1887

Chapter 44 : Surface Microbiology of Cellulolytic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Surface Microbiology of Cellulolytic Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap44-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap44-2.gif

Abstract:

In this chapter, biofilm structure and cell behavior in fully hydrated, and undisturbed biofilms of are considered as a means to study biofilm formation by anaerobic thermophiles. Recent evidence demonstrates the strong correlation between first-order hydrolysis rates of cellulose with the concentration of sessile bacteria rather than with the concentration of total or planktonic biomass after inoculation with enriched leachate and rumen fluid. A study aimed to correlate the imaging of cellulolytic biofilms with process performance data in real time, and the results suggested that the rumen culture formed thicker and more stable biofilms than the inoculum from digester leachate, which were consistent with the higher rates of cellulose solubilization in the rumen reactors. Cellulolytic organisms occupy a special niche where (the primarily) insoluble cellulose serves both as the carbon source and as biofilm solid support, theoretically providing optimal conditions for biomass accumulation with preferential access to the primary substrate. is one of the potential candidates for strain development through recombinant and classical strategies for application in consolidated bioprocessing aimed at large-scale conversion of renewable biomass into biofuels and other products. The numerous examples of biofilm formation in the literature, and the observed association between cells and substrate, make this organism a suitable model to delineate cell-cellulosic substratum associations and to optimize the tools to study this phenomenon in other cellulolytic cultures and consortia with potential for application in biomass conversion.

Citation: Dumitrache A, Wolfaardt G, Lynd L. 2010. Surface Microbiology of Cellulolytic Bacteria, p 634-643. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch44

Key Concept Ranking

Confocal Laser Scanning Microscopy
0.47663084
0.47663084
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic flow cell design showing top view (A) and lateral view (B) and typical continuous-flow culture growth within flow cells showing the initial growth (dark areas) pattern around the inoculation site (C) with subsequent spreading to uncolonized regions and the depletion of its only cellulosic carbon source, which serves as the attachment substratum (D).

Citation: Dumitrache A, Wolfaardt G, Lynd L. 2010. Surface Microbiology of Cellulolytic Bacteria, p 634-643. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic diagram of a continuous-flow system used under normal atmosphere for growth of anaerobic, thermophilic cultures. A sampling port allows the aseptic collection of liquid effluent samples, and a “CO exchange reactor” purged with N gas and coupled to an infrared analyzer allows real-time measurements of dissolved CO in the effluent. GFM, gas mass flowmeter.

Citation: Dumitrache A, Wolfaardt G, Lynd L. 2010. Surface Microbiology of Cellulolytic Bacteria, p 634-643. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Confocal laser scanning micrographs of biofilms growing on solid cellulosic substratum. Attachment to abiotic surfaces was recorded when the solid cellulosic support had been considerably depleted. Cells were stained with Syto9, and cellulose was stained with wheat germ agglutinin-TRITC.

Citation: Dumitrache A, Wolfaardt G, Lynd L. 2010. Surface Microbiology of Cellulolytic Bacteria, p 634-643. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Confocal laser scanning micrograph of cells colonizing a cellulose substrate (fiber) showing spores (arrows) with distinct end-on attachment on the non-sporulating side. Cells were stained with Syto9, and cellulose was stained with wheat germ agglutinin-TRITC. The circles indicate dividing cells with parallel orientation to the attachment interface. Objective, 63 × 1.2 water immersion.

Citation: Dumitrache A, Wolfaardt G, Lynd L. 2010. Surface Microbiology of Cellulolytic Bacteria, p 634-643. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Confocal laser scanning micrograph of biofilm developing on a cellulose fiber, seen from the top-down view of a three-dimensional projection (top); sectioning through the projection along the and axes in the plane (bottom) revealed the distance between cells and substrate, which was recorded to be lower than the 0.44-μm -scaling limit of the scanning microscope. Cells were stained with Syto9, and cellulose was stained with wheat germ agglutinin-TRITC.

Citation: Dumitrache A, Wolfaardt G, Lynd L. 2010. Surface Microbiology of Cellulolytic Bacteria, p 634-643. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch44
1. Bayer, E. A.,, R. Kenig, and, R. Lamed. 1983. Adherence of Clostridium thermocellum to cellulose. J. Bacteriol. 156:818827.
2. Bayer, E. A., and, R. Lamed. 1986. Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J. Bacteriol. 167:828836.
3. Bayer, E. A.,, E. Setter, and, R. Lamed. 1985. Organization and distribution of the cellulosome in Clostridium thermocellum. J. Bacteriol. 163:552559.
4. Bayer, E. A.,, L. J. W. Shimon,, Y. Shoham, and, R. Lamed. 1998. Cellulosomes—structure and ultrastructure. J. Struct. Biol. 124:221234.
5. Caldwell, D. E.,, G. M. Wolfaardt,, D. R. Korber, and, J. R. Lawrence. 1997. Do bacterial communities transcend Darwinism? Adv. Microb. Ecol. 15:105191.
6. Cheng, S.,, J. Tian,, S. Chen,, Y. Lei,, X. Chang,, T. Liu, and, Y. Yin. 2009. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) corrosion behavior. Materials Sci. Eng. C 29:751755.
7. Costerton, J. W. 1995. Overview of microbial biofilms. J. Ind. Microbiol. 15:137140.
8. Da Silva, S.,, R. Basséguy, and, A. Bergel. 2002. The role of hydrogenases in the anaerobic microbiologically influenced corrosion of steels. Bioelectrochemistry 56:7779.
9. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton, and, E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
10. Freier, D.,, C. P. Mothershed, and, J. Wiegel. 1988. Characterization of Clostridium thermocellum JW20. Appl. Environ. Microbiol. 54:204211.
11. Fukushima, R. S.,, P. J. Weimer, and, D. A. Kunz. 2003. Use of photocatalytic reduction to hasten preparation of culture media for saccharolytic Clostridium species. Braz. J. Microbiol. 34:2226.
12. Gaudet, G., and, B. Gaillard. 1987. Vesicle formation and cellulose degradation in Bacteroides succinogenes cultures: ultrastructural aspects. Arch. Microbiol. 148:150154.
13. Gehin, A.,, E. Gelhaye,, G. Raval, and, H. Petitdemange. 1995. Clostridium cellulolyticum viability and sporulation under cellobiose starvation conditions. Appl. Environ. Microbiol. 61:868871.
14. Gelhaye, E.,, H. Petitdemange, and, R. Gay. 1992. Characteristics of cellulose colonization by a mesophilic, cellulolytic Clostridium (strain C401). Res. Microbiol. 143:891895.
15. Hansen, M. C.,, R. J. Palmer Jr., and, D. C. White. 2000. Flowcell culture of Porphyromonas gingivalis biofilms under anaerobic conditions. J. Microbiol. Methods 40:233239.
16. Henrichsen, J. 1972. Bacterial surface translocation: a survey and a classification. Bacteriol. Rev. 36:478503.
17. Hostalka, F.,, A. Moultrie, and, F. Stutzenberger. 1992. Influence of carbon source on cell surface topology of Thermomonospora curvata. J. Bacteriol. 174:70487052.
18. Hungate, R. E. 1969. A roll tube method for cultivation of strict anaerobes. Methods Microbiol. 3B:117132.
19. Jensen, P. D.,, M. T. Hardin, and, W. P. Clarke. 2008. Measurement and quantification of sessile and planktonic microbial populations during the anaerobic digestion of cellulose. Water Sci. Technol. 57:465469.
20. Jensen, P. D.,, M. T. Hardin, and, W. P. Clarke. 2009. Effect of biomass concentration and inoculum source on the rate of anaerobic cellulose solubilization. Bioresour. Technol. 100:52195225.
21. Jones, L. R.,, I. A. Watson-Craik, and, E. Senior. 1997. Image analysis for the study of the development of anaerobic biofilms on materials characteristic of landfilled refuse. Water Sci. Technol. 36:485492.
22. Kim, T.-J.,, B. M. Young, and, G. M. Young. 2008. Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl. Environ. Microbiol. 74:54665474.
23. Kobayashi, K. 2008. SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis. Mol. Microbiol. 69:13991410.
24. Kudo, H.,, K.-J. Cheng, and, J. W. Costerton. 1987. Electron microscopic study of the methylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can. J. Microbiol. 33:267272.
25. Lamed, R.,, J. Naimark,, E. Morgenstern, and, E. A. Bayer. 1987. Specialized cell surface structures in cellulolytic bacteria. J. Bacteriol. 169:37923800.
26. Larsen, P.,, B. H. Olesen,, P. H. Nielsen, and, J. L. Nielsen. 2008. Quantification of lipids and protein in thin biofilms by fluorescence staining. Biofouling 24:241250.
27. Lovley, D. R. 2008. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19:564571.
28. Lu, Y.,, Y. P. Zhang, and, L. R. Lynd. 2006. Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc. Natl. Acad. Sci. USA 103:1616516169.
29. Lynd, L. R.,, P. J. Weimer,, G. Wolfaardt, and, Y.-P. Zhang. 2006. Cellulose hydrolysis by Clostridium thermocellum: a microbial perspective, p. 95117. In I. A. Kataeva (ed.), Cellulosome. Nova Science Publishers, Inc., Hauppauge, NY.
30. Lynd, L. R.,, P. J. Weimer,, W. H. Van Zyl, and, I. S. Pretorius. 2002. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66:506577.
31. McAllister, T. A.,, H. D. Bae,, G. A. Jones, and, K. J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:30043018.
32. Mehanna, M.,, R. Basseguy,, M.-L. Delia, and, A. Bergel. 2008. Role of direct microbial electron transfer in corrosion of steels. Electrochem. Commun. 11:568571.
33. Merod, R. T.,, J. E. Warren,, H. McCaslin, and, S. Wuertz. 2007. Toward automated analysis of biofilm architecture: bias caused by extraneous confocal laser scanning microscopy images. Appl. Environ. Microbiol. 73:49224930.
34. Miron, J.,, D. Ben-Ghedalia, and, M. Morrison. 2001. Invited review: adhesion mechanisms of rumen cellulolytic bacteria. J. Dairy Sci. 84:12941309.
35. Miron, J., and, C. W. Forsberg. 1999. Characterisation of cellulose-binding proteins that are involved in the adhesion mechanism of Fibrobacter intestinalis DR7. Appl. Microbiol. Biotechnol. 51:491497.
36. Morris, E. J., and, O. J. Cole. 1987. Relationship between cellulolytic activity and adhesion to cellulose in Ruminococcus albus. J. Gen. Microbiol. 133:10231032.
37. Morrison, M., and, J. Miron. 2000. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? FEMS Microbiol. Lett. 185:109115.
38. Nikolaev, Y. A., and, V. K. Plakunov. 2007. Biofilm—“city of microbes” or an analogue of multicellular organisms? Microbiology 76:125138.
39. O’Sullivan, C.,, P. C. Burrell,, M. Pasmore,, W. P. Clarke, and, L. L. Blackall. 2008. Application of flowcell technology for monitoring biofilm development and cellulose degradation in leachate and rumen systems. Bioresour. Technol. 100:492496.
40. O’Sullivan, C. A.,, P. C. Burrell,, W. P. Clarke, and, L. L. Blackall. 2005. Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnol. Bioeng. 92:871878.
41. O’Toole, G.,, H. B. Kaplan, and, R. Kolter. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54:4979.
42. Otto, K. 2008. Biophysical approaches to study the dynamic process of bacterial adhesion. Res. Microbiol. 159:415422.
43. Ozkan, M.,, S. G. Desai,, Y. Zhang,, D. M. Stevenson,, J. Beane,, E. A. White,, M. L. Guerinot, and, L. R. Lynd. 2001. Characterization of 13 newly isolated strains of anaerobic, cellulolytic, thermophilic bacteria. J. Ind. Microbiol. Biotechnol. 27:275280.
44. Palmer, R. J., Jr. 1999. Microscopy flowcells: perfusion chambers for real-time study of biofilms. Methods Enzymol. 310:160166.
45. Prigent-Combaret, C.,, O. Vidal,, C. Dorel, and, P. Lejeune. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacteriol. 181:59936002.
46. Purevdorj, B.,, J. W. Costerton, and, P. Stoodley. 2002. Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 68:44574464.
47. Rau, U.,, A. Kuenz,, V. Wray,, M. Nimtz,, J. Wrenger, and, H. Cicek. 2008. Production and structural analysis of the poly-saccharide secreted by Trametes (Coriolus) versicolor ATCC 200801. Appl. Microbiol. Biotechnol. 81:827837.
48. Rotter, B. E.,, D. A. Barry,, J. I. Gerhard, and, J. S. Small. 2008. Parameter and process significance in mechanistic modeling of cellulose hydrolysis. Bioresour. Technol. 99:57385748.
49. Schwarz, W. H. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56:634649.
50. Simões, M.,, S. Cleto,, M. O. Pereira, and, M. J. Vieira. 2007. Influence of biofilm composition on the resistance to detachment. Water Sci. Technol. 55:473480.
51. Stoodley, P.,, K. Sauer,, D. G. Davies, and, J. W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56:187209.
52. Syutsubo, K.,, Y. Nagaya,, S. Sakai, and, A. Miya. 2005. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process. Water Sci. Technol. 52:7984.
53. Tsoi, T. V.,, N. A. Chuvil’skaia,, I. I. Atakishieva,, T. T. Dzhavakhishvili, and, V. K. Akimenko. 1987. Clostridium thermocellum—a new object of genetic studies. Mol. Genet. Mikrobiol. Virusol. 1987(11): 1823.
54. Verstraeten, N.,, K. Braeken,, B. Debkumari,, M. Fauvart,, J. Fransaer,, J. Vermant, and, J. Michiels. 2008. Living on a surface: swarming and biofilm formation. Trends Microbiol. 16:496506.
55. Watnick, P., and, R. Kolter. 2000. Biofilm, city of microbes. J. Bacteriol. 182:26752679.
56. Weimer, P. J.,, N. P. J. Price,, O. Kroukamp,, L.-M. Joubert,, G. M. Wolfaardt, and, W. H. Van Zyl. 2006. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7. Appl. Environ. Microbiol. 72:75597566.
57. Wolfaardt, G. M.,, J. R. Lawrence,, R. D. Robarts,, S. J. Caldwell, and, D. E. Caldwell. 1994. Multicellular organization in a degradative biofilm community. Appl. Environ. Microbiol. 60:434446.
58. Yousef-Coronado, F.,, M. L. Travieso, and, M. Espinosa-Urgel. 2008. Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida. FEMS Microbiol. Lett. 288:118124.

Tables

Generic image for table
TABLE 1

List of stain stocks and working volumes used on continuous-flow cultures of in confocal laser scanning microscopy

Citation: Dumitrache A, Wolfaardt G, Lynd L. 2010. Surface Microbiology of Cellulolytic Bacteria, p 634-643. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch44

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error