1887

Chapter 51 : Bioreactor Automation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Bioreactor Automation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap51-1.gif /docserver/preview/fulltext/10.1128/9781555816827/9781555815127_Chap51-2.gif

Abstract:

The goal of bioreactor control is to manage the cells’ environment and metabolism to maximize productivity and product quality. This chapter introduces basic automation terminology and concepts as well as the rationale for implementing various levels of automation. Before designing or purchasing an automation system, the full range of process operations and requirements must be understood. Major operations associated with a given batch typically consist of equipment preparation and assembly, sterilization, inoculation, cell growth and production, and cleaning. Bioreactor measurements can be categorized by the physical location of the sensor relative to the process they are measuring. Typical in-line measurements of reactor conditions include pH, dissolved oxygen (DO), dissolved carbon dioxide, pressure, temperature, weight/level, foam level, and agitation speed. Historically, various measurements at-line or off-line are used to monitor cell growth and metabolism of the cell culture. Most bioreactor automation uses a single-input, single-output controller, which consists of a sensor input, a controller, and a control device/actuator. The controller calculates an output to send to the control device(s) based on the current and historical values obtained from the controlled variable (CV) relative to the desired set point (SP). Cultures with very high O demand may also require the pressure of the bioreactor to be increased, which causes the concentration of all dissolved gases to increase.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51

Key Concept Ranking

Carbon Dioxide
0.55644983
pH Control
0.5080603
Temperature Control
0.49519494
Plasma Membrane
0.45286822
0.55644983
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Typical bioreactor components.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

On/off range control.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

On/off pH range control.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

On/off control with deadband.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Adaptive on/off control.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

PID measurements.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

PID term contributions.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Adaptive PID control.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Split range PID control.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Split range output.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Temperature control example.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12
FIGURE 12

Automation I/O hardware examples.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 13
FIGURE 13

PLC/SCADA network examples.

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816827.ch51
1. Arnold, A.,, R. Gaensakoo,, L. M. Harvey, and, B. McNeil. 2002. Use of at-line and in-situ near infrared spectroscopy to monitor biomass in an industrial fed-batch Escherichia coli process. Biotechnol. Bioeng. 80:405413.
2. Azevedo, S. F.,, R. Oliviera, and, B. Sonnleitner. 2001. New methodologies for multiphase bioreactors 3: data acquisition, modelling and control, p. 5784. In M. Joa-quim,, S. Cabral,, M. Mota, and, J. Tramper (ed.), Multiphase Bioreactor Design. Taylor & Francis Inc., New York, NY.
3. Bailey, J. E., and, D. F. Ollis. 1986. Biochemical Engineering Fundamentals, 2nd ed. McGraw-Hill, Inc., New York, NY.
4. Bastin, G., and, D. Dochain. 1990. In-Line Estimation and Adaptive Control of Bioreactors. Elsevier Science Publishers, Amsterdam, The Netherlands.
5. Buckbee, G., and, J. Alford. 2008. Automation Applications in Bio-Pharmaceuticals, p. 2834. ISA, Research Triangle Park, NC.
6. Buckland, B.,, T. Brix,, H. Fastert,, K. Gbewonyo,, G. Hunt, and, D. Jain. 1985. Fermentation exhaust gas analysis using mass spectrometry. Bio/Technology 3:982988.
7. Clark, L. C., Jr. 1956. Monitor and control of blood and tissue oxygenation. Trans. Am. Soc. Artif. Intern. Org. 2:4145.
8. Cooney, C. L.,, D. I. C. Wang, and, R. I. Mateles. 1968. Measurement of heat evolution and correlation with oxygen consumption during microbial growth. Biotechnol. Bioeng. 11:269281.
9. Cooney, C. L.,, H. Y. Wang, and, D. I. C. Wang. 1977. Computer-aided material balancing for prediction of fermentation parameters. Biotechnol. Bioeng. 19:5567.
10. El-Mansi, E. M. T.,, C. F. A. Bryce,, A. L. Demain, and, A. R. Allman. 2007. Fermentation Microbiology and Biotechnology. CRC Press, Taylor & Francis Group, Boca Raton, FL.
11. Hall, J. W., and, A. Pollard. 1992. Near-infrared spectro-photometry: a new dimension in clinical chemistry. Clin. Chem. 38:16231631.
12. International Society of Automation. 2006. Batch Control Part 1: Models and Terminology. ISA-88.01–1995 (R2006). http://www.isa.org/Content/Microsites165/SP18,_Instrument_Signals_and_Alarms/Home163/ISA_Standards_for_Committee_Use/S_8801.PDF. (Online.)
13. Johnson, M. J.,, J. Borowski, and, C. Engblom. 1964. Steam sterilizable probes for dissolved oxygen measurement. Biotechnol. Bioeng. 6:457468.
14. Junker, B. H., and, H. Y. Wang. 2006. Bioprocess monitoring and computer control: key roots of the current PAT initiative. Biotechnol. Bioeng. 95:226261.
15. Junker, B. H.,, J. Reddy,, K. Gbewonyo, and, R. Greasham. 1994. In-line and in-situ monitoring technology for cell density measurement in microbial and animal cell cultures. Bioproc. Eng. 10:195207.
16. Leisola, M., and, V. Kauppinen. 1978. Automatic assay of cellulase activity during fermentation. Biotechnol. Bioeng. 20:837846.
17. Li, J., and, A. E. Humphrey. 1990. Use of fluorometry for monitoring and control of a bioreactor. Biotechnol. Bioeng. 37:10431049.
18. Lim, H., and, K.-S. Lee. 1991. Control of bioreactor systems, p. 509560. In K. Schugerl (ed.), Measuring, Modelling and Control. VCH, Weinheim, Germany.
19. MacInnes, D. A., and, M. Dole. 1930. The behavior of glass electrodes of different compositions. J. Am. Chem. Soc. 52:2936.
20. Nyiri, L. K.,, G. M. Toth, and, M. Charles. 1975. Application of computers to the analysis and control of microbiological processes. Biotechnol. Bioeng. Symp. 4:613628.
21. Nyiri, L. K.,, J. D. Wilson,, A. E. Humphrey, and, C. S. Harmes. December, 1975. Method and apparatus for control of biochemical processes. U.S. patent no. 3,926,738.
22. Pattison, R. N.,, J. Swamy,, B. Mendenhall,, C. Hwang, and, B. T. Frohlich. 2000. Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor. Biotechnol. Prog. 16:769774.
23. Perley, G. A. December, 1945. Improvements in the manufacture of glass electrodes. British patent GB574029.
24. Schügerl, K. 2000. Development of bioreactor engineering, p. 4951. In T. Scheper,, A. Fiechter,, W. Babel,, H. W. Blanch,, C. L. Cooney,, I. Endo,, S.-O. Enfors,, K.-E. L. Eriksson,, M. Hoare,, B. Mattiasson,, H. J. Rehm,, P. L. Rogers,, H. Sahm,, K. Schügerl,, G. Stephanopoulos,, G. T. Tsao,, K. Venkat,, J. Villadsen,, U. von Stockar, and, C. Wandrey (ed.), Advances in Biochemical Engineering Biotechnology: History of Modern Biotechnology II. Springer, Berlin, Germany.
25. Seborg, D. E.,, T. F. Edgar, and, D. A. Mellichamp. 2004. Process Dynamics and Control, 2nd ed. John Wiley & Sons, Inc., New York, NY.
26. Shuler, M. L., and, F. Kargi. 2002. Bioprocess Engineering Basic Concepts, p. 307311. Prentice-Hall, New Delhi, India.
27. Sonnleitner, B. 2000. Instrumentation of biotechnologi-cal processes, p. 321. In T. Scheper,, B. Sonnleitner,, W. Babel,, H. W. Blanch,, C. L. Cooney,, S.-O. Enfors,, K.-E. L. Eriksson,, A. Fiechter,, A. M. Klibanov,, B. Mattiasson,, S. B. Primrose,, H. J. Rehm,, P. L. Rogers,, H. Sahm,, K. Schügerl,, G. T. Tsao,, K. Venkat,, J. Villadsen,, U. von Stockar, and, C. Wandrey (ed.), Advances in Biochemical Engineering Biotechnology: Bioanalysis and Biosensors for Bioprocess Monitoring. Springer, Berlin, Germany.
28. Tosi, S.,, R. Maddalena,, E. Tamburini,, G. Vaccari,, A. Amaretti, and, D. Matteuzzi. 2003. Assessment of in-line near infrared spectroscopy for continuous monitoring of fermentation processes. Biotechnol. Prog. 19:18161821.
29. Wang, N. S., and, G. N. Stephanopoulos. 1984. Computer application to fermentation processes. CRC Crit. Rev. Biotechnol. 2:190.

Tables

Generic image for table
TABLE 1

Typical bioreactor control loops

Citation: Hopkins D, St. Anad M, Prior J. 2010. Bioreactor Automation, p 719-730. In Baltz R, Demain A, Davies J, Bull A, Junker B, Katz L, Lynd L, Masurekar P, Reeves C, Zhao H (ed), Manual of Industrial Microbiology and Biotechnology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816827.ch51

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error