1887

Chapter 20 : Raman Spectroscopy for Bacterial Strain Typing

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Raman Spectroscopy for Bacterial Strain Typing, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap20-2.gif

Abstract:

In the past 20 years, phenotypic typing methods have been largely replaced by typing methods based on the comparison of genomic DNA (molecular typing), such as PCR fingerprinting, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). An alternative approach to bacterial typing is based on applying Raman spectroscopy to test subtle differences in the molecular composition of the biomass, reflecting differences in the genomic DNA. The most important advantages of Raman spectroscopy compared to established molecular typing methods are speed, high sample throughput, and ease of use. In a Raman scattering event, an incident photon transfers some of its energy to the molecule, which leads to a lower energy in the scattered photon than in the incident photon. The approach can be as simple as a visual assessment of clearly identifiable spectral features that can only correlate to the biochemical component of interest. A well-known example of a microorganism causing hospital-acquired infections (HAI) is methicillin-resistant (MRSA). Therefore, the authors used an MRSA reference collection to demonstrate the capabilities of Raman spectroscopy. This reference collection contained 20 well-characterized MRSA isolates that had previously been analyzed by multiple typing techniques. Using Raman spectroscopy as a bacterial typing tool, infection control teams will have a tool for the continuous monitoring of isolates in their hospital, and they will be aware of the need for corrective action earlier, all leading to an accurate, real-time rather than retrospective surveillance approach in combating HAI.

Citation: Willemse-Erix D, van Belkum A, Maquelin K. 2011. Raman Spectroscopy for Bacterial Strain Typing, p 313-324. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch20

Key Concept Ranking

Raman Spectroscopy
0.55788606
Pulsed-Field Gel Electrophoresis
0.46596152
Multilocus Sequence Typing
0.4469427
0.55788606
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Examples of Raman spectra obtained by measuring a single bacterial cell yeast cell and spore a.u., arbitrary units.

Citation: Willemse-Erix D, van Belkum A, Maquelin K. 2011. Raman Spectroscopy for Bacterial Strain Typing, p 313-324. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

(A) Most of the incident light will be scattered from a sample with the identical wavelength (λ), the so-called Rayleigh scattering. A fraction of the incident light will be scattered with a slightly higher wavelength (λ + Δ) due to the interaction with the molecules in the sample. (B) Raman spectrum of chloroform. This small molecule produces a relatively simple Raman spectrum. The peaks in the spectrum can be attributed to specific vibrations within the molecule. (C) Raman spectrum of Due to the complex molecular composition of the sample involved, a complex Raman spectrum is obtained. Based on the Raman spectra of purified compounds, spectral features can be assigned to specific molecular moieties in the bacterial cell. Most of the time, the whole spectrum is seen as a spectroscopic fingerprint and used for bacterial typing, a.u., arbitrary units.

Citation: Willemse-Erix D, van Belkum A, Maquelin K. 2011. Raman Spectroscopy for Bacterial Strain Typing, p 313-324. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

(A) Every instrument for Raman spectroscopy consists of four basic parts: 1, a laser as an excitation source; 2, a sample stage, where the light is focused on the sample and Raman scattered light is collected; 3, a spectrometer, in which the scattered light is detected; and 4, a computer to analyze the collected spectra. (B) Renishaw Raman instrument using a microscope. (C) River Diagnostics Raman module coupled to an inverted microscope. (D) Spectracell™ Raman analyzer developed by River Diagnostics as a dedicated instrument for microbiological analyses.

Citation: Willemse-Erix D, van Belkum A, Maquelin K. 2011. Raman Spectroscopy for Bacterial Strain Typing, p 313-324. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

(A) In automated analyses, an electrophoresis band pattern is transformed into a densitogram. Raman spectra resemble such a complex electrophoresis profile. (B) Difference between a spectrum of (solid line) and a spectrum of (dotted line). This difference spectrum shows many similarities to a typical carotene spectrum.

Citation: Willemse-Erix D, van Belkum A, Maquelin K. 2011. Raman Spectroscopy for Bacterial Strain Typing, p 313-324. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Raman classification of five MRSA reference isolates. Each isolate was cultured and measured in five independent sessions, and spectra were obtained after 18 h, 20 h, 22 h, and 24 h of incubation time. Raman clusters are found based on the PFGE patterns of the isolates. a.u., arbitrary units.

Citation: Willemse-Erix D, van Belkum A, Maquelin K. 2011. Raman Spectroscopy for Bacterial Strain Typing, p 313-324. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

To demonstrate the capabilities of Raman spectroscopy, an MRSA reference collection was used. The reproducibility of the Raman procedure is high, since the multiple independent measurements on the same isolate result in identical Raman clustering. The Raman clustering has a high concordance with PFGE, MLST, and variable-number tandem repeat analyses. Superscripts: 1, PFGE results obtained previously ( ); 2, sequence type as analyzed by MLST ( ); 3, results of a multilocus variable-number tandem repeat method ( ); 4, results obtained by using random amplification of polymorphic DNA analysis using three different primers (ERIC-2, AP1, and AP7) ( ).

Citation: Willemse-Erix D, van Belkum A, Maquelin K. 2011. Raman Spectroscopy for Bacterial Strain Typing, p 313-324. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Example of a local MRSA outbreak analysis. On day 1, a contact screening was started in the General Surgery ward. In total, 11 isolates were found. All three isolates from a staff member were found to be MRSA and analyzed. On day 3, the Raman results showed that the two MRSA isolates were not identical. This was confirmed by PFGE 4 days later.

Citation: Willemse-Erix D, van Belkum A, Maquelin K. 2011. Raman Spectroscopy for Bacterial Strain Typing, p 313-324. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Comparing outbreak and surveillance isolates. While MLVA finds mixed clusters, both AFLP and Raman find single-type clusters and distinguish between outbreak and unrelated isolates. na, not available.

Citation: Willemse-Erix D, van Belkum A, Maquelin K. 2011. Raman Spectroscopy for Bacterial Strain Typing, p 313-324. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

The role of Raman-based strain typing in an infection prevention strategy. Using this technology will lead to actionable typing results at an early stage, leading to rapid intervention possibilities, limited further transmission, and a reduction in HAI.

Citation: Willemse-Erix D, van Belkum A, Maquelin K. 2011. Raman Spectroscopy for Bacterial Strain Typing, p 313-324. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816834.ch20
1. Audurier, A.,, and C. Martin. 1989. Phage typing of Listeria monocytogenes. Int. J. Food Microbiol. 8:251257.
2. Bootsma, M. C.,, O. Diekmann, and, M. J. Bonten. 2006. Controlling methicillin-resistant Staphylococcus aureus: quantifying the effects of interventions and rapid diagnostic testing. Proc. Natl. Acad. Sci. USA 103:56205625.
3. Boyle, W. S.,, and G. E. Smith. 1970. Charge coupled semiconductor devices. J. Bell System Tech. 49:587593.
4. Bro, R.,, and J. J. Workman, Jr. 1997. Review of chemometrics applied to spectroscopy: 1985-95, part 3. Multi-way analysis. Appl. Spectrosc. Rev. 32:237261.
5. Buijtels, P. C.,, H. F. Willemse-Erix,, P. L. Petit,, H. P. Endtz,, G. J. Puppels,, H. A. Verbrugh,, A. van Belkum,, D. van Soolingen, and, K. Maquelin. 2008. Rapid identification of mycobacteria by Raman spectroscopy. J. Clin. Microbiol. 46:961965.
6. Canton, R. 2005. Role of the microbiology laboratory in infectious disease surveillance, alert and response. Clin. Microbiol. Infect. 11(Suppl. 1):38.
7. Choo-Smith, L. P.,, K. Maquelin,, T. van Vreeswijk,, H. A. Bruining,, G. J. Puppels,, N. A. Ngo Thi,, C. Kirschner,, D. Naumann,, D. Ami,, A. M. Villa,, F. Orsini,, S. M. Doglia,, H. Lamfarraj,, G. D. Sockalingum,, M. Manfait,, P. Allouch, and, H. P. Endtz. 2001. Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl. Environ. Microbiol. 67:14611469.
8. Clancy, M.,, A. Graepler,, M. Wilson,, I. Douglas,, J. Johnson, and, C. S. Price. 2006. Active screening in high-risk units is an effective and cost-avoidant method to reduce the rate of methicillin-resistant Staphylococcus aureus infection in the hospital. Infect. Control Hosp. Epidemiol. 27:10091017.
9. Dalterio, R. A.,, W. H. Nelson,, D. Britt, and, J. F. Sperry. 1987. An ultraviolet (242 nm excitation) resonance Raman study of live bacteria and bacterial components. Appl. Spectrosc. 41:417422.
10. Dalterio, R. A.,, W. H. Nelson,, D. Britt,, J. F. Sperry, and, F. J. Purcell. 1986. A resonance Raman microprobe study of chromobacteria in water. Appl. Spectrosc. 40:271272.
11. De Gelder, J.,, K. De Gussem,, P. Vandenabeele,, P. De Vos, and, L. Moens. 2007. Methods for extracting biochemical information from bacterial Raman spectra: an explorative study on Cupriavidus metallidurans. Anal. Chim. Acta 585:234240.
12. De Gelder, J.,, K. De Gussem,, P. Vandenabeele,, M. Vancanneyt,, P. De Vos, and, L. Moens. 2007. Methods for extracting biochemical information from bacterial Raman spectra: focus on a group of structurally similar biomolecules—fatty acids. Anal. Chim. Acta 603:167175.
13. Dierker, S. B.,, C. A. Murray,, J. D. Legrange, and, N. E. Schlotter. 1987. Characterization of order in Langmuir-Blodgett monolayers by unenhanced Raman spectroscopy. Chem. Phys. Lett. 137:453457.
14. Francois, P.,, A. Huyghe,, Y. Charbonnier,, M. Bento,, S. Herzig,, I. Topolski,, B. Fleury,, D. Lew,, P. Vaudaux,, S. Harbarth,, W. van Leeuwen,, A. van Belkum,, D. S. Blanc,, D. Pittet, and, J. Schrenzel. 2005. Use of an automated multiple-locus, variable-number tandem repeatbased method for rapid and high-throughput genotyping of Staphylococcus aureus isolates. J. Clin. Microbiol. 43:33463355.
15. Gelder, J. D.,, D. Willemse-Erix,, M. J. Scholtes,, J. I. Sanchez,, K. Maquelin,, P. Vandenabeele,, P. D. Boever,, G. J. Puppels,, L. Moens, and, P. D. Vos. 2008. Monitoring poly(3-hydroxybutyrate) production in Cupriavidus necator DSM 428 (H16) with raman spectroscopy. Anal. Chem. 80:21552160.
16. Gould, I. M. 2006. Costs of hospital-acquired methicillin-resistant Staphylococcus aureus (MRSA) and its control. Int. J. Antimicrob. Agents 28:379384.
17. Gross, A. J.,, and T. R. Herrmann. 2007. History of lasers. World J. Urol. 25:217220.
18. Grundmann, H.,, S. Barwolff,, A. Tami,, M. Behnke,, F. Schwab,, C. Geffers,, E. Halle,, U. B. Gobel,, R. Schiller,, D. Jonas,, I. Klare,, K. Weist,, W. Witte,, K. Beck-Beilecke,, M. Schumacher,, H. Ruden, and, P. Gastmeier. 2005. How many infections are caused by patient-to-patient transmission in intensive care units? Crit. Care Med. 33:946951.
19. Hagens, S.,, and M. J. Loessner. 2007. Application of bacteriophages for detection and control of foodborne pathogens. Appl. Microbiol. Biotechnol. 76:513519.
20. Harbarth, S.,, H. Sax, and, P. Gastmeier. 2003. The preventable proportion of nosocomial infections: an overview of published reports. J. Hosp. Infect. 54:258-266, 321.
21. Homan, W. L.,, D. Tribe,, S. Poznanski,, M. Li,, G. Hogg,, E. Spalburg,, J. D. Van Embden, and, R. J. Willems. 2002. Multilocus sequence typing scheme for Enterococcus faecium. J. Clin. Microbiol. 40:19631971.
22. Huang, S. S.,, D. Chen,, P. L. Pelczar,, V. R. Vepachedu,, P. Setlow, and, Y. Q. Li. 2007. Levels of Ca2 +-dipicolinic acid in individual bacillus spores determined using microfluidic Raman tweezers. J. Bacteriol. 189:46814687.
23. Hunter, P. R.,, and M. A. Gaston. 1988. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J. Clin. Microbiol. 26:24652466.
24. Hutsebaut, D.,, J. Vandroemme,, J. Heyrman,, P. Dawyndt,, P. Vandenabeele,, L. Moens, and, P. de Vos. 2006. Raman microspectroscopy as an identification tool within the phylogenetically homogeneous “Bacillus subtilis” group. Syst. Appl. Microbiol. 29:650660.
25. Jarvis, R. M.,, and R. Goodacre. 2004. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal. Chem. 76:4047.
26. Klevens, R. M.,, J. R. Edwards,, C. L. Richards, Jr.,, T. C. Horan,, R. P. Gaynes,, D. A. Pollock, and, D. M. Cardo. 2007. Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 122:160166.
27. Kyle, R. A.,, and M. A. Shampo. 1980. Sir Chandrasekkara Venkata Raman. JAMA 243:1634.
28. Maquelin, K.,, B. Cookson,, P. Tassios, and, A. van Belkum for the European Society for Microbiology and Infectious Diseases (ESCMID) Study Group on Epidemiological Markers (ESGEM). 2007. Current trends in the epidemiological typing of clinically relevant microbes in Europe. J. Microbiol. Methods 69:222226.
29. Maquelin, K.,, L. Dijkshoorn,, T. J. van der Reijden, and, G. J. Puppels. 2006. Rapid epidemiological analysis of Acinetobacter strains by Raman spectroscopy. J. Microbiol. Methods 64:126131.
30. Maquelin, K.,, C. Kirschner,, L. P. Choo-Smith,, N. A. Ngo-Thi,, T. van Vreeswijk,, M. Stammler,, H. P. Endtz,, H. A. Bruining,, D. Naumann, and, G. J. Puppels. 2003. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J. Clin. Microbiol. 41:324329.
31. Mobley, P. R. 1996. Review of chemometrics applied to spectroscopy: 1985-95, part 2. Appl. Spectrosc. Rev. 31:347368.
32. Naumann, D.,, D. Helm, and, H. Labischinski. 1991. Microbiological characterizations by FT-IR spectroscopy. Nature 351:8182.
33. Nelson, W. H.,, and J. F. Sperry. 1991. UV resonance Raman spectroscopic detection and identification of bacteria and other microorganisms, p. 97-143. In W. H. Nelson (ed.), Modern Techniques for Rapid Microbiological Analysis. VCH Publishers, New York, NY.
34. Nulens, E.,, E. Broex,, A. Ament,, R. H. Deurenberg,, E. Smeets,, J. Scheres,, F. H. van Tiel,, B. Gordts, and, E. E. Stobberingh. 2008. Cost of the meticillin-resistant Staphylococcus aureus search and destroy policy in a Dutch university hospital. J. Hosp. Infect. 68:301307.
35. Oust, A.,, T. Moretro,, K. Naterstad,, G. D. Sockalingum,, I. Adt,, M. Manfait, and, A. Kohler. 2006. Fourier transform infrared and Raman spectroscopy for characterization of Listeria monocytogenes strains. Appl. Environ. Microbiol. 72:228232.
36. Peterson, L. R.,, and G. A. Noskin. 2001. New technology for detecting multidrug-resistant pathogens in the clinical microbiology laboratory. Emerg. Infect. Dis. 7:306311.
37. Raman, C. V.,, and K. S. Krishnan. 1928. A new type of radiation. Nature 121:501502.
38. Schuster, K. C.,, E. Urlaub, and, J. R. Gapes. 2000. Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods 42:2938.
39. Struelens, M. 2002. Molecular typing: a key tool for the surveillance and control of nosocomial infection. Curr. Opin. Infect. Dis. 15:383385.
40. Suetens, C.,, L. Niclaes,, B. Jans,, J. Verhaegen,, A. Schuermans,, J. Van Eldere, and, F. Buntinx. 2006. Methicillin-resistant Staphylococcus aureus colonization is associated with higher mortality in nursing home residents with impaired cognitive status. J. Am. Geriatr. Soc. 54:18541860.
41. Top, J.,, L. M. Schouls,, M. J. Bonten, and, R. J. Willems. 2004. Multiple-locus variable-number tandem repeat analysis, a novel typing scheme to study the genetic relatedness and epidemiology of Enterococcus faecium isolates. J. Clin. Microbiol. 42:45034511.
42. van Belkum, A.,, P. T. Tassios,, L. Dijkshoorn,, S. Haeggman,, B. Cookson,, N. K. Fry,, V. Fussing,, J. Green,, E. Feil,, P. Gerner-Smidt,, S. Brisse,, M. Struelens, and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group on Epidemiological Markers (ESGEM). 2007. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin. Microbiol. Infect. 13(Suppl. 3):146.
43. van Belkum, A.,, W. van Leeuwen,, M. E. Kaufmann,, B. Cookson,, F. Forey,, J. Etienne,, R. Goering,, F. Tenover,, C. Steward,, F. O’Brien,, W. Grubb,, P. Tassios,, N. Legakis,, A. Morvan,, N. El Solh,, R. de Ryck,, M. Struelens,, S. Salmenlinna,, J. Vuopio-Varkila,, M. Kooistra,, A. Talens,, W. Witte, and, H. Verbrugh. 1998. Assessment of resolution and intercenter reproducibility of results of genotyping Staphylococcus aureus by pulsed-field gel electrophoresis of SmaI macrorestriction fragments: a multicenter study. J. Clin. Microbiol. 36:16531659.
44. van Leeuwen, W.,, C. Libregts,, M. Schalk,, J. Veuskens,, H. Verbrugh, and, A. van Belkum. 2001. Binary typing of Staphylococcus aureus strains through reversed hybridization using digoxigenin-universal linkage system-labeled bacterial genomic DNA. J. Clin. Microbiol. 39:328331.
45. Vincent, J. L.,, M. Chierego,, M. Struelens, and, B. Byl. 2004. Infection control in the intensive care unit. Expert Rev. Anti-Infect. Ther. 2:795805.
46. Weist, K.,, K. Pollege,, I. Schulz,, H. Ruden, and, P. Gastmeier. 2002. How many nosocomial infections are associated with cross-transmission? A prospective cohort study in a surgical intensive care unit. Infect. Control. Hosp. Epidemiol. 23:127132.
47. Wertheim, H. F.,, M. C. Vos,, H. A. Boelens,, A. Voss,, C. M. Vandenbroucke-Grauls,, M. H. Meester,, J. A. Kluytmans,, P. H. van Keulen, and, H. A. Verbrugh. 2004. Low prevalence of methicillin-resistant Staphylococcus aureus (MRSA) at hospital admission in the Netherlands: the value of search and destroy and restrictive antibiotic use. J. Hosp. Infect. 56:321325.
48. Willems, R. J.,, J. Top,, N. van Den Braak,, A. van Belkum,, H. Endtz,, D. Mevius,, E. Stobberingh,, A. van Den Bogaard, and, J. D. van Embden. 2000. Host specificity of vancomycin-resistant Enterococcus faecium. J. Infect. Dis. 182:816823.
49. Wolthuis, R.,, M. van Aken,, K. Fountas,, J. S. Robinson, Jr.,, H. A. Bruining, and, G. J. Puppels. 2001. Determination of water concentration in brain tissue by Raman spectroscopy. Anal. Chem. 73:39153920.
50. Workman, J. J., Jr. 1996. Review of chemometrics applied to spectroscopy: 1985-95, part 1. Appl. Spectrosc. Rev. 31:73124.
51. Xie, C.,, J. Mace,, M. A. Dinno,, Y. Q. Li,, W. Tang,, R. J. Newton, and, P. J. Gemperline. 2005. Identification of single bacterial cells in aqueous solution using confocal laser tweezers Raman spectroscopy. Anal. Chem. 77:43904397.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error