1887

Chapter 14 : Fluorescence Resonance Energy Transfer

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Fluorescence Resonance Energy Transfer, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap14-2.gif

Abstract:

This chapter discusses general fluorescence resonance energy transfer (FRET) probe technology and the use of FRET with single and dual hybridization probes in microbiology. It focuses on hydrolysis and hybridization FRET probes and the many variations used for detection of amplification products in PCR amplification. True multiplex assays simultaneously amplify different nucleic acid targets and result in multiple unique PCR products. These types of assays often have two or more sets of primers and probes and are most commonly used with genomic targets in which the amount of target nucleic acid is normally large and the ratio of the two target nucleic acids is close to unity. Recent applications of FRET probes in bacteriology include assays for , , , , , , complex, and , and and genotypes in . The use of homogeneous FRET probe technology for detection of PCR products provides an opportunity for microbiologists to use molecular detection in a closed system. The necessary specificity and sensitivity of many microbiology tests are achievable using PCR with FRET detection. The technology has become widely available, and configurations of instrumentation and FRET design are available for many applications. Hybridization FRET probes provide great sensitivity and specificity to real-time PCR with the benefit of sensitive detection of nucleic acid sequences with unexpected polymorphisms. The hybridization FRET probes also enable multiple formats for robust multiplexing reactions often with just a single set of primers and probes.

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14

Key Concept Ranking

Human immunodeficiency virus 1
0.4924877
Herpes simplex virus 1
0.42708263
Real-Time PCR
0.40542385
0.4924877
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

FRET signal generation uses the overlap of donor dye fluorescence with acceptor dye absorption.

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Two FRET Formats. In both formats the first dye (F1) is excited by λ which emits light at a longer wavelength (λ). In the first format, fluorescence from the fluorescent dye (F1) is quenched by the second dye (Q) and signal is only produced by separating the two dyes. In the second format, the emitted light (λ) from F1 is absorbed by F2 and re-emitted at a third wavelength (λ), and signal is only produced when the two dyes are near each other.

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Hydrolysis (TaqMan) probe detection. The dual-labeled, single-strand oligonucleotide probe is designed to anneal to sequences within the PCR product and contains two fluorochromes. The 5′ fluorochrome is called the “reporter” (R), whereas the 3′ fluorochrome functions as a quencher (Q). (A) During amplification, the probe binds to the template between the two PCR primers. (B) The polymerase encounters the probe and starts chewing away at the end with its 5′-to-3′ exonuclease activity. (C) The reporter fluorophore is released into solution, where it is free to fluoresce. (D) Multiple reporter fluorochromes are available to permit multiplexing PCR reactions for controls.

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Melting curve analysis. The decrease in FRET fluorescence signal due to the FRET probes disassociating with the amplification product is measured after the completion of all PCR cycles. The reaction vessel is slowly heated, and the signal is measured as a function of temperature. To aid determination of the middle of the melting curve (, shown at the top), the negative derivative of the melting curve, divided by the derivative of the temperature (shown at the bottom), is plotted. The transformed data display the (vertical line) as the apex of a peak.

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

(A) Effect of polymorphisms on hybridization FRET probes melting curve. A polymorphism under the probe will lower the annealing temperature and result in a lower melting curve . (B) LightCycler data with the melting curve above and melting peak below. A positive sample without mutations under the probes (, 63°C) and a sample with one base pair mutation (, 61°C) are shown. The negative control has no peak.

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

differences from polymorphisms in the 315 codon of in associated with isoniazid resistance compared to the wild-type (WT) sequence. Reprinted from reference with permission of the publisher.

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Differentiation of HSV-1 and HSV-2 by T using one set of primers and probes.

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

differences of mycobacterial species 16S rRNA, (TB), (MK), and (MI), obtained with one set of primers and probes. Reprinted from reference with permission of the publisher.

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Hybridization probe with SYBR Green. SYBR Green nonspecifically intercalates into double-stranded probe-amplification product, absorbs light (λ), and fluoresces (λ). The dye on the probe absorbs the emitted SYBR Green fluorescence and emits at a third wavelength (λ).

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816834.ch14
1. Abe, A.,, K. Inoue,, T. Tanaka,, J. Kato,, N. Kajiyama,, R. Kawaguchi,, S. Tanaka,, M. Yoshiba, and, M. Kohara. 1999. Quantitation of hepatitis B virus genomic DNA by real-time detection PCR. J. Clin. Microbiol. 37:28992903.
2. Abu-Halaweh, M.,, J. Bates, and, B. K. Patel. 2005. Rapid detection and differentiation of pathogenic Campylobacter jejuni and Campylobacter coli by real-time PCR. Res. Microbiol. 156:107114.
3. Afonina, I. A.,, M. W. Reed,, E. Lusby,, I. G. Shishkina, and, Y. S. Belousov. 2002. Minor groove binderconjugated DNA probes for quantitative DNA detection by hybridization-triggered fluorescence. Biotechniques 32:940944, 946949.
4. Bastien, P.,, G. W. Procop, and, U. Reischl. 2008. Quantitative real-time PCR is not more sensitive than “conventional” PCR. J. Clin. Microbiol. 46:18971900.
5. Berrada, H.,, J. M. Soriano,, Y. Pico, and, J. Manes. 2006. Quantification of Listeria monocytogenes in salads by real time quantitative PCR. Int. J. Food Microbiol. 107:202206.
6. Binnicker, M. J.,, S. P. Buckwalter,, J. J. Eisberner,, R. A. Stewart,, A. E. McCullough,, S. L. Wohlfiel, and, N. L. Wengenack. 2007. Detection of Coccidioides species in clinical specimens by real-time PCR. J. Clin. Microbiol. 45:173178.
7. Campsall, P. A.,, N. H. Au,, J. S. Prendiville,, D. P. Speert,, R. Tan, and, E. E. Thomas. 2004. Detection and genotyping of varicella-zoster virus by TaqMan allelic discrimination real-time PCR. J. Clin. Microbiol. 42:14091413.
8. Caplin, B. E.,, R. P. Rasmussen,, P. S. Benard, and, C. T. Wittwer. 1999. LightCycler hybridization probes: the most direct way to monitor PCR amplification for quantification and mutation detection. Biochemica 1:58.
9. Cradic, K. W.,, J. E. Wells,, L. Allen,, K. E. Kruckeberg,, R. J. Singh, and, S. K. Grebe. 2004. Substitution of 3′-phosphate cap with a carbon-based blocker reduces the possibility of fluorescence resonance energy transfer probe failure in real-time PCR assays. Clin. Chem. 50:10801082.
10. dela Cruz, W. P.,, M. M. Gozum,, S. F. Lineberry,, S. D. Stassen,, M. Daughtry,, N. A. Stassen,, M. S. Jones, and, O. L. Johnson. 2006. Rapid detection of enterotoxigenic Clostridium perfringens by real-time fluorescence resonance energy transfer PCR. J. Food Prot. 69:13471353.
11. Espy, M. J.,, R. Teo,, T. K. Ross,, K. A. Svien,, A. D. Wold,, J. R. Uhl, and, T. F. Smith. 2000. Diagnosis of varicella-zoster virus infections in the clinical laboratory by LightCycler PCR. J. Clin. Microbiol. 38:31873189.
12. Espy, M. J.,, J. R. Uhl,, P. S. Mitchell,, J. N. Thorvilson,, K. A. Svien,, A. D. Wold, and, T. F. Smith. 2000. Diagnosis of herpes simplex virus infections in the clinical laboratory by LightCycler PCR. J. Clin. Microbiol. 38:795799.
13. Espy, M. J.,, J. R. Uhl,, L. M. Sloan,, S. P. Buckwalter,, M. F. Jones,, E. A. Vetter,, J. D. Yao,, N. L. Wengenack,, J. E. Rosenblatt,, F. R. Cockerill, 3rd, and, T. F. Smith. 2006. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 19:165256. (Erratum, Clin. Microbiol. Rev. 19:595, 2006.)
14. Farcas, G. A.,, R. Soeller,, K. Zhong,, A. Zahirieh, and, K. C. Kain. 2006. Real-time polymerase chain reaction assay for the rapid detection and characterization of chloroquine-resistant Plasmodium falciparum malaria in returned travelers. Clin. Infect. Dis. 42:622627.
15. Fujita, O.,, M. Tatsumi,, K. Tanabayashi, and, A. Yamada. 2006. Development of a real-time PCR assay for detection and quantification of Francisella tularensis. Jpn. J. Infect. Dis. 59:4651.
16. Gohring, K.,, E. Mikeler,, G. Jahn, and, K. Hamprecht. 2006. Rapid simultaneous detection by real-time PCR of cytomegalovirus UL97 mutations in codons 460 and 520 conferring ganciclovir resistance. J. Clin. Microbiol. 44:45414544.
17. Gohring, K.,, E. Mikeler,, G. Jahn,, F. Rohde, and, K. Hamprecht. 2008. Rapid semiquantitative real-time PCR for the detection of human cytomegalovirus UL97 mutations conferring ganciclovir resistance. Antiviral Ther. 13:461466.
18. Heid, C. A.,, J. Stevens,, K. J. Livak, and, P. M. Williams. 1996. Real time quantitative PCR. Genome Res. 6:986994.
19. Hierl, T.,, U. Reischl,, P. Lang,, H. Hebart,, M. Stark,, P. Kyme, and, I. B. Autenrieth. 2004. Preliminary evaluation of one conventional nested and two real-time PCR assays for the detection of Toxoplasma gondii in immunocompromised patients. J. Med. Microbiol. 53:629632.
20. Holland, P. M.,, R. D. Abramson,, R. Watson, and, D. H. Gelfand. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′-3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA 88:72767280.
21. Kattar, M. M.,, P. A. Zalloua,, G. F. Araj,, J. Samaha-Kfoury,, H. Shbaklo,, S. S. Kanj,, S. Khalife, and, M. Deeb. 2007. Development and evaluation of real-time polymerase chain reaction assays on whole blood and paraffin-embedded tissues for rapid diagnosis of human brucellosis. Diagn. Microbiol. Infect. Dis. 59:2332.
22. Kearns, A. M.,, A. J. Turner,, C. E. Taylor,, P. W. George,, R. Freeman, and, A. R. Gennery. 2001. LightCycler-based quantitative PCR for rapid detection of human herpesvirus 6 DNA in clinical material. J. Clin. Microbiol. 39:30203021.
23. Kocjan, B. J.,, K. Seme, and, M. Poljak. 2008. Detection and differentiation of human papillomavirus genotypes HPV-6 and HPV-11 by FRET-based real-time PCR. J. Virol. Methods 153:245249.
24. Kosters, K.,, U. Reischl,, J. Schmetz,, M. Riffelmann, and, C. H. Wirsing von Konig. 2002. Real-time LightCycler PCR for detection and discrimination of Bordetella pertussis and Bordetella parapertussis. J. Clin. Microbiol. 40:17191722.
25. Kreuzer, K. A.,, A. Bohn,, U. Lass,, U. R. Peters, and, C. A. Schmidt. 2000. Influence of DNA polymerases on quantitative PCR results using TaqMan probe format in the LightCycler instrument. Mol. Cell. Probes 14:5760.
26. Kutyavin, I. V.,, I. A. Afonina,, A. Mills,, V. V. Gorn,, E. A. Lukhtanov,, E. S. Belousov,, M. J. Singer,, D. K. Walburger,, S. G. Lokhov,, A. A. Gall,, R. Dempcy,, M. W. Reed,, R. B. Meyer, and, J. Hedgpeth. 2000. 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 28:655661.
27. Li, H.,, J. S. Dummer,, W. R. Estes,, S. Meng,, P. F. Wright, and, Y. W. Tang. 2003. Measurement of human cytomegalovirus loads by quantitative real-time PCR for monitoring clinical intervention in transplant recipients. J. Clin. Microbiol. 41:187191.
28. Liu, W. C.,, M. Mizokami,, M. Buti,, M. Lindh,, K. C. Young,, K. T. Sun,, Y. C. Chi,, H. H. Li, and, T. T. Chang. 2006. Simultaneous quantification and genotyping of hepatitis B virus for genotypes A to G by real-time PCR and two-step melting curve analysis. J. Clin. Microbiol. 44:44914497.
29. Lo, C. L.,, P. H. Leung,, S. P. Yip,, T. S. To,, T. K. Ng, and, K. M. Kam. 2008. Rapid detection of pathogenic Vibrio parahaemolyticus by a sensitive and specific duplex PCR-hybridization probes assay using LightCycler. J. Appl. Microbiol. 105:575584.
30. Mancini, N.,, D. Clerici,, R. Diotti,, M. Perotti,, N. Ghidoli,, D. De Marco,, B. Pizzorno,, T. Emrich,, R. Burioni,, F. Ciceri, and, M. Clementi. 2008. Molecular diagnosis of sepsis in neutropenic patients with haematological malignancies. J. Med. Microbiol. 57:601604.
31. Mitsuhashi, M. 1996. Technical report. Part 1. Basic requirements for designing optimal oligonucleotide probe sequences. J. Clin. Lab. Anal. 10:277284.
32. Mitsuhashi, M. 1996. Technical report. Part 2. Basic requirements for designing optimal PCR primers. J. Clin. Lab. Anal. 10:285293.
33. Mussap, M.,, M. P. Molinari,, E. Senno,, P. Gritti,, B. Soro,, S. Mannelli, and, C. Fabris. 2007. New diagnostic tools for neonatal sepsis: the role of a real-time polymerase chain reaction for the early detection and identification of bacterial and fungal species in blood samples. J. Chemother. 19(Suppl. 2):3134.
34. Paolucci, M.,, M. G. Capretti,, P. Dal Monte,, L. Corvaglia,, M. P. Landini,, S. Varani,, A. Pession,, G. Faldella, and, V. Sambri. 2009. Laboratory diagnosis of late-onset sepsis in newborns by multiplex real-time PCR. J. Med. Microbiol. 58:533534.
35. Raggam, R. B.,, E. Leitner,, J. Berg,, G. Muhlbauer,, E. Marth, and, H. H. Kessler. 2005. Single-run, parallel detection of DNA from three pneumonia-producing bacteria by real-time polymerase chain reaction. J. Mol. Diagnostics 7:133138.
36. Razonable, R. R.,, R. A. Brown,, M. J. Espy,, A. Rivero,, W. Kremers,, J. Wilson,, C. Groettum,, T. F. Smith, and, C. V. Paya. 2001. Comparative quantitation of cytomegalovirus (CMV) DNA in solid organ transplant recipients with CMV infection by using two high-throughput automated systems. J. Clin. Microbiol. 39:44724476.
37. Ryncarz, A. J.,, J. Goddard,, A. Wald,, M. L. Huang,, B. Roizman, and, L. Corey. 1999. Development of a high-throughput quantitative assay for detecting herpes simplex virus DNA in clinical samples. J. Clin. Microbiol. 37:19411947.
38. Scotter, J. M.,, and S. T. Chambers. 2005. Comparison of galactomannan detection, PCR-enzyme-linked immunosorbent assay, and real-time PCR for diagnosis of invasive aspergillosis in a neutropenic rat model and effect of caspofungin acetate. Clin. Diagn. Lab. Immunol. 12:13221327.
39. Sheppard, C. L.,, T. G. Harrison,, R. Morris,, A. Hogan, and, R. C. George. 2004. Autolysin-targeted LightCycler assay including internal process control for detection of Streptococcus pneumoniae DNA in clinical samples. J. Med. Microbiol. 53:189195.
40. Shrestha, N. K.,, M. J. Tuohy,, G. S. Hall,, U. Reischl,, S. M. Gordon, and, G. W. Procop. 2003. Detection and differentiation of Mycobacterium tuberculosis and nontuberculous mycobacterial isolates by real-time PCR. J. Clin. Microbiol. 41:51215126.
41. Simpson, P.,, G. Higgins,, M. Qiao,, R. Waddell, and, T. Kok. 2007. Real-time PCRs for detection of Trichomonas vaginalis β-tubulin and 18S rRNA genes in female genital specimens. J. Med. Microbiol. 56:772777.
42. Sloan, L. M.,, B. J. Duresko,, D. R. Gustafson, and, J. E. Rosenblatt. 2008. Comparison of real-time PCR for detection of the tcdC gene with four toxin immunoassays and culture in diagnosis of Clostridium difficile infection. J. Clin. Microbiol. 46:19962001.
43. Tan, E. L.,, V. T. Chow,, S. H. Quak,, W. C. Yeo, and, C. L. Poh. 2008. Development of multiplex real-time hybridization probe reverse transcriptase polymerase chain reaction for specific detection and differentiation of Enterovirus 71 and Coxsackievirus A16. Diagn. Microbiol. Infect. Dis. 61:294301.
44. Tang, Y. W.,, S. Sriram,, H. Li,, S. Y. Yao,, S. Meng,, W. M. Mitchell, and, C. W. Stratton. 2009. Qualitative and quantitative detection of Chlamydophila pneumoniae DNA in cerebrospinal fluid from multiple sclerosis patients and controls. PLoS One 4:e5200.
45. Torres, M. J.,, A. Criado,, J. C. Palomares, and, J. Aznar. 2000. Use of real-time PCR and fluorimetry for rapid detection of rifampin and isoniazid resistance-associated mutations in Mycobacterium tuberculosis. J. Clin. Microbiol. 38:31943199.
46. Uhl, J. R.,, S. C. Adamson,, E. A. Vetter,, C. D. Schleck,, W. S. Harmsen,, L. K. Iverson,, P. J. Santrach,, N. K. Henry, and, F. R. Cockerill. 2003. Comparison of LightCycler PCR, rapid antigen immunoassay, and culture for detection of group A streptococci from throat swabs. J. Clin. Microbiol. 41:242249.
47. Vernel-Pauillac, F.,, V. Falcot,, D. Whiley, and, F. Merien. 2006. Rapid detection of a chromosomally mediated penicillin resistance-associated ponA mutation in Neisseria gonorrhoeae using a real-time PCR assay. FEMS Microbiol. Lett. 255:6674.
48. Vernel-Pauillac, F.,, and F. Merien. 2006. A novel realtime duplex PCR assay for detecting penA and ponA genotypes in Neisseria gonorrhoeae: comparison with phenotypes determined by the E-test. Clin. Chem. 52:22942296.
49. Vet, J. A.,, A. R. Majithia,, S. A. Marras,, S. Tyagi,, S. Dube,, B. J. Poiesz, and, F. R. Kramer. 1999. Multiplex detection of four pathogenic retroviruses using molecular beacons. Proc. Natl. Acad. Sci. USA 96:63946399.
50. Vince, A.,, S. Z. Lepej,, B. Barsic,, D. Dusek,, Z. Mitrovic,, R. Serventi-Seiwerth, and, B. Labar. 2008. LightCycler SeptiFast assay as a tool for the rapid diagnosis of sepsis in patients during antimicrobial therapy. J. Med. Microbiol. 57:13061307.
51. Vonberg, R. P.,, S. Haussler,, P. Vandamme, and, I. Steinmetz. 2006. Identification of Burkholderia cepacia complex pathogens by rapid-cycle PCR with fluorescent hybridization probes. J. Med. Microbiol. 55:721727.

Tables

Generic image for table
TABLE 1

Values of R with donor-acceptor pairs

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Generic image for table
TABLE 2

Comparison of real-time thermocyclers

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14
Generic image for table
TABLE 3

Hybridization FRET probe assays

Citation: Uhl J, Tang Y, Cockerill III F. 2011. Fluorescence Resonance Energy Transfer, p 231-244. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error