1887

Chapter 45 : Overview of the Development, Utility, and Future of Molecular Diagnostics for Parasitic Diseases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Overview of the Development, Utility, and Future of Molecular Diagnostics for Parasitic Diseases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap45-1.gif /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap45-2.gif

Abstract:

Molecular diagnostics are undoubtedly changing the practice of modern clinical parasitology. Molecular assays have been developed for virtually all parasites causing clinical infections in humans. This chapter focuses on the techniques that have made the greatest impact in the clinical parasitology laboratory to date, namely, monoplex and multiplex real-time PCR. To illustrate the wide-ranging applications of clinical molecular parasitology, the chapter examines the large body of work on malaria. Conventional and real-time PCR assays for the species causing human malaria are now available in several reference laboratories and may be used as stand-alone tests or in conjunction with microscopy for species identification, quantification, and detection of some mixed infections. Serology is widely used but may be of limited utility in circumstances where it is critical to make an accurate diagnosis. Despite the recent progress in molecular diagnostics, there are significant limitations that hinder widespread adoption in the clinical parasitology laboratory. The majority of clinical laboratories do not have the expertise to develop in-house tests and must rely on commercially available assays.

Citation: Pritt B, Rosenblatt J. 2011. Overview of the Development, Utility, and Future of Molecular Diagnostics for Parasitic Diseases, p 687-690. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch45

Key Concept Ranking

Multiplex Real-Time PCR
0.8105425
Parasitic Diseases
0.64254516
Real-Time PCR
0.5894856
Trypanosoma brucei gambiense
0.52844363
0.8105425
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555816834.ch45
1. Centers for Disease Control and Prevention. 2007. Blood donor screening for Chagas disease—United States, 2006–2007. MMWR Morb. Mortal. Wkly. Rep. 56:141143.
2. Cockerill, F. R., III. 2003. Application of rapid-cycle real-time polymerase chain reaction for diagnostic testing in the clinical microbiology laboratory. Arch. Pathol. Lab. Med. 127:11121120.
3. Coronado, X.,, S. Ortiz,, O. Lastra,, M. Larrondo,, M. Rozas, and, A. Solari. 2005. Instability of Trypanosoma cruzi DNA in blood lysates: importance for PCR DNA-based diagnosis. Mol. Diagn. 9:3540.
4. Costa, J. M.,, C. Pautas,, P. Ernault,, F. Foulet,, C. Cordonnier, and, S. Bretagne. 2000. Real-time PCR for diagnosis and follow-up of Toxoplasma reactivation after allogeneic stem cell transplantation using fluorescence resonance energy transfer hybridization probes. J. Clin. Microbiol. 38:29292932.
5. Cox-Singh, J.,, T. M. Davis,, K. S. Lee,, S. S. Shamsul,, A. Matusop,, S. Ratnam,, H. A. Rahman,, D. J. Conway, and, B. Singh. 2008. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 46:165171.
6. Espy, M. J.,, J. R. Uhl,, L. M. Sloan,, S. P. Buckwalter,, M. F. Jones,, E. A. Vetter,, J. D. Yao,, N. L. Wengenack,, J. E. Rosenblatt,, F. R. Cockerill III, and, T. F. Smith. 2006. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 19:165256.
7. Farcas, G. A.,, R. Soeller,, K. Zhong,, A. Zahirieh, and, K. C. Kain. 2006. Real-time polymerase chain reaction assay for the rapid detection and characterization of chloroquine-resistant Plasmodium falciparum malaria in returned travelers. Clin. Infect. Dis. 42:622627.
8. Fekkar, A.,, B. Bodaghi,, F. Touafek,, P. Le Hoang,, D. Mazier, and, L. Paris. 2008. Comparison of immunoblotting, calculation of the Goldmann-Witmer coefficient, and real-time PCR using aqueous humor samples for diagnosis of ocular toxoplasmosis. J. Clin. Microbiol. 46:19651967.
9. Fricker-Hidalgo, H.,, M. P. Brenier-Pinchart,, J. P. Schaal,, V. Equy,, C. Bost-Bru, and, H. Pelloux. 2007. Value of Toxoplasma gondii detection in one hundred thirty-three placentas for the diagnosis of congenital toxoplasmosis. Pediatr. Infect. Dis. J. 26:845846.
10. Fugikaha, E.,, P. A. Fornazari,, S. Penhalbel Rde,, A. Lorenzetti,, R. D. Maroso,, J. T. Amoras,, A. S. Saraiva,, R. U. Silva,, C. R. Bonini-Domingos,, L. C. Mattos,, A. R. Rossit,, C. E. Cavasini, and, R. L. Machado. 2007. Molecular screening of Plasmodium sp. asymptomatic carriers among transfusion centers from Brazilian Amazon region. Rev. Inst. Med. Trop. São Paulo 49:14.
11. Haque, R.,, S. Roy,, A. Siddique,, U. Mondal,, S. M. Rahman,, D. Mondal,, E. Houpt, and, W. A. Petri, Jr. 2007. Multiplex real-time PCR assay for detection of Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium spp. Am. J. Trop. Med. Hyg. 76:713717.
12. Hardick, J.,, S. Yang,, S. Lin,, D. Duncan, and, C. Gaydos. 2003. Use of the Roche LightCycler instrument in a realtime PCR for Trichomonas vaginalis in urine samples from females and males. J. Clin. Microbiol. 41:56195622.
13. Hobbs, M. M.,, D. M. Lapple,, L. F. Lawing,, J. R. Schwebke,, M. S. Cohen,, H. Swygard,, J. Atashili,, P. A. Leone,, W. C. Miller, and, A. C. Sena. 2006. Methods for detection of Trichomonas vaginalis in the male partners of infected women: implications for control of trichomoniasis. J. Clin. Microbiol. 44:39943999.
14. John, D. T.,, and W. A. Petri, Jr. 2006. Markell and Voge’s Medical Parasitology, 9th ed. Saunders Elsevier, St. Louis, MO.
15. Krause, P. J.,, S. Telford III,, A. Spielman,, R. Ryan,, J. Magera,, T. V. Rajan,, D. Christianson,, T. V. Alberghini,, L. Bow, and, D. Persing. 1996. Comparison of PCR with blood smear and inoculation of small animals for diagnosis of Babesia microti parasitemia. J. Clin. Microbiol. 34:27912794.
16. Leiby, D. A.,, A. P. Chung,, J. E. Gill,, R. L. Houghton,, D. H. Persing,, S. Badon, and, R. G. Cable. 2005. Demonstrable parasitemia among Connecticut blood donors with antibodies to Babesia microti. Transfusion 45:18041810.
17. Mens, P. F.,, C. van Overmeir,, M. Bonnet,, J. C. Dujardin, and, U. d’Alessandro. 2008. Real-time PCR/MCA assay using fluorescence resonance energy transfer for the genotyping of resistance related DHPS-540 mutations in Plasmodium falciparum. Malar. J. 7:48.
18. Montoya, J. G.,, and J. S. Remington. 2008. Management of Toxoplasma gondii infection during pregnancy. Clin. Infect. Dis. 47:554566.
19. Muller, A.,, R. Bialek,, A. Kamper,, G. Fatkenheuer,, B. Salzberger, and, C. Franzen. 2001. Detection of microsporidia in travelers with diarrhea. J. Clin. Microbiol. 39:16301632.
20. Procop, G. W. 2007. Molecular diagnostics for the detection and characterization of microbial pathogens. Clin. Infect. Dis. 45(Suppl. 2):S99S111.
21. Qvarnstrom, Y.,, G. S. Visvesvara,, R. Sriram, and, A. J. da Silva. 2006. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J. Clin. Microbiol. 44:35893595.
22. Radwanska, M.,, M. Chamekh,, L. Vanhamme,, F. Claes,, S. Magez,, E. Magnus,, P. de Baetselier,, P. Buscher, and, E. Pays. 2002. The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. Am. J. Trop. Med. Hyg. 67:684690.
23. Reischl, U.,, S. Bretagne,, D. Kruger,, P. Ernault, and, J. M. Costa. 2003. Comparison of two DNA targets for the diagnosis of toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect. Dis. 3:7.
24. Riera, C.,, R. Fisa,, P. Lopez-Chejade,, T. Serra,, E. Girona,, M. Jimenez,, J. Muncunill,, M. Sedeno,, M. Mascaro,, M. Udina,, M. Gallego,, J. Carrio,, A. Forteza, and, M. Portus. 2008. Asymptomatic infection by Leishmania infantum in blood donors from the Balearic Islands (Spain). Transfusion 48:13831389.
25. Seed, C. R.,, A. Kitchen, and, T. M. Davis. 2005. The current status and potential role of laboratory testing to prevent transfusion-transmitted malaria. Transfus. Med. Rev. 19:229240.
26. Shehata, N.,, M. Kohli, and, A. Detsky. 2004. The cost-effectiveness of screening blood donors for malaria by PCR. Transfusion 44:217228.
27. U.S. Food and Drug Administration. 2007. Test screens blood for parasitic infection. FDA Consum. 41:7.
28. Verweij, J. J.,, E. A. Brienen,, J. Ziem,, L. Yelifari,, A. M. Polderman, and, L. Van Lieshout. 2007. Simultaneous detection and quantification of Ancylostoma duodenale, Necator americanus, and Oesophagostomum bifurcum in fecal samples using multiplex real-time PCR. Am. J. Trop. Med. Hyg. 77:685690.
29. Vestergaard, L. S.,, and P. Ringwald. 2007. Responding to the challenge of antimalarial drug resistance by routine monitoring to update national malaria treatment policies. Am. J. Trop. Med. Hyg. 77:153159.
30. Wirth, D. F.,, W. O. Rogers,, R. Barker, Jr.,, H. Dourado,, L. Suesebang, and, B. Albuquerque. 1986. Leishmaniasis and malaria: new tools for epidemiologic analysis. Science 234:975979.
31. Witt, A.,, L. Petricevic,, U. Kaufmann,, H. Gregor, and, H. Kiss. 2002. DNA hybridization test: rapid diagnostic tool for excluding bacterial vaginosis in pregnant women with symptoms suggestive of infection. J. Clin. Microbiol. 40:30573059.
32. Wolk, D. M.,, S. K. Schneider,, N. L. Wengenack,, L. M. Sloan, and, J. E. Rosenblatt. 2002. Real-time PCR method for detection of Encephalitozoon intestinalis from stool specimens. J. Clin. Microbiol. 40:39223928.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error