioprocessing. Proc. Biochem. 30:343352.
28. Jaspe, J., and, S.J. Hagen. 2006. Do protein molecules unfold in a simple shear flow? Biophys. J. 91:34153424.
29. Judd, S. 2008. The status of membrane bioreactor technology. Trends Biotechnol. 26:109116.
30. Karmee, S. K.,, L. Casiraghi, and, L. Greiner. 2008. Technical aspects of biocatalysis in non-CO2-based supercritical fluids. Biotechnol. J. 3:104111.
31. Keil, F.,, W. Mackens,, H. Voss, and, J. Werther. 1999. Scientific Computing in Chemical Engineering II. Springer, Berlin, Germany.
32. Knezevic, Z.,, S. Bobic,, A. Milutinovic,, B. Obradovic,, L. Mojovic, and, B. Bugarski. 2002. Alginate-immobilized lipase by electrostatic extrusion for the purpose of palm oil hydrolysis in lecithin/isooctane system. Proc. Biochem. 38:313318.
33. Kragl, U., and, T. Dwars. 2001. The development of new methods for the recycling of chiral catalysts. Trends Biotechnol. 19:442449.
34. Kragl, U.,, W. Kruse,, W. Hummel, and, C. Wandrey. 1996. Enzyme engineering aspects of biocatalysis: cofactor regeneration as example. Biotechnol. Bioeng. 52:309319.
35. Krieger, N.,, T. Bhatnagar,, J. C. Baratti,, A. M. Baron,, V. M. de Lima, and, D. Mitchell. 2004. Non-aqueous biocatalysis in heterogeneous solvent systems. Food Tech-nol. Biotechnol. 42:279286.
36. Kumar, S.,, C. Wittmann, and, E. Heinzle. 2004. Minibioreactors. Biotechnol. Lett. 26:110.
37. Lee, L. G., and, G. M. Whitesides. 1985. Enzyme-catalyzed organic synthesis: a comparison of strategies for in situ regeneration of NAD from NADH. J. Am. Chem. Soc. 107:69997008.
38. Levenspiel, O. 1999. Chemical Reaction Engineering. Wiley, Hoboken, NJ.
39. Liese, A.,, M. Karutz,, J. Kamphuis,, C. Wandrey, and, U. Kragl. 1996. Enzymatic resolution of 1-phenyl-1,2-ethanediol by enantioselective oxidation: overcoming product inhibition by continuous extraction. Biotechnol. Bioeng. 51:544550.
40. Liese, A.,, U. Kragl,, H. Kierkels, and, B. Schulze. 2002. Membrane reactor development for the kinetic resolution of ethyl 2-hydroxy-4-phenylbutyrate. Enzyme Microb. Technol. 30:673681.
41. Liese, A.,, K. Seelbach, and, C. Wandrey (ed.). 2006. Industrial Biotransformations, 2nd ed. Wiley-VCH, Weinheim, Germany.
42. Lutz, S., and, U. Bornscheuer (ed.). 2009. Protein Engineering Handbook. Wiley-VCH, Weinheim, Germany.
43. McCrae, A. R.,, E.-L. Roehl, and, H. M. Brand. 1990. Bioester. SOFW J. 116:201205.
44. Micheletti, M., and, G. J. Lye. 2006. Microscale bioprocess optimisation. Curr. Opin. Biotechnol. 17:611618.
45. Miyazaki, M., and, H. Maeda. 2006. Microchannel enzyme reactors and their applications for processing. Trends Biotechnol. 24:463470.
46. Mulder, M. 2000. Basic Principles of Membrane Technology, 2nd ed. Kluwer, Dordrecht, The Netherlands.
47. Niehaus, F.,, C. Bertoldo,, M. Kahler, and, G. Antranikian. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51:711729.
48. Oldiges, M.,, S. Lutz,, S. Pflug,, K. Schroer,, N. Stein, and, C. Wiendahl. 2007. Metabolomics: current state and evolving methodologies and tools. Appl. Microbiol. Biotechnol. 76:495511.
49. Orrenius, C.,, T. Norin,, K. Hult, and, G. Carrea. 1995. The Candida antarctica lipase B catalysed kinetic resolution of seudenol in non-aqueous media of controlled water activity. Tetrahedron Asymmetry 6:30233030.
50. Osanai, Y.,, K. Toshima, and, S. Matsumura. 2006. Enzymatic transformation of aliphatic polyesters into cyclic oligomers using enzyme packed column under continuous flow of supercritical carbon dioxide with toluene. Sci. Technol. Adv. Mater. 7:202208.
51. Park, J. H., and, S. Y. Lee. 2008. Towards systems metabolic engineering of microorganisms for amino acid production. Curr. Opin. Biotechnol. 19:454460.
52. Park, J. H.,, S. Y. Lee,, T. Y. Kim, and, H. U. Kim. 2008. Application of systems biology for bioprocess development. Trends Biotechnol. 26:404412.
53. Puskeiler, R.,, A. Kusterer,, G. T. John, and, D. Weuster-Botz. 2005. Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Biotechnol. Appl. Biochem. 42:227235.
54. Reetz, M. T.,, W. Wiesenhofer,, G. Francio, and, W. Leitner. 2003. Continuous flow enzymatic kinetic resolution and enantiomer separation using ionic liquid/supercritical carbon dioxide media. Adv. Synth. Catal. 345:12211228.
55. Rios, G. M.,, M. P. Belleville,, D. Paolucci, and, J. Sanchez. 2004. Progress in enzymatic membrane reactors—a review. J. Memb. Sci. 242:189196.
56. Rios, G. M.,, M.-P. Belleville, and, D. Paolucci-Jeanjean. 2007. Membrane engineering in biotechnology: quo vamus? Trends Biotechnol. 25:242246.
57. Rippberger, S. 1992. Mikrofiltration mit Membranen: Grundlagen, Verfahren, Anwendungen. VCH, Weinheim, Germany.
58. Roosen, C.,, P. Muller, and, L. Greiner. 2008. Ionic liquids in biotechnology: applications and perspectives for bio-transformations. Appl. Microbiol. Biotechnol. 81:607614.
59. Schroen, C. G. P. H.,, V. A. Nierstrasz,, R. Bosma,, G. J. Kemperman,, M. Strubel,, L. P. Ooijkaas,, H. H. Beeftink, and, J. Tramper. 2002. In situ product removal during enzymatic cephalexin synthesis by complexation. Enzyme Microb. Technol. 31:264273.
60. Staude, E. 1992. Membranen und Membranprozesse. Wiley-VCH, Weinheim, Germany.
61. Steude, H.,, L. Deibele, and, J. Schröter. 1997. Miniplant engineering—selected examples of equipment design. Chem. Ing. Tech. 5:623631.
62. Subramanian, G. (ed.). 2007. Bioseparation & Bioprocessing, vol. 1 and 2. Wiley-VCH, Weinheim, Germany.
63. Sweetlove, L. J.,, R. L. Last, and, A. R. Fernie. 2003. Predictive metabolic engineering: a goal for systems biology. Plant Physiol. 132:420425.
64. Tanaka, A.,, T. Tosa, and, T. Kobayashi (ed.). 1993. Industrial Application of Immobilized Biocatalysts. Marcel Dekker Inc., New York, NY.
65. Tanaka, K. 2003. Solvent-free Organic Synthesis. Wiley-VCH, Weinheim, Germany.
66. Thum, O. 2004. Enzymatic production of care specialties based on fatty acid esters. Tens. Surf. Deterg. 41:287290.
67. Tsuchiyama, Y.,, K.-I. Yamamoto,, T. Asou,, M. Okabe,, Y. Yagi, and, R. Okamoto. 1991. A novel process of cyclodextrin production by use of specific adsorbents. Part I. Screening of specific adsorbents. J. Ferment. Bioeng. 71:407412.
68. van Rantwijk, F.,, F. Secundo, and, R. A. Sheldon. 2006. Structure and activity of Candida antarctica lipase B in ionic liquids. Green Chem. 8:282286.
69. Wasserscheid, P., and, T. Welton. 2008. Ionic Liquids in Synthesis, 2nd ed. Wiley-VCH, Weinheim, Germany.
70. Weber, N.,, E. Klein,, K. Vosmann, and, K. D. Mukherjee. 2004. Mono-thioesters and di-thioesters by lipase-catalyzed reactions of alpha, omega-alkanedithiols with palmitic acid or its methyl ester. Appl. Microbiol. Biotechnol. 64:800805.
71. Weber, N., and, K. D. Mukherjee. 2004. Solvent-free lipase-catalyzed preparation of diacylglycerols. J. Agric. Food Chem. 52:53475353.
72. Wibowo, C.,, V. V. Kelkar,, K. D. Samant,, J. W. Schroer, and, K. M. Ng. 2005. Development of reactive crystallization processes, p. 339358. In K. Sundmacher,, A. Kienle, and, A. Seidel-Morgenstern (ed.), Integrated Chemical Processes. Wiley-VCH, Weinheim, Germany.
73. Wichmann, R.,, C. Wandrey,, A. F. Bückmann, and, M.-R. Kula. 1981. Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Biotechnol. Bioeng. 23:27892796.
74. Winzeler, H. B. 1990. Membran-Filtration mit hoher Trennleistung und minimalem Energiebedarf. Chim. Int. J. Chem. 44:288291.
75. Wöltinger, J.,, K. Drauz, and, A. S. Bommarius. 2001. The membrane reactor in the fine chemicals industry. Appl. Catal. A Gen. 221:171185.
76. Woodley, J. M. 2008. New opportunities for biocatalysis: making pharmaceutical processes greener. Trends Biotechnol. 26:321327.
77. Woodley, J. M.,, M. Bisschops,, A. J. J. Straathof, and, M. Ottens. 2008. Future directions for in-situ product removal (ISPR). J. Chem. Technol. Biotechnol. 83:121123.
78. Yan, Y. C.,, U. T. Bornscheuer, and, R. D. Schmid. 2002. Efficient water removal in lipase-catalyzed esterifications using a low-boiling-point azeotrope. Biotechnol. Bioeng. 78:3134.

Tables

Generic image for table
TABLE 1

Comparison of time requirements (61)

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38
Generic image for table
TABLE 2

Reaction media for biotransformations

Citation: Hilterhaus L, Liese A. 2010. Bioprocess Development, p 549-562. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch38

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error