1887

Chapter 24 : Molecular Detection of and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Molecular Detection of and , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap24-2.gif

Abstract:

A nucleic acid amplification test (NAAT) may enable the laboratory to detect and with high sensitivity and specificity in traditional urogenital swabs and in different types of samples obtained noninvasively by patients at home or in other settings. This chapter provides guidance in selecting the most appropriate NAATs for and among available commercial and in-house assays. The selection of targets for detection of and is a major point in determining which assay to use for routine diagnostics. Sequence variation in the target region may lead to false-negative results, whereas the presence of the target gene in other species may lead to false-positive results. Routine diagnostics of infections is predominantly performed with commercial NAAT high-volume test systems, but there are still applications where in-house-developed methods are useful. The number of samples in a pool depends on the prevalence, and it is calculated from the number of samples, which needs to be tested individually from positive pools. Samples from a negative pool should be reported as negative. The rapid spread of a mutant variant of in Sweden escaping detection by some NAATs has been a warning that vigilance for drug-resistant mutants should be enforced.

Citation: Møller J, Herrmann B, Skov Jensen J, Westh H. 2011. Molecular Detection of and , p 383-396. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch24

Key Concept Ranking

Antimicrobial Susceptibility Testing
0.5967369
Multiplex Real-Time PCR
0.5030954
Aptima Combo 2 Assay
0.49650905
Restriction Fragment Length Polymorphism
0.44005656
0.5967369
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Relative limits of detection (log number of chlamydial elementary bodies per sample) of different technologies used to diagnose Modified from Carolyn Black, 1997 ( ).

Citation: Møller J, Herrmann B, Skov Jensen J, Westh H. 2011. Molecular Detection of and , p 383-396. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

False-positive rate (1 – PPV) of an assay, in percent axis), with a given sensitivity of 100% expressed as a function of prevalence axis) and specificity.

Citation: Møller J, Herrmann B, Skov Jensen J, Westh H. 2011. Molecular Detection of and , p 383-396. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Rates (cases per 100,000 population) of reported infection in selected countries from 1989 to 2007. Compiled from various sources including references and .

Citation: Møller J, Herrmann B, Skov Jensen J, Westh H. 2011. Molecular Detection of and , p 383-396. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816834.ch24
1. Bang, D.,, L. Angelso,, B. Schirakow, and, H. Westh. 2003. Comparison of the Becton Dickinson strand displacement amplification and Cobas Amplicor Roche PCR for the detection of Chlamydia trachomatis: pooling versus individual tests. Clin. Microbiol. Infect. 9:10201023.
2. Bennett, J. S.,, K. A. Jolley,, P. F. Sparling,, N. J. Saunders,, C. A. Hart,, I. M. Feavers, and, M. C. Maiden. 2007. Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences from multilocus sequence typing. BMC Biol. 5:35.
3. Black, C. M. 1997. Current methods of laboratory diagnosis of Chlamydia trachomatis infections. Clin. Microbiol. Rev. 10:160184.
4. Blake, D. R.,, T. C. Quinn, and, C. A. Gaydos. 2008. Should asymptomatic men be included in chlamydia screening programs? Cost-effectiveness of chlamydia screening among male and female entrants to a national job training program. Sex. Transm. Dis. 35:91101.
5. Boel, C. H.,, C. M. van Herk,, P. J. Berretty,, G. H. On-land, and, A. J. van den Brule. 2005. Evaluation of conventional and real-time PCR assays using two targets for confirmation of results of the COBAS AMPLICOR Chlamydia trachomatis/Neisseria gonorrhoeae test for detection of Neisseria gonorrhoeae in clinical samples. J. Clin. Microbiol. 43:22312235.
6. Boyadzhyan, B.,, T. Yashina,, J. H. Yatabe,, M. Patnaik, and, C. S. Hill. 2004. Comparison of the APTIMA CT and GC assays with the APTIMA combo 2 assay, the Abbott LCx assay, and direct fluorescent-antibody and culture assays for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J. Clin. Microbiol. 42:30893093.
7. Brunelle, B. W.,, and G. F. Sensabaugh. 2006. The ompA gene in Chlamydia trachomatis differs in phylogeny and rate of evolution from other regions of the genome. Infect. Immun. 74:578585.
8. Catsburg, A.,, L. van Dommelen,, V. Smelov,, H. J. de Vries,, A. Savitcheva,, M. Domeika,, B. Herrmann,, S. Ouburg,, C. J. Hoebe,, A. Nilsson,, P. H. Savelkoul, and, S. A. Morre. 2007. TaqMan assay for Swedish Chlamydia trachomatis variant. Emerg. Infect. Dis. 13:14321434.
9. Centers for Disease Control and Prevention, K. A. Workowski,, and S. M. Berman. 2006. Sexually transmitted diseases treatment guidelines, 2006. MMWR Recommend. Rep. 55:194.
10. Choudhury, B.,, C. L. Risley,, A. C. Ghani,, C. J. Bishop,, H. Ward,, K. A. Fenton,, C. A. Ison, and, B. G. Spratt. 2006. Identification of individuals with gonorrhoea within sexual networks: a population-based study. Lancet 368:139146.
11. Chui, L.,, T. Chiu,, J. Kakulphimp, and, G. J. Tyrrell. 2008. A comparison of three real-time PCR assays for the confirmation of Neisseria gonorrhoeae following detection of N. gonorrhoeae using Roche COBAS AMPLICOR. Clin. Microbiol. Infect. 14:473479.
12. Cook, R. L.,, S. L. Hutchison,, L. Ostergaard,, R. S. Braithwaite, and, R. B. Ness. 2005. Systematic review: noninvasive testing for Chlamydia trachomatis and Neisseria gonorrhoeae. Ann. Intern. Med. 142:914925.
13. Dean, D.,, E. Oudens,, G. Bolan,, N. Padian, and, J. Schachter. 1995. Major outer membrane protein variants of Chlamydia trachomatis are associated with severe upper genital tract infections and histopathology in San Francisco. J. Infect. Dis. 172:10131022.
14. Dean, D.,, C. R. Pant, and, P. O’Hanley. 1989. Improved sensitivity of a modified polymerase chain reaction amplified DNA probe in comparison with serial tissue culture passage for detection of Chlamydia trachomatis in conjunctival specimens from Nepal. Diagn. Microbiol. Infect. Dis. 12:133137.
15. Dunne, E. F.,, J. B. Chapin,, C. A. Rietmeijer,, C. K. Kent,, J. M. Ellen,, C. A. Gaydos,, N. J. Willard,, R. Kohn,, L. Lloyd,, S. Thomas,, N. Birkjukow,, S. Chung,, J. Klausner,, J. A. Schillinger, and, L. E. Markowitz. 2008. Rate and predictors of repeat Chlamydia trachomatis infection among men. Sex. Transm. Dis. 35(Suppl.):540544.
16. Dutilh, B.,, C. Bebear,, P. Rodriguez,, A. Vekris,, J. Bonnet, and, M. Garret. 1989. Specific amplification of a DNA sequence common to all Chlamydia trachomatis serovars using the polymerase chain reaction. Res. Microbiol. 140:716.
17. Farrell, D. J. 1999. Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR. J. Clin. Microbiol. 37:386390.
18. Fenton, K. A.,, and C. M. Lowndes. 2004. Recent trends in the epidemiology of sexually transmitted infections in the European Union. Sex. Transm. Infect. 80:255263.
19. Frost, E. H.,, S. Deslandes, and, D. Bourgaux-Ramoisy. 1993. Chlamydia trachomatis serovars in 435 urogenital specimens typed by restriction endonuclease analysis of amplified DNA. J. Infect. Dis. 168:497501.
20. Green, T. A.,, C. A. Black, and, R. E. Johnson. 2001. In defense of discrepant analysis. J. Clin. Epidemiol. 54:210215.
21. Hadgu, A. 2000. Discrepant analysis is an inappropriate and unscientific method. J. Clin. Microbiol. 38:43014302.
22. Hadgu, A.,, and M. Sternberg. 2009. Reproducibility and specificity concerns associated with nucleic acid amplification tests for detecting Chlamydia trachomatis. Eur. J. Clin. Microbiol. Infect. Dis. 28:915.
23. Hawkins, D. M.,, J. A. Garrett, and, B. Stephenson. 2001. Some issues in resolution of diagnostic tests using an imperfect gold standard. Stat. Med. 20:19872001.
24. Herrmann, B. 2007. A new genetic variant of Chlamydia trachomatis. Sex. Transm. Infect. 83:253254.
25. Hjelmevoll, S. O.,, M. E. Olsen,, J. U. Sollid,, H. Haaheim,, M. Unemo, and, V. Skogen. 2006. A fast real-time polymerase chain reaction method for sensitive and specific detection of the Neisseria gonorrhoeae porA pseudogene. J. Mol. Diagn. 8:574581.
26. Hoorfar, J.,, B. Malorny,, A. Abdulmawjood,, N. Cook,, M. Wagner, and, P. Fach. 2004. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J. Clin. Microbiol. 42:18631868.
27. Howell, M. R.,, T. C. Quinn,, W. Brathwaite, and, C. A. Gaydos. 1998. Screening women for Chlamydia trachomatis in family planning clinics: the cost-effectiveness of DNA amplification assays. Sex. Transm. Dis. 25:108117.
28. Huletsky, A.,, R. Giroux,, V. Rossbach,, M. Gagnon,, M. Vaillancourt,, M. Bernier,, F. Gagnon,, K. Truchon,, M. Bastien,, F. J. Picard,, A. van Belkum,, M. Ouellette,, P. H. Roy, and, M. G. Bergeron. 2004. New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J. Clin. Microbiol. 42:18751884.
29. Jalal, H.,, H. Stephen,, S. Alexander,, C. Carne, and, C. Sonnex. 2007. Development of real-time PCR assays for genotyping of Chlamydia trachomatis. J. Clin. Microbiol. 45:26492653.
30. Jonsdottir, K.,, M. Kristjansson,, J. Hjaltalin Olafsson, and, O. Steingrimsson. 2003. The molecular epidemiology of genital Chlamydia trachomatis in the greater Reykjavik area, Iceland. Sex. Transm. Dis. 30:249256.
31. Jurstrand, M.,, L. Falk,, H. Fredlund,, M. Lindberg,, P. Olcen,, S. Andersson,, K. Persson,, J. Albert, and, A. Backman. 2001. Characterization of Chlamydia trachomatis ompl genotypes among sexually transmitted disease patients in Sweden. J. Clin. Microbiol. 39:39153919.
32. Kjaer, H. O.,, G. Dimcevski,, G. Hoff,, F. Olesen, and, L. Ostergaard. 2000. Recurrence of urogenital Chlamydia trachomatis infection evaluated by mailed samples obtained at home: 24 weeks’ prospective follow up study. Sex. Transm. Infect. 76:169172.
33. Kline, K. A.,, E. V. Sechman,, E. P. Skaar, and, H. S. Seifert. 2003. Recombination, repair and replication in the pathogenic Neisseriae: the 3 R’s of molecular genetics of two human-specific bacterial pathogens. Mol. Microbiol. 50:313.
34. Klint, M.,, H. H. Fuxelius,, R. R. Goldkuhl,, H. Skarin,, C. Rutemark,, S. G. Andersson,, K. Persson, and, B. Herrmann. 2007. High-resolution genotyping of Chlamydia trachomatis strains by multilocus sequence analysis. J. Clin. Microbiol. 45:14101414.
35. Knox, J.,, S. N. Tabrizi,, P. Miller,, K. Petoumenos,, M. Law,, S. Chen, and, S. M. Garland. 2002. Evaluation of self-collected samples in contrast to practitioner-collected samples for detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis by polymerase chain reaction among women living in remote areas. Sex. Transm. Dis. 29:647654.
36. Levett, P. N.,, K. Brandt,, K. Olenius,, C. Brown,, K. Montgomery, and, G. B. Horsman. 2008. Evaluation of three automated nucleic acid amplification systems for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in first-void urine specimens. J. Clin. Microbiol. 46:21092111.
37. Lindberg, R.,, H. Fredlund,, R. Nicholas, and, M. Unemo. 2007. Neisseria gonorrhoeae isolates with reduced susceptibility to cefixime and ceftriaxone: association with genetic polymorphisms in penA, mtrR, porB1b, and ponA. Antimicrob. Agents Chemother. 51:21172122.
38. Low, N., and SCREen Project Team. 2008. Publication of report on chlamydia control activities in Europe. Euro Surveill. 13:18924.
39. Lum, G.,, K. Freeman,, N. L. Nguyen,, E. A. Limnios,, S. N. Tabrizi,, I. Carter,, I. W. Chambers,, D. M. Whiley,, T. P. Sloots,, S. M. Garland, and, J. W. Tapsall. 2005. A cluster of culture positive gonococcal infections but with false negative cppB gene based PCR. Sex. Transm. Infect. 81:400402.
40. Lysen, M.,, A. Osterlund,, C. J. Rubin,, T. Persson,, I. Persson, and, B. Herrmann. 2004. Characterization of ompA genotypes by sequence analysis of DNA from all detected cases of Chlamydia trachomatis infections during 1 year of contact tracing in a Swedish County. J. Clin. Microbiol. 42:16411647.
41. Mabey, D.,, and A. W. Solomon. 2003. Application of molecular tools in the control of blinding trachoma. Am. J. Trop. Med. Hyg. 69:1117.
42. Madico, G.,, T. C. Quinn,, J. Boman, and, C. A. Gaydos. 2000. Touchdown enzyme time release-PCR for detection and identification of Chlamydia trachomatis, C., pneumoniae, and C. psittaci using the 16S and 16S-23S spacer rRNA genes. J. Clin. Microbiol. 38:10851093.
43. Magbanua, J. P.,, B. T. Goh,, C. E. Michel,, A. Aguirre-Andreasen,, S. Alexander,, I. Ushiro-Lumb,, C. Ison, and, H. Lee. 2007. Chlamydia trachomatis variant not detected by plasmid based nucleic acid amplification tests: molecular characterisation and failure of single dose azithromycin. Sex. Transm. Infect. 83:339343.
44. Mahony, J. B.,, X. Song,, S. Chong,, M. Faught,, T. Salonga, and, J. Kapala. 2001. Evaluation of the NucliSens Basic Kit for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in genital tract specimens using nucleic acid sequence-based amplification of 16S rRNA. J. Clin. Microbiol. 39:14291435.
45. Meader, E.,, J. Waters, and, M. Sillis. 2008. Chlamydia trachomatis RNA in the environment: is there potential for false-positive nucleic acid amplification test results? Sex. Transm. Infect. 84:107110.
46. Michel, C. E.,, C. Sonnex,, C. A. Carne,, J. A. White,, J. P. Magbanua,, E. C. Nadala, Jr., and, H. H. Lee. 2007. Chlamydia trachomatis load at matched anatomic sites: implications for screening strategies. J. Clin. Microbiol. 45:13951402.
47. Millman, K.,, C. M. Black,, W. E. Stamm,, R. B. Jones,, E. W. Hook III,, D. H. Martin,, G. Bolan,, S. Tavare, and, D. Dean. 2006. Population-based genetic epidemiologic analysis of Chlamydia trachomatis serotypes and lack of association between ompA polymorphisms and clinical phenotypes. Microbes Infect. 8:604611.
48. Moller, J. K.,, L. J. Ostergaard, and, J. T. Hansen. 1994. Clinical evaluation of four non-related techniques for detection of Chlamydia trachomatis in endocervical specimens obtained from a low prevalence population. Immunol. Infect. Dis. 4:191196.
49. Moller, J. K.,, B. Andersen,, F. Olesen,, T. Lignell, and, L. Ostergaard. 1999. Impact of menstrual cycle on the diagnostic performance of LCR, TMA, and PCE for detection of Chlamydia trachomatis in home obtained and mailed vaginal flush and urine samples. Sex. Transm. Infect. 75:228230.
50. Moller, J. K.,, L. N. Pedersen, and, K. Persson. 2008. Comparison of Gen-Probe transcription-mediated amplification, Abbott PCR, and Roche PCR for detection of wild-type and mutant plasmid strains of Chlamydia trachomatis in Sweden. J. Clin. Microbiol. 46:38923895.
51. Moncada, J.,, E. Donegan, and, J. Schachter. 2008. Evaluation of CDC-recommended approaches for confirmatory testing of positive Neisseria gonorrhoeae nucleic acid amplification test results. J. Clin. Microbiol. 46:16141619.
52. Morre, S. A.,, S. Ouburg,, M. A. van Agtmael, and, H. J. de Vries. 2008. Lymphogranuloma venereum diagnostics: from culture to real-time quadriplex polymerase chain reaction. Sex. Transm. Infect. 84:252253.
53. Mossman, D.,, K. W. Beagley,, A. L. Landay,, M. Loewenthal,, C. Ooi,, P. Timms, and, M. Boyle. 2008. Genotyping of urogenital Chlamydia trachomatis in Regional New South Wales, Australia. Sex. Transm. Dis. 35:614616.
54. Newhall, W. J.,, P. Terho,, C. E. Wilde III,, B. E. Batteiger, and, R. B. Jones. 1986. Serovar determination of Chlamydia trachomatis isolates by using type-specific monoclonal antibodies. J. Clin. Microbiol. 23:333338.
55. Nolte, F. S. 2006. Molecular Diagnostic Methods for Infectious Diseases. Approved Guideline MM03-A2, 2nd ed. Clinical and Laboratory Standards Institute, Wayne, PA. http://www.clsi.org.
56. Ossewaarde, J. M.,, M. Rieffe,, A. de Vries,, R. P. Derksen-Nawrocki,, H. J. Hooft,, G. J. van Doornum, and, A. M. van Loon. 1994. Comparison of two panels of monoclonal antibodies for determination of Chlamydia trachomatis serovars. J. Clin. Microbiol. 32:29682974.
57. Ostergaard, L.,, B. Andersen,, J. K. Moller, and, F. Olesen. 2000. Home sampling versus conventional swab sampling for screening of Chlamydia trachomatis in women: a clusterrandomized 1-year follow-up study. Clin. Infect. Dis. 31:951957.
58. Ostergaard, L.,, J. K. Moller,, B. Andersen, and, F. Olesen. 1996. Diagnosis of urogenital Chlamydia trachomatis infection in women based on mailed samples obtained at home: multipractice comparative study. BMJ 313:11861189.
59. Paavonen, J.,, M. Puolakkainen,, M. Paukku, and, H. Sintonen. 1998. Cost-benefit analysis of first-void urine Chlamydia trachomatis screening program. Obstet. Gynecol. 92:292298.
60. Palmer, H. M.,, H. Mallinson,, R. L. Wood, and, A. J. Herring. 2003. Evaluation of the specificities of five DNA amplification methods for the detection of Neisseria gonorrhoeae. J. Clin. Microbiol. 41:835837.
61. Pannekoek, Y.,, G. Morelli,, B. Kusecek,, S. A. Morre,, J. M. Ossewaarde,, A. A. Langerak, and, A. van der Ende. 2008. Multi locus sequence typing of Chlamydiales: clonal groupings within the obligate intracellular bacteria Chlamydia trachomatis. BMC Microbiol. 8:42.
62. Pedersen, L. N.,, H. O. Kjaer,, J. K. Moller,, T. F. Orntoft, and, L. Ostergaard. 2000. High-resolution genotyping of Chlamydia trachomatis from recurrent urogenital infections. J. Clin. Microbiol. 38:30683071.
63. Pedersen, L. N.,, L. Podenphant, and, J. K. Moller. 2008. Highly discriminative genotyping of Chlamydia trachomatis using omp1 and a set of variable number tandem repeats. Clin. Microbiol. Infect. 14:644652.
64. Persson, K.,, and S. Osser. 1993. Lack of evidence of a relationship between genital symptoms, cervicitis and salpingitis and different serovars of Chlamydia trachomatis. Eur. J. Clin. Microbiol. Infect. Dis. 12:195199.
65. Peterson, E. M.,, B. A. Markoff,, J. Schachter, and, L. M. de la Maza. 1990. The 7.5-kb plasmid present in Chlamydia trachomatis is not essential for the growth of this microorganism. Plasmid 23:144148.
66. Quint, K.,, C. Porras,, M. Safaeian,, P. Gonzalez,, A. Hildesheim,, W. Quint,, L. J. van Doorn,, S. Silva,, W. Melchers,, M. Schiffman,, A. C. Rodriguez,, S. Wacholder,, E. Freer,, B. Cortes,, R. Herrero, and Costa Rican Vaccine Trial Group. 2007. Evaluation of a novel PCR-based assay for detection and identification of Chlamydia trachomatis serovars in cervical specimens. J. Clin. Microbiol. 45:39863991.
67. Richardus, J. H.,, and H. M. Gotz. 2007. Risk selection and targeted interventions in community-based control of chlamydia. Curr. Opin. Infect. Dis. 20:6065.
68. Ripa, T.,, and P. Nilsson. 2006. A variant of Chlamydia trachomatis with deletion in cryptic plasmid: implications for use of PCR diagnostic tests. Euro Surveill. 11:E061109.2.
69. Ripa, T.,, and P. A. Nilsson. 2007. A Chlamydia trachomatis strain with a 377-bp deletion in the cryptic plasmid causing false-negative nucleic acid amplification tests. Sex. Transm. Dis. 34:255256.
70. Rodriguez, P.,, A. Vekris,, B. De Barbeyrac,, B. Dutilh,, J. Bonnet, and, C. Bebear. 1991. Typing of Chlamydia trachomatis by restriction endonuclease analysis of the amplified major outer membrane protein gene. J. Clin. Microbiol. 29:11321136.
71. Schachter, J.,, J. Moncada,, S. Liska,, C. Shayevich, and, J. D. Klausner. 2008. Nucleic acid amplification tests in the diagnosis of chlamydial and gonococcal infections of the oropharynx and rectum in men who have sex with men. Sex. Transm. Dis. 35:637642.
72. Schachter, J.,, W. E. Stamm, and, T. C. Quinn. 1996. Discrepant analysis and screening for Chlamydia trachomatis. Lancet 348:13081309.
73. Shipitsyna, E.,, A. Guschin,, A. Maximova,, M. Tseslyuk,, A. Savicheva,, E. Sokolovsky,, G. Shipulin,, M. Domeika, and, M. Unemo. 2008. Comparison of microscopy, culture and in-house PCR and NASBA assays for diagnosis of Neisseria gonorrhoeae in Russia. APMIS 116:133138.
74. Shipitsyna, E.,, K. Shalepo,, A. Savicheva,, M. Unemo, and, M. Domeika. 2007. Pooling samples: the key to sensitive, specific and cost-effective genetic diagnosis of Chlamydia trachomatis in low-resource countries. Acta Derm. Venereol. 87:140143.
75. Siedner, M. J.,, M. Pandori,, L. Castro,, P. Barry,, W. L. Whittington,, S. Liska, and, J. D. Klausner. 2007. Realtime PCR assay for detection of quinolone-resistant Neisseria gonorrhoeae in urine samples. J. Clin. Microbiol. 45:12501254.
76. Somani, J.,, V. B. Bhullar,, K. A. Workowski,, C. E. Farshy, and, C. M. Black. 2000. Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure. J. Infect. Dis. 181:14211427.
77. Stothard, D. R.,, G. A. Toth, and, B. E. Batteiger. 2003. Polymorphic membrane protein H has evolved in parallel with the three disease-causing groups of Chlamydia trachomatis. Infect. Immun. 71:12001208.
78. Sturm-Ramirez, K.,, H. Brumblay,, K. Diop,, A. GueyeNdiaye,, J. L. Sankale,, I. Thior,, I. N’Doye,, C. C. Hsieh,, S. Mboup, and, P. J. Kanki. 2000. Molecular epidemiology of genital Chlamydia trachomatis infection in high-risk women in Senegal, West Africa. J. Clin. Microbiol. 38:138145.
79. Tabrizi, S. N.,, S. Chen,, J. Tapsall, and, S. M. Garland. 2005. Evaluation of opa-based real-time PCR for detection of Neisseria gonorrhoeae. Sex. Transm. Dis. 32:199202.
80. Unemo, M.,, O. Norlen, and, H. Fredlund. 2005. The porA pseudogene of Neisseria gonorrhoeae—low level of genetic polymorphism and a few, mainly identical, inactivating mutations. APMIS 113:410419.
81. van de Laar, M. J. 2006. The emergence of LGV in western Europe: what do we know, what can we do? Euro Surveill. 11:146148.
82. Van Looveren, M.,, C. A. Ison,, M. Ieven,, P. Vandamme,, I. M. Martin,, K. Vermeulen,, A. Renton, and, H. Goossens. 1999. Evaluation of the discriminatory power of typing methods for Neisseria gonorrhoeae. J. Clin. Microbiol. 37:21832188.
83. Ward, H.,, C. A. Ison,, S. E. Day,, I. Martin,, A. C. Ghani,, G. P. Garnett,, G. Bell,, G. Kinghorn, and, J. N. Weber. 2000. A prospective social and molecular investigation of gonococcal transmission. Lancet 356:18121817.
84. Westh, H.,, and J. S. Jensen. 2008. Low prevalence of new variant Chlamydia trachomatis in Denmark. Sex. Transm. Infect. 84:546547.
85. Whiley, D. M.,, T. P. Anderson,, K. Barratt,, M. H. Beaman,, P. J. Buda,, M. Carter,, K. Freeman,, P. Hallsworth,, E. A. Limnios,, G. Lum,, F. Merien,, F. Vernel-Pauillac,, J. W. Tapsall,, M. J. Witt,, M. D. Nissen, and, T. P. Sloots. 2006. Evidence that the gonococcal porA pseudogene is present in a broad range of Neisseria gonorrhoeae strains; suitability as a diagnostic target. Pathology 38:445448.
86. Whiley, D. M.,, P. J. Buda,, J. Bayliss,, L. Cover,, J. Bates, and, T. P. Sloots. 2004. A new confirmatory Neisseria gonorrhoeae real-time PCR assay targeting the porA pseudogene. Eur. J. Clin. Microbiol. Infect. Dis. 23:705710.
87. Whiley, D. M.,, S. M. Garland,, G. Harnett,, G. Lum,, D. W. Smith,, S. N. Tabrizi,, T. P. Sloots, and, J. W. Tapsall. 2008. Exploring ‘best practice’ for nucleic acid detection of Neisseria gonorrhoeae. Sex. Health 5:1723.
88. Whiley, D. M.,, E. A. Limnios,, S. Ray,, T. P. Sloots, and, J. W. Tapsall. 2007. Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone. Antimicrob. Agents Chemother. 51:31113116.
89. Whiley, D. M.,, J. W. Tapsall, and, T. P. Sloots. 2006. Nucleic acid amplification testing for Neisseria gonorrhoeae: an ongoing challenge. J. Mol. Diagn. 8:315.
90. Zheng, H. P.,, L. F. Jiang,, D. Y. Fang,, Y. H. Xue,, Y. A. Wu,, J. M. Huang, and, Z. Y. Ou. 2007. Application of an oligonucleotide array assay for rapid detecting and genotyping of Chlamydia trachomatis from urogenital specimens. Diagn. Microbiol. Infect. Dis. 57:16.

Tables

Generic image for table
TABLE 1

Issues that need to be addressed before and after implementation of a NAAT for and

Citation: Møller J, Herrmann B, Skov Jensen J, Westh H. 2011. Molecular Detection of and , p 383-396. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch24
Generic image for table
TABLE 2

Comparison of methods for detection of and

Citation: Møller J, Herrmann B, Skov Jensen J, Westh H. 2011. Molecular Detection of and , p 383-396. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch24
Generic image for table
TABLE 3

Commercially available molecular methods for detection of and

Citation: Møller J, Herrmann B, Skov Jensen J, Westh H. 2011. Molecular Detection of and , p 383-396. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch24
Generic image for table
TABLE 4

Sensitivity and specificity of commercial NAATs for detection of

Citation: Møller J, Herrmann B, Skov Jensen J, Westh H. 2011. Molecular Detection of and , p 383-396. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch24
Generic image for table
TABLE 5

Sensitivity and specificity of commercial NAATs for detection of

Citation: Møller J, Herrmann B, Skov Jensen J, Westh H. 2011. Molecular Detection of and , p 383-396. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error