1887

Chapter 40 : Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap40-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap40-2.gif

Abstract:

The current product range of algal biomass has been expanded to include fine chemicals and secondary metabolites as products of higher value as well as bioenergy products, the latter typically coupled to wastewater treatment or using carbon credits to offset costs. While commodity products such as protein, algal oil, and bioenergy products remain of great interest, these require improvements in productivities to be economically feasible as independent products. While optimal microalgal culturing systems vary greatly with application, the following characteristics should be considered for culture system design and operation: provision of CO and removal of O, provision of nutrients, temperature, pH control, salinity, light provision, mixing, mass and heat transfer, and hydrodynamics. Natural media use seawater, while artificial seawater recipes attempt to mimic the composition of natural seawater using laboratory chemicals. Many types of photobioreactors are suitable for laboratory culturing of algae. Algae can be grown in bubble columns; however, external or internal loop airlift reactors are more effective as photobioreactors for algal growth owing to the development of defined flow patterns with a concomitant increase in mass and heat transfer. Currently the exploitation of algal biotechnology is in its infancy, with a great range of biodiversity remaining to be explored. Further to this, the significant downstream processing costs incurred require emphasis on both improving product concentration and identifying low-energy unit operations suited to the efficient processing of large volumes of algal suspensions.

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40

Key Concept Ranking

Acetyl Coenzyme A
0.49566185
Chemicals
0.45438558
Viruses
0.44906914
Green Algae
0.40839562
0.49566185
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Parameters that can be manipulated in algal culture. (Adapted from reference .)

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Dependence of photosynthetic rate on light intensity, illustrating limitation and inhibition.

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Average absorbance across the range of visible light wavelengths for five microalgal species and .

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Correlation between algal oil productivity, biomass productivity, and oil content under nutrient-replete conditions ( ).

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Simplified metabolic pathway illustrating CO fixation and metabolism to biomass and triacylglycerides. TCA, tricarboxylic acid.

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch40
1. Acreman, J. C. 2004. The University of Toronto Culture Collection of Algae and Cyanobacteria (UTCC): a Canadian phycological research centre. Nova Hedwigia 79:135144.
2. Agusti, S., and, J. Kalff. 1989. The influence of growth conditions on size dependence of maximal algal density and biomass. Limnol. Oceanogr. 34:11041108.
3. Andersen, R. A. (ed.). 2005. Algal Culturing Techniques. Elsevier Academic Press, San Diego, CA.
4. Apt, K. E., and, P. W. Behrens. 1999. Commercial developments in microalgal biotechnology. J. Phycol. 35:215226.
5. Barnes, M.,, A. D. Ansell, and, R. N. Gibson. 1988. Oceanography and Marine Biology, an Annual Review, vol. 26. Aberdeen University Press, Aberdeen, United Kingdom.
6. Barsanti, L., and, P. Gualtieri. 2006. Algae: Aanatomy, Biochemistry and Biotechnology. CRC Press, Taylor and Francis Group, Boca Raton, FL.
7. Becker, E. W. 1994. Microalgae: Biotechnology and Microbiology. Cambridge University Press, Cambridge, United Kingdom.
8. Behrens, P. W. 2005. Photobioreactors and fermentors: the light and dark side of growing algae, p. 189203. In R. A. Andersen (ed.), Algal Culturing Techniques. Elsevier Academic Press, San Diego, CA.
9. Benneman, J. R., and, W. J. Oswald. 1996. Systems and economic analysis of microalgae ponds for conversion of CO2 to biomass. Report DOE/PC/93204-T5. Department of Energy, Washington, DC.
10. Benson, B. C., and, K. A. Rusch. 2006. Investigation of the light dynamics and their impact on algal growth in a hydraulically integrated serial turbidostat algal reactor (HISTAR). Aquacultural Eng. 35:122134.
11. Borowitzka, M. A. 1992. Algal biotechnology products and processes—matching science and economics. J. Appl. Phycol. 4:267279.
12. Borowitzka, M. A. 1997. Microalgae for aquaculture: opportunities and constraints. J. Appl. Phycol. 9:393401.
13. Borowitzka, M. A. 2005. Culturing microalgae in outdoor ponds, p. 205218. In R. A. Andersen (ed.), Algal Cultur-ing Techniques. Elsevier Academic Press, San Diego, CA.
14. Bouterfas, R.,, M. Belkoura, and, A. Dauta. 2002. Light and temperature effects on the growth rate of three freshwater algae from a eutrophic lake. Hydrobiologia 489:207217.
15. Carvalho, A. P.,, L. A. Meireles, and, F. X. Malcata. 2006. Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Progr. 22:14901506.
16. Chen, Y.,, J. Liu, and, Y. Ju. 1998. Flotation removal of algae from water. Colloids Surfaces B 12:4955.
17. Chisti, Y., and, M. Moo-Young. 1991. Fermentation technology, bioprocessing, scale-up and manufacture, p. 167209. In M. Moses and, R. E. Cape (ed.), Biotechnology: the Science and the Business. Harwood Academic Publishers, New York, NY.
18. Day, J. G., and, J. J. Brand. 2005. Cryopreservation methods for maintaining microalgal cultures, p. 165188. In R. A. Andersen (ed.), Algal Culturing Techniques. Elsevier Academic Press, San Diego, CA.
19. Dimitrov, K. March 2007. GreenFuel Technologies: a Case Study for Industrial Photosynthetic Energy Capture. http://www.nanostring.net/Algae/CaseStudy.pdf.
20. El-Mansi, E. M. T.,, C. F. A Bryce,, A. L. Demain, and, A. R. Allman. 2007. Fermentation Microbiology and Biotechnology, 2nd ed. CRC Press, Taylor and Francis Group, Boca Raton, FL.
21. Fell, D. 1997. Understanding the Control of Metabolism. Portland Press, London, United Kingdom.
22. Geider, R. J., and, B. A. Osbourne. 1992. Algal Photosynthesis: the Measurement of Algal Gas Exchange. Chapman and Hall, New York, NY.
23. Griffiths, M., and, S. T. L. Harrison. 2009. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21:493507.
24. Grima, E. M.,, J. M. F. Sevilla,, J. A. S Perez, and, F. G. Camacho. 1996. A study on the simultaneous photolimi-tation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiances. J. Biotechnol. 45:5969.
25. Grobbelaar, J. U. 2000. Physiological and technological considerations for optimising mass algal cultures. J. Appl. Phycol. 12:201206.
26. Gudin, C., and, C. Therpenier. 1986. Bioconversion of solar energy into organic chemicals by microalgae. Adv. Biotechnol. Processes 6:73110.
27. Guillard, R. R., and, S. L. Morton. 2003. Culture methods, p. 7797. In G. M. Hallegraeff,, D. M. Anderson, and, A. D. Cembella (ed.), Manual on Harmful Marine Microal-gae. UNESCO, Paris, France.
28. Handy, S. M.,, E. Demir,, D. A. Hutchins,, K. J. Portune,, E. B. Whereat,, C. E. Hare,, J. M. Rose,, M. Warner,, M. Farestad,, S. C. Cary, and, K. J. Coyne. 2008. Using quantitative real-time PCR to study competition and community dynamics among Delaware Inland Bays harmful algae in field and laboratory studies. Harmful Algae 7:599613.
29. Hsueh, H. T.,, H. Chu, and, S. T. Yu. 2007. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66:878886.
30. Kaewpintong, K.,, A. Shotipruk,, S. Powtongsook, and, P. Pavasant. 2007. Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresource Technol. 98:288295.
31. Kirk, J. T. O. 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, Cambridge, United Kingdom.
32. Kirk, R. E.,, D. F. Othmer,, M. Grayson,, D. Eckroth, et al. 19781984. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., vol. 26,p. 153163. Wiley, New York, NY.
33. Lee, Y. K. 2001. Microalgal mass culture systems and methods: their limitation and potential. J. Appl. Phycol. 13:307315.
34. Logan, J.,, K. Edwards, and, N. Saunders (ed.). 2009. Real-Time PCR: Current Technology and Applications. Cais-ter Academic Press, Norwich, United Kingdom.
35. Lorenz, M.,, T. Friedel, and, J. G. Day. 2005. Perpetual maintenance of actively metabolizing microalgal cultures, p. 145156. In R. A. Andersen (ed.), Algal Culturing Techniques. Elsevier Academic Press, San Diego, CA.
36. Millamena, O. M.,, E. J. Aajero, and, I. G. Borlongan. 1990. Techniques on algae harvesting and preservation for use in culture as larval food. Aquaculture Eng. 9:295304.
37. Molina Grima, E.,, E. H. Belarbi,, F. G. Acién Fernández,, A. Robles Medina, and, Y. Chisti. 2003. Recovery of microalgal biomass and metabolites, process options and economics. Biotechnol. Adv. 20:491515.
38. Moroney, J. V., and, A. Somanchi. 1999. How do algae concentrate CO2 to increase the efficiency of photosyn-thetic carbon fixation? Plant Physiol. 119:916.
39. Nowack, E. C. M.,, B. Podola, and, M. Melkonian. 2005. A novel approach in the cultivation of microalgae—96 well twin layer system. Protist 156:239251.
40. Oh, H. M.,, S. J. Lee,, M.-H. Park,, H.-S. Kim,, H.-C. Kim,, J.-H. Yoon,, G.-S. Kwon, and, B.-D. Yoon. 2001. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett. 23:12291234.
41. Pulz, O. 2004. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 65:635648.
42. Richmond, A. 2004. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia 512:3337.
43. Roh, S.,, D. Kwak,, H. Jung,, K. Hwang,, I. Baek,, Y. Chun,, S. Kim, and, J. Lee. 2008. Simultaneous removal of algae and their secondary algal metabolites from water by hybrid system of DAF and PAC adsorption. Separation Sci. Technol. 43:113131.
44. Sazdanoff, N. 2006. Honors thesis. Ohio State University, Columbus.
45. Sheehan, J.,, T. Dunahay,, J. Benemann, and, P. Roessler. 1998. A Look Back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from Algae. Close-out report. Report no. NREL/TP-580–24190. National Renewable Energy Lab, Department of Energy, Golden, CO.
46. Spolaore, P.,, C. Joannis-Cassan,, E. Duran, and, A. Isambert. 2006. Commercial applications of microalgae: review. J. Biosci. Bioeng. 101:8796.
47. Stephanopoulos, G. N.,, A. A. Aristidou, and, J. N. Nielson. 1998. Metabolic Engineering, Principles and Methodologies. Academic Press, San Diego, CA.
48. Ugwu, C. U.,, H. Aoyagi, and, H. Uchiyama. 2008. Photobioreactors for mass cultivation of algae. Bioresource Technol. 99:40214028.
49. Van Puffelen, J.,, P. Buijs,, P. Nuhn, and, W. Hijnen. 1995. Dissolved air flotation in potable water treatment: the Dutch experience. Water Sci. Technol. 31:149157.
50. Verity, P. G.,, C. Y. Robertson,, C. R. Tronzo,, M. G. Andrews,, J. R. Nelson, and, M. E. Sieracki. 1992. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 37:14341446.
51. Watanabe, M. M. 2005. Freshwater culture media, p. 1321. In R. A. Andersen (ed.), Algal Culturing Techniques. Elsevier Academic Press, San Diego, CA.
52. Welty, J. R.,, C. E. Wicks,, R. E. Wilson, and, G. Rorrer. 2001. Fundamentals of Momentum, Heat and Mass Transfer, 4th ed. Wiley, New York, NY.
53. Wu, X., and, J. C. Merchuk. 2004. Simulation of algae growth in a bench scale internal loop airlift reactor. Chem. Eng. Sci. 59:28992912.
54. Yan, Y., and, G. Jameson. 2004. Application of the Jameson cell technology for algae and phosphorous removal from maturation ponds. Int. J. Mineral Processing 73:2328.

Tables

Generic image for table
TABLE 1

Examples of currently commercially available algal products

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Generic image for table
TABLE 2

Characteristics of some algal groups relevant to microalgal biotechnology

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Generic image for table
TABLE 3

Frequently used general-purpose media for microalgae

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Generic image for table
TABLE 4

Comparison of open and closed reactor systems for algal growth

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Generic image for table
TABLE 5

Variation in biomass productivity with photobioreactor systems reported for algal culture

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Generic image for table
TABLE 6

Typical algal growth rates and example product contents and productivities

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40
Generic image for table
TABLE 7

Typical algal cell size

Citation: Harrison S, Griffiths M, Langley N, Vengadajellum C, Van Hille R. 2010. Microalgal Culture as a Feedstock for Bioenergy, Chemicals, and Nutrition, p 577-590. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch40

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error