1887

Chapter 10 : Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap10-2.gif

Abstract:

This chapter reviews pulsed-field gel electrophoresis (PFGE) as an epidemiological tool, considering (i) factors that influence the electrophoretic process, (ii) methodological streamlining, (iii) the troubleshooting of common problems, (iv) quality assurance, (v) use of PFGE for continuous surveillance, and (vi) issues of data interpretation. To be suitable for reliable PFGE analysis, intact chromosomal DNA must be isolated in a protected environment free from mechanical, chemical, and enzymatic degradation to yield a clear and reproducible macrorestriction fragment pattern. As PFGE analysis is applied to larger study populations, the need for computer-assisted analysis (CAA) of banding patterns becomes increasingly evident. At the laboratory level the quality assurance/ quality control (QA/QC) system consists of strict adherence to each of the PFGE standard operating procedures (SOPs) as described in the laboratory QA/QC manual. It is important to emphasize that the successful establishment of dynamic databases is dependent on strict adherence to well-defined QA and QC criteria. An important component of the protocol standardization and QA/QC program for PulseNet is the annual update meeting. Molecular typing, along with a variety of other microbiological assays is clearly moving toward sequence-based analysis. However, this approach is still being validated for a variety of applications including strain typing. Thus far, none of the new sequence-based typing methods are as broadly applicable as PFGE. Therefore, while this problem will undoubtedly be solved in the future, at present PFGE will clearly continue to provide meaningful epidemiological data on molecular typing in a variety of important settings for years to come.

Citation: Goering R, Ribot E, Gerner-Smidt P. 2011. Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data, p 167-177. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch10

Key Concept Ranking

Bacterial Genetics
0.5101027
Pulsed-Field Gel Electrophoresis
0.49430084
Restriction Fragment Length Polymorphism
0.4856289
Single Nucleotide Polymorphism Analysis
0.47695696
0.5101027
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

SmaI-digested chromosomal DNA from six isolates of MRSA analyzed by PFGE at 6 V/cm, 14°C, 120° included angle, with switching from 1 to 34 s for 22 h (A) or 1 to 10 s for 12 h (B). Lane B6 is the 1-kb DNA ladder (Invitrogen Life Technologies, Rockville, MD).

Citation: Goering R, Ribot E, Gerner-Smidt P. 2011. Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data, p 167-177. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Illustration of common problems in PFGE analysis including incomplete restriction-endonuclease digestion (A, lanes 2 to 4) and electrophoresis-induced degradation of banding patterns (B, lanes 2 to 5) corrected by inclusion of 75 µM thiourea in the PFGE running buffer (C).

Citation: Goering R, Ribot E, Gerner-Smidt P. 2011. Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data, p 167-177. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

PFGE gel showing the PulseNet global reference standard, XbaI-restricted serotype Braenderup H9812, in lanes 1, 5, and 10. The placement of the reference standard is critical for proper normalization and analysis of patterns generated in different laboratories.

Citation: Goering R, Ribot E, Gerner-Smidt P. 2011. Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data, p 167-177. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Diagrammatic representation of different chromosomal changes which may or may not involve a rare restriction site (A) and the influence these genetic events would have on PFGE restriction-fragment analysis (B).

Citation: Goering R, Ribot E, Gerner-Smidt P. 2011. Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data, p 167-177. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

PFGE analysis of 11 isolates of serovar Agona from a 2008 outbreak in the United States associated with a commercial cereal product. Identical PFGE patterns with XbaI were resolved by digestion with BlnI. (PulseNet, unpublished.)

Citation: Goering R, Ribot E, Gerner-Smidt P. 2011. Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data, p 167-177. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816834.ch10
1. Barrett, T. J.,, H. Lior,, J. H. Green,, R. Khakhria,, J. G. Wells,, B. P. Bell,, K. D. Greene,, J. Lewis, and, P. M. Griffin. 1994. Laboratory investigation of a multistate food-borne outbreak of Escherichia coli O157:H7 by using pulsed-field gel electrophoresis and phage typing. J. Clin. Microbiol. 32:30133017.
2. Bielaszewska, M.,, R. Prager,, W. Zhang,, A. W. Friedrich,, A. Mellmann,, H. Tschape, and, H. Karch. 2006. Chromosomal dynamism in progeny of outbreak-related sorbitol-fermenting enterohemorrhagic Escherichia coli O157:NM. Appl. Environ. Microbiol. 72:19001909.
3. Birren, B. W. 1988. Optimized conditions for pulsed field gel electrophoretic separations of DNA. Nucleic Acids Res. 16:75637582.
4. Cardinali, G.,, and A. Martini. 1999. Critical observations on computerized analysis of banding patterns with commercial software packages. J. Clin. Microbiol. 37:876877.
5. Carle, G. F.,, M. Frank, and, M. V. Olson. 1986. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232:6568.
6. Carle, G. F.,, and M. V. Olson. 1984. Separation of chromosomal DNA molecules from yeast by orthogonalfield-alternation gel electrophoresis. Nucleic Acids Res. 12:56475664.
7. Chang, N.,, and L. Chui. 1998. A standardized protocol for the rapid preparation of bacterial DNA for pulsed-field gel electrophoresis. Diagn. Microbiol. Infect. Dis. 31:275279.
8. Chu, G.,, D. Vollrath, and, R. W. Davis. 1986. Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:15821585.
9. Corkill, J. E.,, R. Graham,, C. A. Hart, and, S. Stubbs. 2000. Pulsed-field gel electrophoresis of degradationsensitive DNAs from Clostridium difficile PCR ribotype 1 strains. J. Clin. Microbiol. 38:27912792.
10. Duck, W. M.,, C. D. Steward,, S. N. Banerjee,, J. E. McGowan, Jr., and, F. C. Tenover. 2003. Optimization of computer software settings improves accuracy of pulsed-field gel electrophoresis macrorestriction fragment pattern analysis. J. Clin. Microbiol. 41:30353042.
11. Gardiner, K.,, W. Laas, and, D. Patterson. 1986. Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Somat. Cell Mol. Genet. 12:185195.
12. Gautom, R. K. 1997. Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. J. Clin. Microbiol. 35:29772980.
13. Gerner-Smidt, P.,, J. Kincaid,, K. Kubota,, K. Hise,, S. B. Hunter,, M. A. Fair,, D. Norton,, A. Woo-Ming,, T. Kurzynski,, M. J. Sotir,, M. Head,, K. Holt, and, B. Swaminathan. 2005. Molecular surveillance of shiga toxigenic Escherichia coli O157 by PulseNet USA. J. Food Prot. 68:19261931.
14. Goering, R. V. 1998. The molecular epidemiology of nosocomial infection: an overview of principles, application, and interpretation, p. 131-157. In S. Specter,, M. Bendinelli, and, H. Friedman (ed.), Rapid Detection of Infectious Agents. Plenum Press, New York, NY.
15. Goering, R. V. 2000. The molecular epidemiology of nosocomial infection: past, present, and future. Rev. Med. Microbiol. 11:145152.
16. Goering, R. V.,, and F. C. Tenover. 1997. Epidemiological interpretation of chromosomal macro-restriction fragment patterns analyzed by pulsed-field gel electrophoresis. J. Clin. Microbiol. 35:24322433.
17. Goering, R. V.,, and M. A. Winters. 1992. Rapid method for epidemiological evaluation of gram-positive cocci by field inversion gel electrophoresis. J. Clin. Microbiol. 30:577580.
18. Graves, L. M.,, and B. Swaminathan. 2001. PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. Int. J. Food Microbiol. 65:5562.
19. Gupta, A.,, S. B. Hunter,, S. A. Bidol,, S. Dietrich,, J. Kincaid,, E. Salehi,, L. Nicholson,, C. A. Genese,, S. Todd-Weinstein,, L. Marengo,, A. C. Kimura, and, J. T. Brooks. 2004. Escherichia coli O157 cluster evaluation. Emerg. Infect. Dis. 10:18561858.
20. Heersma, H. F.,, K. Kremer,, D. Van Soolingen, and, J. Hauman. 2001. Setting up intra- and inter-laboratory databases of electrophoretic profiles, p. 47-75. In L. Dijkshoorn,, K. J. Towner, and, M. Struelens (ed.), New Approaches for the Generation and Analysis of Microbial Typing Data. Elsevier, Amsterdam, The Netherlands.
21. Hunter, S. B.,, P. Vauterin,, M. A. Lambert-Fair,, M. S. Van Duyne,, K. Kubota,, L. Graves,, D. Wrigley,, T. Barrett, and, E. Ribot. 2005. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the national databases to the new size standard. J. Clin. Microbiol. 43:10451050.
22. Hyytia-Trees, E. K.,, K. Cooper,, E. M. Ribot, and, P. Gerner-Smidt. 2007. Recent developments and future prospects in subtyping of foodborne bacterial pathogens. Future Microbiol. 2:175185.
23. Mulvey, M. R.,, L. Chui,, J. Ismail,, L. Louie,, C. Murphy,, N. Chang, and, M. Alfa. 2001. Development of a Canadian standardized protocol for subtyping methicillin-resistant Staphylococcus aureus using pulsed-field gel electrophoresis. J. Clin. Microbiol. 39:34813485.
24. Murchan, S.,, M. E. Kaufmann,, A. Deplano,, R. De Ryck,, M. Struelens,, C. E. Zinn,, V. Fussing,, S. Salmenlinna,, J. Vuopio-Varkila,, N. El Solh,, C. Cuny,, W. Witte,, P. T. Tassios,, N. Legakis,, W. Van Leeuwen,, A. Van Belkum,, A. Vindel,, I. Laconcha,, J. Garaizar,, S. Haeggman,, B. Olsson-Liljequist,, U. Ransjo,, G. Coombes, and, B. Cookson. 2003. Harmonization of pulsed-field gel electrophoresis protocols for epidemiological typing of strains of methicillin-resistant Staphylococcus aureus: a single approach developed by consensus in 10 European laboratories and its application for tracing the spread of related strains. J. Clin. Microbiol. 41:15741585.
25. Rementeria, A.,, L. Gallego,, G. Quindos, and, J. Garaizar. 2001. Comparative evaluation of three commercial software packages for analysis of DNA polymorphism patterns. Clin. Microbiol. Infect. 7:331336.
26. Ribot, E. M.,, M. A. Fair,, R. Gautom,, D. N. Cameron,, S. B. Hunter,, B. Swaminathan, and, T. J. Barrett. 2006. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog. Dis. 3:5967.
27. Ribot, E. M.,, C. Fitzgerald,, K. Kubota,, B. Swaminathan, and, T. J. Barrett. 2001. Rapid pulsed-field gel electrophoresis protocol for subtyping of Campylobacter jejuni. J. Clin. Microbiol. 39:18891894.
28. Romling, U.,, and B. Tummler. 2000. Achieving 100% typeability of Pseudomonas aeruginosa by pulsed-field gel electrophoresis. J. Clin. Microbiol. 38:464465.
29. Schwartz, D. C.,, W. Saffran,, J. Welsh,, R. Haas,, M. Goldenberg, and, C. R. Cantor. 1983. New techniques for purifying large DNA’s and studying their properties and packaging. Cold Spring Harbor Symp. Quant. Biol. 47:189195.
30. Smith, C. L.,, and C. R. Cantor. 1987. Purification, specific fragmentation, and separation of large DNA molecules. Methods Enzymol. 155:449467.
31. Soto, S. M.,, I. Rodriguez,, M. R. Rodicio,, J. Vila, and, M. C. Mendoza. 2006. Detection of virulence determinants in clinical strains of Salmonella enterica serovar Enteritidis and mapping on macrorestriction profiles. J. Med. Microbiol. 55:365373.
32. Struelens, M. J.,, R. De Ryck, and, A. Deplano. 2001. Analysis of microbial genomic macrorestriction patterns by pulsed-field gel electrophoresis (PFGE) typing, p. 159-176. In L. Dijkshoorn,, K. J. Towner, and, M. Struelens (ed.), New Approaches for the Generation and Analysis of Microbial Typing Data. Elsevier, Amsterdam, The Netherlands.
33. Swaminathan, B.,, T. J. Barrett,, S. B. Hunter, and, R. V. Tauxe. 2001. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg. Infect. Dis. 7:382389.
34. Swaminathan, B.,, P. Gerner-Smidt,, L. K. Ng,, S. Lukinmaa,, K. M. Kam,, S. Rolando,, E. P. Gutierrez, and, N. Binsztein. 2006. Building PulseNet International: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. Foodborne Pathog. Dis. 3:3650.
35. Taylor, N. S.,, J. G. Fox,, N. S. Akopyants,, D. E. Berg,, N. Thompson,, B. Shames,, L. Yan,, E. Fontham,, F. Janney,, F. M. Hunter, and, P. Correa. 1995. Long-term colonization with single and multiple strains of Helicobacter pylori assessed by DNA fingerprinting. J. Clin. Microbiol. 33:918923.
36. Tenover, F. C.,, R. D. Arbeit, and, R. V. Goering. 1997. How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists. Infect. Control Hosp. Epidemiol. 18:426439.
37. Tenover, F. C.,, R. D. Arbeit,, R. V. Goering,, P. A. Mickelsen,, B. E. Murray,, D. H. Persing, and, B. Swaminathan. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:22332239.
38. Van Belkum, A.,, P. T. Tassios,, L. Dijkshoorn,, S. Haeggman,, B. Cookson,, N. K. Fry,, V. Fussing,, J. Green,, E. Feil,, P. Gerner-Smidt,, S. Brisse, and, M. Struelens. 2007. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin. Microbiol. Infect. 13(Suppl. 3):146.
39. Van Belkum, A.,, W. Van Leeuwen,, M. E. Kaufmann,, B. Cookson,, F. Forey,, J. Etienne,, R. Goering,, F. Tenover,, C. Steward,, F. O’Brien,, W. Grubb,, P. Tassios,, N. Legakis,, A. Morvan,, N. El Solh,, R. De Ryck,, M. Struelens,, S. Salmenlinna,, J. Vuopio-Varkila,, M. Kooistra,, A. Talens,, W. Witte, and, H. Verbrugh. 1998. Assessment of resolution and intercenter reproducibility of results of genotyping Staphylococcus aureus by pulsed-field gel electrophoresis of SmaI macrorestriction fragments: a multicenter study. J. Clin. Microbiol. 36:16531659.
40. van Ooyen, A. 2001. Theoretical aspects of pattern analysis, p. 31-45. In L. Dijkshoorn,, K. J. Towner, and, M. Struelens (ed.), New Approaches for the Generation and Analysis of Microbial Typing Data. Elsevier, Amsterdam, The Netherlands.
41. Vauterin, L.,, and P. Vauterin. 2006. Integrated databasing and analysis, p. 141-217. In E. Stackebrandt (ed.), Molecular Identification, Systematics, and Population Structure of Prokaryotes. Springer, Berlin, Germany.
42. Zhang, Y.,, M. A. Yakrus,, E. A. Graviss,, N. Williams-Bouyer,, C. Turenne,, A. Kabani, and, R. J. Wallace, Jr. 2004. Pulsed-field gel electrophoresis study of Mycobacterium abscessus isolates previously affected by DNA degradation. J. Clin. Microbiol. 42:55825587.

Tables

Generic image for table
TABLE 1

Restriction enzymes yielding optimum number and size range of chromosomal fragments for analysis by PFGE

Citation: Goering R, Ribot E, Gerner-Smidt P. 2011. Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data, p 167-177. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch10
Generic image for table
TABLE 2

Representative intenelationships between PFGE switching intervals and DNA size

Citation: Goering R, Ribot E, Gerner-Smidt P. 2011. Pulsed-Field Gel Electrophoresis: Laboratory and Epidemiologic Considerations for Interpretation of Data, p 167-177. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error