1887

Chapter 43 : Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap43-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap43-2.gif

Abstract:

The current emphasis on environmentally friendly liquid transportation fuels has caused a renewed interest in bioethanol and, in particular, lignocellulosic feedstocks for the production of bioethanol. As a result, research into the development of an economic process for the bioconversion of lignocellulosics has accelerated. The primary areas of research crucial to improved process economics consist of feedstock selection, pretreatment, hydrolysis of the pretreated feedstocks, and developing an optimized fermentation process that uses newly engineered ethanologens capable of utilizing various biomass-derived sugars. Various levels of cellulose, hemicellulose, lignin, ash, silica, nitrogen, and moisture will require various pretreatment conditions and chemicals to ensure the most optimum pretreatment for that feedstock. The various pretreatments range from seconds for dilute acid, ammonia fiber explosion (AFEX), and steam explosion to days and weeks for lime pretreatment. Acid pretreatments include both processes featuring the addition of acids and processes without added acids in which the pH is lowered due to release of acetic acid in the course of pretreatment. Pretreatments using bases, such as AFEX, lime pretreatment, and ammonia recycle percolation alone or followed by a successive treatment with hydrogen peroxide, work mainly by swelling the biomass and modifying or solubilizing the hemicellulose and lignin. The enzyme products can be analyzed on silica thin-layer chromatography plates, where sugars are visualized by sulfuric acid charring at high temperature. Lignocellulosic hydrolysate fermentation or bioconversion may be achieved by either solid-state or submerged-liquid fermentation.

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43

Key Concept Ranking

High-Performance Liquid Chromatography
0.43958884
0.43958884
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Severity factor impact on solubilization and arabinose release from the corn fiber hull hemicellulose arabinoxylan.

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of commercially available cellulosic enzymes. Lane 1, molecular mass marker; lanes 2 to 6, commercial xylanases; lanes 7 to 11, commercial cellulases.

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Ternary plot for enzyme blend optimization. Three enzymes, each with 10 concentrations, can be tested and plotted in the same experiment. Product (glucose or other sugars) concentration is plotted on the graph, and each line represents a concentration range.

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Chromatogram of seven standard sugar mixtures and internal standard showing their retention times (RT) in minutes. RT 12.84 = arabinose; RT 14.18 = xylose; RT 15.92 = fructose; RT 21.41 = mannose; RT 23.27 = galactose; RT 25.79 = glucose; RT 35.17 = inositol (internal standard); RT 37.90 = sucrose; and RT 39.27 = cellobiose. (Courtesy of F. Agblevor from reference .)

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Chromatogram of pretreated corn stover liquid fraction showing three regions of unknown compounds (0 to 10 min), monomeric sugars (10 to 30 min), and oligomeric sugars (30 to 45 min). (Courtesy of F. Agblevor from reference .)

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Cascade testing: illustration of a continuous setup for testing of ethanologens on a hydrolysate stream derived from a lignocellulosic. Prop, propagation; Enz, enzyme; BW, beer well; F V, fermentation vessel.

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch43
1. Abbas, C. A. 2003. Lignocellulosics to ethanol: meeting ethanol demand in the future, p. 4157. In K. A. Jacques,, T. P. Lyons, and, D. R. Kelsall (ed.), The Alcohol Texbook, 4th ed. Nottingham University Press, Nottingham, United Kingdom.
2. Abbas, C. A.,, K. E. Beery,, E. K. Dennison, and, P. M. Corrington. 2004. Thermochemical treatment, separation and conversion of corn fiber to ethanol. ACS Symp. Ser. 889:8497.
3. Agblevor, F. A.,, B. R. Hames,, D. Schell, and, H. L. Chum. 2007. Analysis of biomass sugars using a novel HPLC method. Appl. Biochem. Biotechnol. 136:309326.
4. Alkasrawi, M.,, A. Rudolf,, G. Liden, and, G. Zacchi. 2006. Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb. Technol. 38:279286.
5. Almeida, J. R. M.,, M. Bertilsson,, M. F. Gorwa-Grauslund,, S. Gorsich, and, G. Lidén. 2009. Metabolic effects of fur-aldehydes and impacts on biotechnological processes. Appl. Microbiol. Biol. 82:625638.
6. Baker, J. O.,, C. L. Ehrman,, W. S. Adney,, S. R. Thomas, and, M. E. Himmel. 1998. Hydrolysis of cellulose using ternary mixtures of purified cellulases. Appl. Biochem. Biotechnol. 70–72:395403.
7. Ballesteros, I.,, J. M. Olivia,, A. A. Navarro,, A. Gonzalez,, J. Carrasco, and, M. Ballesteros. 2000. Effect of chip size on steam explosion pretreatment of softwood. Appl. Biochem. Biotechnol. 84–86:97110.
8. Battan, B.,, J. Sharma, and, R. C. Kuhad. 2006. High-level xylanase production by alkaliphilic Bacillus pumilus ASH under solid-state fermentation. World J. Microbiol. Biotechnol. 22:12811287.
9. Bélafi-Bakó, K.,, A. Koutinas,, N. Nemestóthy,, L. Gubicza, and, C. Webb. 2006. Continuous enzymatic cellulose hydrolysis in a tubular membrane bioreactor. Enzyme Microb. Technol. 38:155161.
10. Berlin, A.,, M. Balaskshin,, N. Gilkes,, J. Kadla,, V. Maxi-menko,, S. Kubo, and, J. Saddler. 2006. Inhibition of cel-lulase, xylanase, and β-glucosidase activities by softwood lignin preparations. J. Biotechnol. 125:198209.
11. Berlin, A.,, N. Gilkes,, D. Kilburn,, R. Bura,, A. Markov,, A. Skomarosky,, O. Okunev,, A. Gusakov,, V. Maximenko,, D. Gregg,, A. Sinitsyn, and, J. Saddler. 2005. Evaluation of novel fungal preparations for ability to hydrolyze softwood substrates—evidence for the role of accessory enzymes. Enzyme Microb. Technol. 37:175184.
12. Berlin, A.,, N. Gilkes,, A. Kurabi,, R. Bura,, M. Tu,, D. Kilburn, and, J. Saddler. 2005. Weak lignin-binding enzymes: a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl. Biochem. Biotechnol. 121–124:163170.
13. Borjesson, J.,, R. Peterson, and, F. Tjerneld. 2007. Enhanced enzymatic conversion of softwood lignocellulose by poly(ethylene glycol) addition. Enzyme Microb. Tech-nol. 40:754762.
14. Brandberg, T.,, N. Sanandaji,, L. Gustafsson, and, C. J. Franzen. 2005. Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation. Biotechnol. Prog. 21:10931101.
15. Caminal, G.,, J. López-Santín, and, C. Sola. 1985. Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose. Biotechnol. Bioeng. 27:12821290.
16. Chum, H. L.,, S. K. Black,, D. K. Johnson,, K. V. Sar-kanen, and, D. Robert. 1999. Organosolv pretreatment for enzymatic hydrolysis of poplars: isolation and quantitative structural studies of lignins. Clean Products Processes 1:187198.
17. Cullis, I. F.,, J. N. Saddler, and, S. D. Mansfield. 2004. Effect of initial moisture content and chip size on the bioconversion efficiency of softwood lignocellulosics. Biotechnol. Bioeng. 85:413421.
18. Degelmann, A. 2002. Methods, p. 286288. In G. Gellis-sen (ed.), Hansenula polymorpha: Biology and Applications. Wiley-VCH Verlag GmbH, Weinheim, Germany.
19. Den Haan, R.,, S. H. Rose,, L. R. Lynd, and, W. H. van Zyl. 2007. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Eng. 9:8794.
20. Dubois, M.,, K. A. Gilles,, J. K. Hamilton,, P. A. Rebers, and, F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350356.
21. Galbe, M., and, G. Zacchi. 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59:618628.
22. Ghirlanda, G. 2008. Old enzymes, new tricks. Nature 453:164166.
23. Gray, K. A.,, L. Zhao, and, M. Emptage. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10:141146.
24. Grohmann, K., and, R. J. Bothast. 1997. Saccharification of corn fibre by combined treatment with dilute sulphuric acid and enzymes. Process Biochem. 32:405415.
25. Hammel, K. E., and, D. Cullen. 2008. Role of fungal per-oxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11:349355.
26. Ho, K. M.,, X. Mao,, L. Gu, and, P. Li. 2008. Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulase shells. Langmuir 24:1103611042.
27. Jin, S., and, H. Chen. 2006. Superfine grinding of steam-exploded rice straw and its enzymatic hydrolysis. Biochem. Eng. J. 30:225230.
28. Kabel, M. A.,, G. Bos,, J. Zeevalking,, A. G. J. Voragen, and, H. A. Schols. 2007. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresource Technol. 98:20342042.
29. Katahira, S.,, Y. Fujita,, A. Mizuike,, H. Fukuda, and, A. Kondo. 2004. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 70:54075414.
30. Keating, J. D.,, C. Panganiban, and, S. D. Mansfield. 2006. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol. Bioeng. 93:11961206.
31. Keating, J. D.,, J. Robinson,, M. A. Cotta,, J. N. Saddler, and, S. D. Mansfield. 2004. An ethanologenic yeast exhibiting unusual metabolism in the fermentation of lignocellulosic hexose sugars. J. Ind. Microbiol. Biotechnol. 31:235244.
32. Kim, J. K.,, Y. Y. Lee, and, S. C. Park. 2000. Pretreatment of wastepaper and pulp mill sludge by aqueous ammonia and hydrogen peroxide. Appl. Biochem. Biotechnol. 84–86:129139.
33. Kim, J. S.,, K. K. Oh,, S. W. Kim,, Y. S. Jeong, and, S. I. Hong. 1999. Ethanol production from lignocellulosic biomass by simultaneous saccharification and fermentation employing the reuse of yeast and enzyme. J. Microbiol. Biotechnol. 9:297302.
34. Kim, S., and, M. T. Holtzapple. 2005. Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Tech-nol. 96:19942006.
35. Kim, T. H., and, Y. Y. Lee. 2005. Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technol. 96:20072013.
36. Kim, Y.,, R. Hendrickson,, N. S. Mosier,, M. R. Ladisch,, B. Bals,, V. Balan, and, B. E. Dale. 2008. Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers’ grains at high-solids loadings. Bioresource Technol. 99:52065215.
37. Kristensen, J. B.,, J. Borjesson,, M. H. Bruun,, F. Tjer-neld, and, H. Jorgensen. 2007. Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enzyme Microb. Technol. 40:888895.
38. Leskinen, S.,, A. Mäntylä,, R. Fagerström,, J. Vehmaan-perä,, R. Lantto,, M. Paloheimo, and, P. Suominen. 2005. Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei. Appl. Microbiol. Biotechnol. 67:495505.
39. Liu, G.,, X. Tang,, S-L. Tian,, X. Deng, and, M. Xing. 2006. Improvement of the cellulolytic activity of Tricho-derma reesei endoglucanase IV with an additional catalytic domain. World J. Microb. Biotechnol. 22:13011305.
40. Lloyd, T. A., and, C. E. Wyman. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technol. 96:19671977.
41. Maekawa, E. 1996. On an available pretreatment for the enzymatic saccharification of lignocellulosic materials. Wood Sci. Technol. 30:133139.
42. Mais, U.,, A. R. Esteghlalian,, J. N. Saddler, and, S. D. Mansfield. 2002. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling. Appl. Biochem. Biotechnol. 98–100:815832.
43. Markov, A. V.,, A. V. Gusakov,, E. G. Kondratyeva,, O. N. Okunev,, A. O. Bekkarevich, and, A. P. Sinitsyn. 2005. New effective method for analysis of the component composition of enzyme complexes from Trichoderma reesei. Biochemistry (Moscow) 70:657663.
44. Martín, C.,, H. B. Klinke, and, A. B. Thomsen. 2007. Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microb. Technol. 40:426432.
45. Martin, C.,, M. Marcet,, O. Almazan, and, L. J. Jonsson. 2007. Adaptation of a recombinant xylose-utilizing Saccha-romyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresource Technol. 98:17671773.
46. Muthuvelayudham, R., and, T. Viruthagiri. 2006. Fermentative production and kinetics of cellulase protein production on Trichoderma reesei using sugarcane bagasse and rice straw. African J. Biotechnol. 5:18731881.
47. Nieves, R. A.,, C. I. Ehrman,, W. S. Adney,, R. T. Elander, and, M. E. Himmel. 1998. Technical communication: survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J. Microbiol. Biotechnol. 14:301304.
48. Nutt, A.,, V. Sild,, G. Pettersson, and, G. Johansson. 1998. Progress curves—a mean for functional classification of cellulases. Eur. J. Biochem. 258:200206.
49. O’Dwyer, J. 2005. Ph.D. thesis. Texas A & M, College Station.
50. Patle, S., and, B. Lal. 2008. Investigation of the potential of agro-industrial material as low cost substrate for ethanol production by using Candida tropicalis and Zymomonas mo-bilis. Biomass Bioenergy 32:596602.
51. Pohn, B.,, J. Gerlach,, M. Scheider,, H. Katz,, M. Uray,, H. Bischof,, I. Klimant, and, H. Schwab. 2007. Micro-colony array based high throughput platform for enzyme library screening. J. Biotechnol. 129:162170.
52. Ragauskas, A. J.,, C. K. Williams,, B. H. Davison,, G. Britovsek,, J. Carney,, C. E. Eckert,, W. J. Fredrick,, J. P. Hallett,, D. J. Leak,, C. L. Liotta,, J. R. Mielenz,, R. Murphy,, R. Templer, and, T. Tschaplinski. 2006. The path forward for biofuels and biomaterials. Science 311:484489.
53. Saha, B. C, and, R. J. Bothast. 1999. Pretreatment and enzymatic saccharification of corn fiber. Appl. Biochem. Biotechnol. 76:6577.
54. Sato, K. 1999. Small-scale solid-state fermentations, p. 6173. In A. Demain and, J. Davies (ed.), Manual of Industrial Microbiology and Biotechnology, 2nd ed. ASM Press, Washington, DC.
55. Sewalt, V. J. H.,, K. A. Beauchemin,, L. M. Rode,, S. Acharya, and, V. S. Baron. 1997. Lignin impact on fiber degradation. IV. Enzymatic saccharification and in vitro digestibility of alfalfa and grasses following selective solvent delignification. Bioresource Technol. 61:199206.
56. Sewalt, V. J. H.,, W. G. Glasser, and, K. A. Beauchemin. 1997. Lignin impact on fiber degradation. 3. Reversal of inhibition of enzymatic hydrolysis by chemical modification of lignin and by additives. J. Agric. Food Chem. 45:18231828.
57. Sievers, C,, M. B. Valenzuela-Olarte,, T. Marzialetti,, I. Musin,, P. K. Agrawal, and, C. W. Jones. 2009. Ionic-liquid-phase hydrolysis of pine wood. Ind. Eng. Chem. Res. 48:12771286.
58. Steele, B.,, S. Raj,, J. Nghiem, and, M. Stowers. 2005. Enzyme recovery and recycling following hydrolysis of ammonia fiber explosion-treated corn stover. Appl. Biochem. Biotechnol. 121–124:901910.
59. Szengyel, Z.,, G. Zacchi,, A. Varga, and, K. Reczey. 2000. Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce. Appl. Biochem. Biotechnol. 84–86:679691.
60. Tengerdy, R. P. 1998. Solid state fermentation for enzyme production, p. 1316. In A. Pandey (ed.), Advances in Biotechnology. Educational Publishers and Distributors, New Delhi, India.
61. Teymouri, F.,, L. Laureano-Perez,, H. Alizadeh, and, B. E. Dale. 2005. Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresource Technol. 96:20142018.
62. Tu, M.,, X. Zhang,, A. Kurabi,, N. Gilkes,, W. Mabee, and, J. Saddler. 2006. Immobilization of beta-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol. Lett. 28:151156.
63. Tucker, M. P.,, K. H. Kim,, M. M. Newman, and, Q. A. Nguyen. 2003. Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility. Appl. Biochem. Biotechnol. 105:13.
64. Ueda, M., and, A. Tanaka. 2000. Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J. Biosci. Bioeng. 90:125136.
65. Uryu, T.,, M. Sugie,, S. Ishida,, S. Konoma,, H. Kato,, K. Katsuraya,, K. Okuyama,, G. Borjihan,, K. Iwashita, and, H. Iefuji. 2006. Chemo-enzymatic production of fuel ethanol from cellulosic materials utilizing yeast expressing (β-glucosidases. Appl. Biochem. Biotechnol. 135:1531.
66. Vital-Lopez, F. G.,, A. Armaou,, E. V. Nikolaev, and, C. D. Maranas. 2006. A computational procedure for optimal engineering interventions using kinetic models of metabolism. Biotechnol. Prog. 22:15071517.
67. Vries, R. P., and, J. Visser. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Mol. Biol. Rev. 65:497522.
68. Wagschal, K.,, D. Franqui-Espiet,, C. C. Lee,, R. E. Kibblewhite-Accinelli,, G. H. Robertson, and, D. W. S. Wong. 2007. Genetic and biochemical characterization of an a-l-arabinofuranosidase isolated from a compost starter mixture. Enzyme Microb. Technol. 40:747753.
69. Westgate, P., and, A. Emery. 1990. Approximation of continuous fermentation by semicontinuous cultures. Biotechnol. Bioeng. 35:437453.
70. Wyman, C. E.,, B. E. Dale,, R. T. Elander,, M. Holtzapple,, M. R. Ladisch, and, Y. Y. Lee. 2005. Coordinated development of leading biomass pretreatment technologies. Bioresource Technol. 96:19591966.
71. Xiao, Z.,, X. Zhang,, D. J. Gregg, and, J. N. Saddler. 2004. Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 113–116:11151126.
72. Zhang, Y. H.,, M. E. Himmel, and, J. R. Mielenz. 2006. Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24:452481.

Tables

Generic image for table
TABLE 1

Compositions of various biomass feedstocks

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43
Generic image for table
TABLE 2

Pretreatment selection and impact of pretreatment on lignocellulosics

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43
Generic image for table
TABLE 3

Some commercial enzyme products available for testing

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43
Generic image for table
TABLE 4

Properties of leading candidate microorganisms for industrial production of ethanol from xylose

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43
Generic image for table
TABLE 5

Evaluation scheme for improved ethanologens for scale-up testing

Citation: Abbas C, Bao W, Beery K, Corrington P, Cruz C, Loveless L, Sparks M, Trei K. 2010. Bioethanol Production from Lignocellulosics: Some Process Considerations and Procedures, p 621-633. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch43

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error