1887

Chapter 49 : Molecular Approaches to the Diagnosis of Sepsis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Molecular Approaches to the Diagnosis of Sepsis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap49-1.gif /docserver/preview/fulltext/10.1128/9781555816834/9781555814977_Chap49-2.gif

Abstract:

This chapter summarizes the pros and cons of such alternative methods for detection of microorganisms in blood and discusses the perspectives of rapid molecular diagnosis of sepsis. Various methods have been assessed to reduce the time required for identification of microorganisms in blood cultures, including hybridization techniques, PCR-based applications, and spectrometric analysis. Among the hybridization techniques suited to identification of microorganisms in blood cultures are fluorescence in situ hybridization (FISH) and chemiluminescent probe matrices. To further reduce time to diagnosis of bloodstream infection (BSI), molecular methods may be applied directly to blood samples, without prior cultivation of microorganisms. Determination of susceptibility to antimicrobial treatment in sepsis is currently performed on cultured strains by determination of the MICs of a broad spectrum of different antibiotics. Current methods of molecular detection of sepsis concentrate on detection of DNA of the microorganism in the blood by both qualitative and quantitative approaches. In addition, alternative DNA extraction methods and multiplex PCR approaches are a first step towards point-of-care testing. For rapid detection of sepsis this is a promising approach, but a real implementation remains to be seen. Rapid molecular detection of the causative pathogen of sepsis is within reach, but many studies are required before clinical implementation. Several techniques are being tested for this application, but the best technique has not been determined. In general, all these promising tests will add to but not replace conventional blood culture as long as phenotypic susceptibility testing is needed.

Citation: Savelkoul P, Peters R. 2011. Molecular Approaches to the Diagnosis of Sepsis, p 751-765. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch49

Key Concept Ranking

Antimicrobial Susceptibility Testing
0.5094353
Antimicrobial Resistance Testing
0.47852758
Restriction Fragment Length Polymorphism
0.41398185
0.5094353
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phases in the routine diagnostic work-up of bloodstream infection at which molecular methods can be used as alternatives to conventional culture. Heavy arrows indicate currently available applications; the dashed arrow indicates potential application. CPA, chemiluminescent probe assay; HRM, high-resolution melting; SNP, single nucleotide polymorphisms.

Citation: Savelkoul P, Peters R. 2011. Molecular Approaches to the Diagnosis of Sepsis, p 751-765. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch49
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Principle of FISH. Microbial cells are heat fixed on a glass slide, followed by chemical permeabilization. After application of probes, the slide is incubated in a water bath or microwave oven. The temperature increase results in binding of probe to complementary rRNA. Unbound probe is washed off, and the fluorescence of the bound probe is visualized with the microscope. Modified with permission from R. P. Peters et al., (2009).

Citation: Savelkoul P, Peters R. 2011. Molecular Approaches to the Diagnosis of Sepsis, p 751-765. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch49
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Example of three T-RFLP patterns discriminating MRSA, methicillin-sensitive , and A molecular size marker is present in each pattern, showing the length of the product in base pairs. Adapted with permission from Christensen et al. ( ).

Citation: Savelkoul P, Peters R. 2011. Molecular Approaches to the Diagnosis of Sepsis, p 751-765. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch49
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Melting-curve analysis of spp. PCR showed different melting points for streptococci and enterococci as well as differentiation of and BC, blood culture. Adapted with permission from Wellinghausen et al. ( ).

Citation: Savelkoul P, Peters R. 2011. Molecular Approaches to the Diagnosis of Sepsis, p 751-765. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch49
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Courses of temperature and BDL in a patient with bacteremia. was isolated from all corresponding blood cultures except those obtained on day 2. The mean BDL was calculated when the BDL was available for two simultaneously obtained blood samples. Antimicrobial treatment was administered as indicated. Days are on the axis. Adapted with permission from Peters et al. ( ).

Citation: Savelkoul P, Peters R. 2011. Molecular Approaches to the Diagnosis of Sepsis, p 751-765. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch49
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816834.ch49
1. Alexander, B. D.,, E. D. Ashley,, L. B. Reller, and, S. D. Reed. 2006. Cost savings with implementation of PNA FISH testing for identification of Candida albicans in blood cultures. Diagn. Microbiol. Infect. Dis. 54:277282.
2. Allardyce, R. A.,, A. L. Hill, and, D. R. Murdoch. 2006. The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry. Diagn. Microbiol. Infect. Dis. 55:255261.
3. Anthony, R. M.,, T. J. Brown, and, G. L. French. 2000. Rapid diagnosis of bacteremia by universal amplification of 23S ribosomal DNA followed by hybridization to an oligonucleotide array. J. Clin. Microbiol. 38:781788.
4. Bates, D. W.,, E. F. Cook,, L. Goldman, and, T. H. Lee. 1990. Predicting bacteremia in hospitalized patients. A prospectively validated model. Ann. Intern. Med. 113:495500.
5. Bone, R. C.,, R. A. Balk,, F. B. Cerra,, R. P. Dellinger,, A. M. Fein,, W. A. Knaus,, R. M. Schein, and, W. J. Sibbald. 1992. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:16441655.
6. Borst, A.,, M. A. Leverstein-van Hall,, J. Verhoef, and, A. C. Fluit. 2001. Detection of Candida spp. in blood cultures using nucleic acid sequence-based amplification (NASBA). Diagn. Microbiol. Infect. Dis. 39:155160.
7. Bossink, A. W.,, J. Groeneveld,, C. E. Hack, and, L. G. Thijs. 1998. Prediction of mortality in febrile medical patients: how useful are systemic inflammatory response syndrome and sepsis criteria? Chest 113:15331541.
8. Carrol, E. D.,, M. Guiver,, S. Nkhoma,, L. A. Mankhambo,, J. Marsh,, P. Balmer,, D. L. Banda,, G. Jeffers, IPD Study Group, S. A. White,, E. M. Molyneux,, M. E. Molyneux,, R. L. Smyth, and, C. A. Hart. 2007. High pneumococcal DNA loads are associated with mortality in Malawian children with invasive pneumococcal disease. Pediatr. Infect. Dis. J. 26:416422.
9. Casalta, J. P.,, F. Gouriet,, V. Roux,, F. Thuny,, G. Habib, and, D. Raoult. 2009. Evaluation of the LightCycler® Septifast test in the rapid etiologic diagnosis of infectious endocarditis. Eur. J. Clin. Microbiol. Infect. Dis. 28:659673.
10. Christensen, J. E.,, J. A. Stencil, and, K. D. Reed. 2003. Rapid identification of bacteria from positive blood cultures by terminal restriction fragment length polymorphism profile analysis of the 16S rRNA gene. J. Clin. Microbiol. 41:37903800.
11. Cleven, B. E.,, M. Palka-Santini,, J. Gielen,, S. Meembor,, M. Kronke, and, O. Krut. 2006. Identification and characterization of bacterial pathogens causing bloodstream infections by DNA microarray. J. Clin. Microbiol. 44:23892397.
12. Corless, C. E.,, M. Guiver,, R. Borrow,, V. Edwards-Jones,, E. B. Kaczmarski, and, A. J. Fox. 2000. Contamination and sensitivity issues with a real-time universal 16S rRNA PCR. J. Clin. Microbiol. 38:17411752.
13. Cursons, R. T.,, E. Jeyerajah, and, J. W. Sleigh. 1999. The use of polymerase chain reaction to detect septicemia in critically ill patients. Crit. Care Med. 27:937940.
14. Davis, T. E.,, and D. D. Fuller. 1991. Direct identification of bacterial isolates in blood cultures by using a DNA probe. J. Clin. Microbiol. 29:21932196.
15. Dendis, M.,, R. Horvath,, J. Michalek,, F. Ruzicka,, M. Grijalva,, M. Bartos, and, J. Benedik. 2003. PCR-RFLP detection and species identification of fungal pathogens in patients with febrile neutropenia. Clin. Microbiol. Infect. 9:11911202.
16. Diekema, D. J.,, S. E. Beekmann,, K. C. Chapin,, K. A. Morel,, E. Munson, and, G. V. Doern. 2003. Epidemiology and outcome of nosocomial and community-onset bloodstream infection. J. Clin. Microbiol. 41:36553660.
17. Dunyach, C.,, S. Bertout,, C. Phelipeau,, P. Drakulovski,, J. Reynes, and, M. Mallié. 2008. Detection and identification of Candida spp. in human serum by LightCycler real-time polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 60:263271.
18. Eigner, U.,, M. Weizenegger,, A. M. Fahr, and, W. Witte. 2005. Evaluation of a rapid direct assay for identification of bacteria and the mecA and van genes from positive-testing blood cultures. J. Clin. Microbiol. 43:52565262.
19. Epstein, D.,, D. Raveh,, Y. Schlesinger,, B. Rudensky,, N. P. Gottehrer, and, A. M. Yinnon. 2001. Adult patients with occult bacteremia discharged from the emergency department: epidemiological and clinical characteristics. Clin. Infect. Dis. 32:559565.
20. Foongladda, S.,, S. Pholwat,, B. Eampokalap,, B. Kiratisin, and, R. Sutthent. 2009. Multi-probe real-time PCR identification of common mycobacterial species in blood culture broth. J. Mol. Diagn. 11:4248.
21. Forrest, G. N.,, M. C. Roghmann,, L. S. Toombs,, J. K. Johnson,, E. Weekes,, D. P. Lincalis, and, R. A. Venezia. 2008. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob. Agents Chemother. 52:35583563.
22. Forrest, G. N.,, K. Mankes,, M. A. Jabra-Rizk,, E. Weekes,, J. K. Johnson,, D. P. Lincalis, and, R. A. Venezia. 2006. Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J. Clin. Microbiol. 44:33813383.
23. Forrest, G. N.,, S. Mehta,, E. Weekes,, D. P. Lincalis,, J. K. Johnson, and, R. A. Venezia. 2006. Impact of rapid in situ hybridization on coagulase-negative staphylococci in blood cultures. J. Antimicrob. Chemother. 58:154158.
24. Fraser, A.,, M. Paul,, N. Almanasreh,, E. Tacconelli,, U. Frank,, R. Cauda,, S. Borok,, M. Cohen,, S. Andreassen,, A. D. Nielsen, and, L. Leibovici for the TREAT Study Group. 2006. Benefit of appropriate empirical antibiotic treatment: thirty-day mortality and duration of hospital stay. Am. J. Med. 119:970976.
25. Fredricks, D. N.,, and D. A. Relman. 1998. Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. J. Clin. Microbiol. 36:28102816.
26. Fujita, S. I.,, Y. Senda,, T. Iwagami, and, T. Hashimoto. 2005. Rapid identification of staphylococcal strains from positive-testing blood culture bottles by internal transcribed spacer PCR followed by microchip gel electrophoresis. J. Clin. Microbiol. 43:11491157.
27. Garnacho-Montero, J.,, J. L. Garcia-Garmendia,, A. Barrero-Almodovar,, F. J. Jimenez-Jimenez,, C. Perez-Paredes, and, C. Ortiz-Leyba. 2003. Impact of adequate empirical antibiotic therapy on the outcome of patients admitted to the intensive care unit with sepsis. Crit. Care Med. 31:27422751.
28. Garrouste-Orgeas, M.,, J. F. Timsit,, M. Tafflet,, B. Misset,, J. R. Zahar,, L. Soufir,, T. Lazard,, S. Jamali,, B. Mourvillier,, Y. Cohen,, A. de Lassence,, E. Azoulay,, C. Cheval,, A. Descorps-Declere,, C. Adrie,, M. A. Costa de Beauregard, and, J. Carlet on behalf of the OUTCOMEREA Study Group. 2006. Excess risk of death from intensive care unit-acquired nosocomial bloodstream infections: a reappraisal. Clin. Infect. Dis. 42:11181126.
29. Gebert, S.,, D. Siegel, and, N. Wellinghausen. 2008. Rapid detection of pathogens in blood culture bottles by real-time PCR in conjunction with the pre-analytic tool MolYsis. Diagn. Microbiol. Infect. Dis. 57:307316.
30. Gescher, D. M.,, D. Kovacevic,, D. Schmiedel,, S. Siemoneit,, C. Mallmann,, E. Halle,, U. B. Göbel, and, A. Moter. 2008. Fluorescence in situ hybridization (FISH) accelerates identification of Gram-positive cocci in positive blood cultures. Int. J. Antimicrob. Agents 32S:S51S59.
31. Gherna, M.,, and W. G. Merz. 2009. Identification of Candida albicans and Candida glabrata within 1.5 hours directly from positive blood culture bottles with a shortened peptide nucleic acid fluorescence in situ hybridization protocol. J. Clin. Microbiol. 47:247248.
32. Glerant, J. C.,, D. Hellmuth,, J. L. Schmit,, J. P. Ducroix, and, V. Jounieaux. 1999. Utility of blood cultures in community-acquired pneumonia requiring hospitalization: influence of antibiotic treatment before admission. Respir. Med. 93:208212.
33. Grace, C. J.,, J. Lieberman,, K. Pierce, and, B. Littenberg. 2001. Usefulness of blood culture for hospitalized patients who are receiving antibiotic therapy. Clin. Infect. Dis. 32:16511655.
34. Hackett, S. J.,, M. Guiver,, J. Marsh,, J. A. Sills,, A. P. Thomson,, E. B. Kaczmarski, and, C. A. Hart. 2002. Meningococcal bacterial DNA load at presentation correlates with disease severity. Arch. Dis. Child. 86:4446.
35. Hallin, M.,, N. Maes,, B. Byl,, F. Jacobs,, Y. de Gheldre, and, M. J. Struelens. 2003. Clinical impact of a PCR assay for identification of Staphylococcus aureus and determination of methicillin resistance directly from blood cultures. J. Clin. Microbiol. 41:39423944.
36. Hartmann, H.,, H. Stender,, A. Schäfer,, I. B. Autenrieth, and, V. A. Kempf. 2005. Rapid identification of Staphylococcus aureus in blood cultures by a combination of fluorescence in situ hybridization using peptide nucleic acid probes and flow cytometry. J. Clin. Microbiol. 43:48554857.
37. Hebart, H.,, J. Löffler,, H. Reitze,, A. Engel,, U. Schumacher,, T. Klingebiel,, P. Bader,, A. Bohme,, H. Martin,, D. Bunjes,, W. V. Kern,, L. Kanz, and, H. Einsele. 2000. Prospective screening by a panfungal polymerase chain reaction assay in patients at risk for fungal infections: implications for the management of febrile neutropenia. Br. J. Haematol. 111:635640.
38. Heininger, A.,, M. Binder,, S. Schmidt,, K. Unertl,, K. Botzenhart, and, G. Doring. 1999. PCR and blood culture for detection of Escherichia coli bacteremia in rats. J. Clin. Microbiol. 37:24792482.
39. Hermsen, E. D.,, S. S. Shull,, D. G. Klepser,, P. C. Iwen,, A. Armbrust,, J. Garrett,, A. G. Freifeld, and, M. E. Rupp. 2008. Pharmacoeconomic analysis of microbiologic techniques for differentiating staphylococci directly from blood culture bottles. J. Clin. Microbiol. 46:29242929.
40. Ibrahim, E. H.,, G. Sherman,, S. Ward,, V. J. Fraser, and, M. H. Kollef. 2000. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118:146155.
41. Innings, A.,, M. Ullberg,, S. Johansson,, C. J. Rubin,, N. Noreus,, M. Isaksson, and, B. Herrmann. 2007. Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood. J. Clin. Microbiol. 45:874880.
42. Iwen, P. C.,, A. G. Freifeld,, T. A. Bruening, and, S. H. Hinrichs. 2004. Use of a panfungal PCR assay for detection of fungal pathogens in a commercial blood culture system. J. Clin. Microbiol. 42:22922293.
43. Jansen, G. J.,, M. Mooibroek,, J. Idema,, H. J. Harmsen,, G. W. Welling, and, J. E. Degener. 2000. Rapid identification of bacteria in blood cultures by using fluorescently labeled oligonucleotide probes. J. Clin. Microbiol. 38:814817.
44. Jordan, J. A.,, J. Jones-Laughner, and, M. B. Durso. 2009. Use of pyrosequencing in identifying bacteria directly from positive blood culture bottles. J. Clin. Microbiol. 47:368372.
45. Jordan, J. A.,, A. R. Butchko, and, M. B. Durso. 2005. Use of pyrosequencing of 16S rRNA fragments to differentiate between bacteria responsible for neonatal sepsis. J. Mol. Diagn. 7:105110.
46. Jordan, J. A.,, and M. B. Durso. 2000. Comparison of 16S rRNA gene PCR and BACTEC 9240 for detection of neonatal bacteremia. J. Clin. Microbiol. 38:25742578.
47. Jordanides, N. E.,, E. K. Allan,, L. A. McLintock,, M. Copland,, M. Devany,, K. Stewart,, A. N. Parker,, P. R. Johnson,, T. L. Holyoake, and, B. L. Jones. 2005. A prospective study of real-time panfungal PCR for the early diagnosis of invasive fungal infection in haematooncology patients. Bone Marrow Transplant. 35:389395.
48. Kahlmeter, G. 2008. Breakpoints for intravenously used cephalosporins in Enterobacteriaceae—EUCAST and CLSI breakpoints. Clin. Microbiol. Infect. 14(Suppl. 1):169174. (Erratum, Clin. Microbiol. Infect. 14[Suppl. 5]:21–24.)
49. Kane, T. D.,, J. W. Alexander, and, J. A. Johannigman. 1998. The detection of microbial DNA in the blood: a sensitive method for diagnosing bacteremia and/or bacterial translocation in surgical patients. Ann. Surg. 27:19.
50. Kempf, V. A.,, T. Maendle,, U. Schumacher,, A. Schafer, and, I. B. Autenrieth. 2005. Rapid detection and identification of pathogens in blood cultures by fluorescence in situ hybridization and flow cytometry. Int. J. Med. Microbiol. 295:4755.
51. Kempf, V. A.,, K. Trebesius, and, I. B. Autenrieth. 2000. Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J. Clin. Microbiol. 38:830838.
52. Khatib, R.,, L. B. Johnson,, M. G. Fakih,, K. Riederer,, A. Khosrovaneh,, M. Shamse Tabriz,, M. Sharma, and, S. Saeed. 2006. Persistence in Staphylococcus aureus bacteremia: incidence, characteristics of patients and outcome. Scand. J. Infect. Dis. 38:714.
53. Ko, W. C.,, N. Y. Lee,, S. C. Su,, L. Dijkshoorn,, M. Vaneechoutte,, L. R. Wang,, J. J. Yan, and, T. C. Chang. 2008. Oligonucleotide array-based identification of species in the Acinetobacter calcoaceticus-A. baumannii complex in isolates from blood cultures and antimicrobial susceptibility testing of the isolates. J. Clin. Microbiol. 46:20522059.
54. Kulski, J. K.,, C. Khinsoe,, T. Pryce, and, K. Christiansen. 1995. Use of a multiplex PCR to detect and identify Mycobacterium avium and M. intracellulare in blood culture fluids of AIDS patients. J. Clin. Microbiol. 33:668674.
55. Laforgia, N.,, B. Coppola,, R. Carbone,, A. Grassi,, A. Mautone, and, A. Iolascon. 1997. Rapid detection of neonatal sepsis using polymerase chain reaction. Acta Paediatr. 86:10971099.
56. Lau, A.,, T. C. Sorrell,, S. Chen,, K. Stanley,, J. Iredell, and, C. Halliday. 2008. Multiplex tandem PCR: a novel platform for rapid detection and identification of fungal pathogens. J. Clin. Microbiol. 46:30213027.
57. Laupland, K. B.,, H. Lee,, D. B. Gregson, and, B. J. Manns. 2006. Cost of intensive care unit-acquired bloodstream infections. J. Hosp. Infect. 63:124132.
58. Laupland, K. B.,, D. A. Zygun,, C. J. Doig,, S. M. Bagshaw,, L. W. Svenson, and, G. H. Fick. 2005. One-year mortality of bloodstream infection-associated sepsis and septic shock among patients presenting to a regional critical care system. Intensive Care Med. 31:213219.
59. Laupland, K. B.,, A. W. Kirkpatrick,, D. L. Church,, T. Ross, and, D. B. Gregson. 2004. Intensive-care-unit-acquired bloodstream infections in a regional critically ill population. J. Hosp. Infect. 58:137145.
60. Lehmann, L. E.,, K. P. Hunfeld,, T. Emrich,, G. Haberhausen,, H. Wissing,, A. Hoeft, and, F. Stuber. 2008. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood. Med. Microbiol. Immunol. 197:313324.
61. Leibovici, L.,, I. Shraga,, M. Drucker,, H. Konigsberger,, Z. Samra, and, S. D. Pitlik. 1998. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J. Intern. Med. 244:379386.
62. Ley, B. E.,, C. J. Linton,, D. M. Bennett,, H. Jalal,, A. B. Foot, and, M. R. Millar. 1998. Detection of bacteraemia in patients with fever and neutropenia using 16S rRNA gene amplification by polymerase chain reaction. Eur. J. Clin. Microbiol. Infect. Dis. 17:247253.
63. Lindholm, L.,, and H. Sarkkinen. 2004. Direct identification of gram-positive cocci from routine blood cultures by using AccuProbe tests. J. Clin. Microbiol. 42:56095613.
64. Lodise, T. P.,, P. S. McKinnon,, L. Swiderski, and, M. J. Rybak. 2003. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin. Infect. Dis. 36:14181423.
65. Louie, R. F.,, Z. Tang,, T. E. Albertson,, S. Cohen,, N. K. Tran, and, G. J. Kost. 2008. Multiplex polymerase chain reaction detection enhancement of bacteremia and fungemia. Crit. Care Med. 36:14871492.
66. Maaroufi, Y.,, C. Heymans,, J. M. De Bruyne,, V. Duchateau,, H. Rodriquez-Villalobos,, M. Aoun, and, F. Crockaert. 2003. Rapid detection of Candida albicans in clinical blood samples by using a TaqMan-based PCR assay. J. Clin. Microbiol. 41:32933298.
67. Mancini, N.,, D. Clerici,, R. Diotti,, M. Perotti,, N. Ghidoli,, D. de Marco,, B. Pizzorno,, T. Emrich,, R. Burioni,, F. Ciceri, and, M. Clementi. 2008. Molecular diagnosis of sepsis in neutropenic patients with haematological malignancies. J. Med. Microbiol. 57:601604.
68. Maquelin, K.,, C. Kirschner,, L. P. Choo-Smith,, N. A. Ngo-Thi,, T. van Vreeswijk,, M. Stämmler,, H. P. Endtz,, H. A. Bruining,, D. Naumann, and, G. J. Puppels. 2003. Prospective study of the performance of vibrational spectroscopies for rapid identification of bacterial and fungal pathogens recovered from blood cultures. J. Clin. Microbiol. 41:324329.
69. Marlowe, E. M.,, J. J. Hogan,, J. F. Hindler,, I. Andruszkiewicz,, P. Gordon, and, D. A. Bruckner. 2003. Application of an rRNA probe matrix for rapid identification of bacteria and fungi from routine blood cultures. J. Clin. Microbiol. 41:51275133.
70. Massi, M. N.,, T. Shirakawa,, A. Gotoh,, A. Bishnu,, M. Hatta, and, M. Kawabata. 2005. Quantitative detection of Salmonella enterica serovar Typhi from blood of suspected typhoid fever patients by real-time PCR. Int. J. Med. Microbiol. 295:117120.
71. Mellmann, A.,, J. Cloud,, T. Maier,, U. Keckevoet,, I. Ramminger,, P. Iwen,, J. Dunn,, G. Hall,, D. Wilson,, P. Lasala,, M. Kostrzewa, and, D. Harmsen. 2008. Evaluation of matrix-assisted laser desorption ionization–time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J. Clin. Microbiol. 46:19461954.
72. Metwally, L.,, G. Hogg,, P. V. Coyle,, R. J. Hay,, S. Hedderwick,, B. McCloskey,, H. J. O’Neill,, G. M. Ong,, G. Thompson,, C. H. Webb, and, R. McMullan. 2007. Rapid differentiation between fluconazole-sensitive and -resistant species of Candida directly from positive bloodculture bottles by real-time PCR. J. Med. Microbiol. 56:964970.
73. Misawa, Y.,, A. Yoshida,, R. Saito,, H. Yoshida,, K. Okuzumi,, N. Ito,, M. Okada,, K. Moriya, and, K. Koike. 2007. Application of loop-mediated isothermal amplification technique to rapid and direct detection of methicillin-resistant Staphylococcus aureus (MRSA) in blood cultures. J. Infect. Chemother. 13:134140.
74. Mokrousov, I.,, N. V. Bhanu,, P. N. Suffys,, G. V. Kadival,, S. F. Yap,, S. N. Cho,, A. M. Jordaan,, O. Narvskaya,, U. B. Singh,, H. M. Gomes,, H. Lee,, S. P. Kulkarni,, K. C. Lim,, B. K. Khan,, D. van Soolingen,, T. C. Victor, and, L. M. Schouls. 2004. Multicenter evaluation of reverse line blot assay for detection of drug resistance in Mycobacterium tuberculosis clinical isolates. J. Microbiol. Methods 57:323335.
75. Moppett, J.,, J. H. van der Velden,, A. J. Wijkhuijs,, J. Hancock,, J. J. van Dongen, and, N. Goulden. 2003. Inhibition affecting RQ-PCR-based assessment of minimal residual disease in acute lymphoblastic leukemia: reversal by addition of bovine serum albumin. Leukemia 17:268270.
76. Moreira-Oliveira, M. S.,, Y. Mikami,, M. Miyaji,, T. Imai,, A. Z. Schreiber, and, M. L. Moretti. 2005. Diagnosis of candidemia by polymerase chain reaction and blood culture: prospective study in a high-risk population and identification of variables associated with development of candidemia. Eur. J. Clin. Microbiol. Infect. Dis. 24:721726.
77. Munson, E. L.,, D. J. Diekema,, S. E. Beekman,, K. C. Chapin, and, G. V. Doern. 2003. Detection and treatment of bloodstream infection: laboratory reporting and antimicrobial management. J. Clin. Microbiol. 41:495497.
78. Navarro, E.,, J. C. Segura,, M. J. Castano, and, J. Solera. 2006. Use of real-time quantitative polymerase chain reaction to monitor the evolution of Brucella melitensis DNA load during therapy and post-therapy follow-up in patients with brucellosis. Clin. Infect. Dis. 42:12661273.
79. Ohlin, A.,, A. Bäckman,, M. Björkqvist,, P. Mölling,, M. Jurstrand, and, J. Schollin. 2008. Real-time PCR of the 16S-rRNA gene in the diagnosis of neonatal bacteraemia. Acta Paediatr. 97:13761380.
80. Oliveira, K.,, S. M. Brecher,, A. Durbin,, D. S. Shapiro,, D. R. Schwartz,, P. C. de Girolami,, J. Dakos,, G. W. Procop,, D. Wilson,, C. S. Hanna,, G. Haase,, H. Peltroche-Llacsahuanga,, K. C. Chapin,, M. C. Musgnug,, M. H. Levi,, C. Shoemaker, and, H. Stender. 2003. Direct identification of Staphylococcus aureus from positive blood culture bottles. J. Clin. Microbiol. 41:889991.
81. Oliveira, K.,, G. Haase,, C. Kurtzman,, J. J. Hyldig-Nielsen, and, H. Stender. 2001. Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol. 39:41384141.
82. Palomares, C.,, M. J. Torres,, A. Torres,, J. Aznar, and, J. C. Palomares. 2003. Rapid detection and identification of Staphylococcus aureus from blood culture specimens using real-time fluorescence PCR. Diagn. Microbiol. Infect. Dis. 45:183189.
83. Peters, R. P.,, M. A. van Agtmael,, S. Gierveld,, S. A. Danner,, A. B. Groeneveld,, C. M. Vandenbroucke-Grauls, and, P. H. Savelkoul. 2007. Quantitative detection of Staphylococcus aureus and Enterococcus faecalis DNA in blood to diagnose bacteremia in patients in the intensive care unit. J. Clin. Microbiol. 45:36413646.
84. Peters, R. P.,, M. A. van Agtmael,, A. M. Simoons-Smit,, S. A. Danner,, C. M. Vandenbroucke-Grauls, and, P. H. Savelkoul. 2006. Rapid identification of pathogens in blood cultures with a modified fluorescence in situ hybridization assay. J. Clin. Microbiol. 44:41864188.
85. Peters, R. P.,, P. H. Savelkoul,, A. M. Simoons-Smit,, S. A. Danner,, C. M. Vandenbroucke-Grauls, and, M. A. van Agtmael. 2006. Faster identification of pathogens in positive blood cultures by fluorescence in situ hybridization in routine practice. J. Clin. Microbiol. 44:119123.
86. Peters, R. P.,, T. Mohammadi,, C. M. Vandenbroucke-Grauls,, S. A. Danner,, M. A. van Agtmael, and, P. H. Savelkoul. 2004. Detection of bacterial DNA in blood samples from febrile patients: underestimated infection or emerging contamination? FEMS Immunol. Med. Microbiol. 42:249253.
87. Peters, R. P.,, M. A. van Agtmael,, S. A. Danner,, P. H. Savelkoul, and, C. M. Vandenbroucke-Grauls. 2004. New developments in the diagnosis of bloodstream infections. Lancet Infect. Dis. 4:751760.
88. Pittet, D.,, D. Tarara, and, R. P. Wenzel. 1994. Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality. JAMA 271:15981601.
89. Pittet, D.,, and R. P. Wenzel. 1995. Nosocomial bloodstream infections. Secular trends in rates, mortality, and contribution to total hospital deaths. Arch. Intern. Med. 155:11771184.
90. Prucha, M.,, Y. Ruryk,, H. Boriss,, E. Möller,, R. Zazula,, I. Herold,, R. A. Claus,, K. A. Reinhart,, P. Deigner, and, S. Russwurm. 2004. Expression profiling: toward an application in sepsis diagnostics. Shock 22:2933.
91. Quieipo-Ortuno, M. I.,, J. D. Colmenero,, M. J. Bravo,, M. A. Garcia-Ordonez, and, P. Morata. 2008. Usefulness of a quantitative real-time PCR assay using serum samples to discriminate between inactive, serologically positive and active human brucellosis. Clin. Microbiol. Infect. 14:11281134.
92. Reier-Nilsen, T.,, T. Farstad,, B. Nakstad,, V. Lauvrak, and, M. Steinbakk. 2009. Comparison of broad-range16S rDNA PCR and conventional blood culture for diagnosis of sepsis in the newborn: a case control study. BMC Pediatr. 9:5.
93. Richards, M. J.,, J. R. Edwards,, D. H. Culver, and, R. P. Gaynes. 1999. Nosocomial infections in medical intensive care units in the United States. National Nosocomial Infections Surveillance System. Crit. Care Med. 27:887892.
94. Rigby, S.,, G. W. Procop,, G. Haase,, D. Wilson,, G. Hall,, C. Kurtzman,, K. Oliveira,, S. von Oy,, J. J. Hyldig-Nielsen,, J. Coull, and, H. Stender. 2002. Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J. Clin. Microbiol. 40:21822186.
95. Rothman, R. E.,, M. D. Majmudar,, G. D. Kelen,, G. Madico,, C. A. Gaydos,, T. Walker, and, T. C. Quinn. 2002. Detection of bacteremia in emergency department patients at risk for infective endocarditis using universal 16S rRNA primers in a decontaminated polymerase chain reaction assay. J. Infect. Dis. 186:16771681.
96. Ruimy, R.,, M. Dos-Santos,, L. Raskine,, F. Bert,, R. Masson,, S. Elbaz,, C. Bonnal,, J. C. Lucet,, A. Lefort,, B. Fantin,, M. Wolff,, M. Hornstein, and, A. Andremont. 2008. Accuracy and potential usefulness of a triplex real-time PCR for improving antibiotic treatment of patients with blood cultures showing clustered gram-positive cocci on smears. J. Clin. Microbiol. 46:20452051.
97. Saager, B.,, H. Rohde,, B. S. Timmerbeil,, G. Franke,, W. Pothmann,, J. Dahlke,, S. Scherpe,, I. Sobottka,, P. Heisig, and, M. A. Horstkotte. 2008. Molecular characterisation of linezolid resistance in two vancomycin-resistant (VanB) Enterococcus faecium isolates using pyrosequencing. Eur. J. Clin. Microbiol. Infect. Dis. 27:873878.
98. Selvarangan, R.,, U. Bui,, A. P. Limaye, and, A. T. Cookson. 2003. Rapid identification of commonly encountered Candida species directly from blood culture bottles. J. Clin. Microbiol. 41:56605664.
99. Shang, S.,, G. Chen,, Y. Wu,, L. Du, and, Z. Zhao. 2005. Rapid diagnosis of bacterial sepsis with PCR amplification and microarray hybridization in 16S rRNA gene. Pediatr. Res. 58:143148.
100. Shresta, N. K.,, M. J. Tuohy,, R. A. Padmanabhan,, G. S. Hall, and, G. W. Procop. 2005. Evaluation of the LightCycler MGRADE kits on positive blood cultures that contained gram-positive cocci in clusters. J. Clin. Microbiol. 43:61446146.
101. Sleigh, J.,, R. Cursons, and, M. La Pine. 2001. Detection of bacteraemia in critically ill patients using 16S rDNA polymerase chain reaction and DNA sequencing. Intensive Care Med. 27:12691273.
102. Sogaard, M.,, H. Stender, and, H. C. Schonheyder. 2005. Direct identification of major blood culture pathogens, including Pseudomonas aeruginosa and Escherichia coli, by a panel of fluorescence in situ hybridization assays using peptide nucleic acid probes. J. Clin. Microbiol. 43:19471949.
103. Spiess, B.,, D. Buchheidt,, C. Baust,, H. Skladny,, W. Seifarth,, U. Zeilfelder,, C. Leib-Mosch,, H. Morz, and, R. Hehlmann. 2003. Development of a LightCycler PCR assay for detection and quantification of Aspergillus fumigatus DNA in clinical samples from neutropenic patients. J. Clin. Microbiol. 41:18111818.
104. Stamper, P. D.,, M. Cai,, T. Howard,, S. Speser, and, K. C. Carroll. 2007. Clinical validation of the molecular BD GeneOhm StaphSR assay for direct detection of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus in positive blood cultures. J. Clin. Microbiol. 45:21912196.
105. Stratidis, J.,, F. J. Bia, and, S. E. Edberg. 2007. Use of real-time polymerase chain reaction for identification of methicillin-resistant Staphylococcus aureus directly from positive blood cultures. Diagn. Microbiol. Infect. Dis. 58:199202.
106. Tenover, F. C. 2007. Rapid detection and identification of bacterial pathogens using novel molecular technologies: infection control and beyond. Clin. Infect. Dis. 44:418423.
107. Thulin, S.,, P. Olcén,, H. Fredlund, and, M. Unemo. 2008. Combined real-time PCR and pyrosequencing strategy for objective, sensitive, specific, and high-throughput identification of reduced susceptibility to penicillins in Neisseria meningitidis. Antimicrob. Agents Chemother. 52:753756.
108. Tokuda, Y.,, H. Miyasato, and, G. H. Stein. 2005. A simple prediction algorithm for bacteraemia in patients with acute febrile illness. QJM 98:813820.
109. Turenne, C. Y.,, E. Witwicki,, D. J. Hoban,, J. A. Karlowsky, and, A. M. Kabani. 2000. Rapid identification of bacteria from positive blood cultures by fluorescence-based PCR-single-strand conformation polymorphism analysis of the 16S rRNA gene. J. Clin. Microbiol. 38:513520.
110. Valles, J.,, J. Rello,, A. Ochagavia,, J. Garnacho, and, M. A. Alcala. 2003. Community-acquired bloodstream infection in critically ill adult patients: impact of shock and inappropriate antibiotic therapy on survival. Chest 123:16151624.
111. van Burik, J. A.,, D. Myerson,, R. W. Schreckhise, and, R. A. Bowden. 1998. Panfungal PCR assay for detection of fungal infection in human blood samples. J. Clin. Microbiol. 36:11691175.
112. Vrioni, G.,, G. Pappas,, E. Priavali,, C. Gartzonika, and, S. Levidiotou. 2008. An eternal microbe: Brucella DNA load persists for years after clinical cure. Clin. Infect. Dis. 46:e131e136.
113. Wellinghausen, N.,, B. Wirths,, A. Essig, and, L. Wassill. 2004. Evaluation of the Hyplex Bloodscreen multiplex PCR–enzyme-linked immunosorbent assay system for direct identification of gram-positive cocci and gram-negative bacilli from blood cultures. J. Clin. Microbiol. 42:31473151.
114. Wellinghausen, N.,, B. Wirths,, A. R. Franz,, L. Karolyi,, R. Marre, and, U. Reischl. 2004. Algorithm for the identification of bacterial pathogens in positive blood cultures by real-time LightCycler polymerase chain reaction (PCR) with sequence-specific probes. Diagn. Microbiol. Infect. Dis. 48:229241.
115. White, P. L.,, C. J. Linton,, M. D. Perry,, E. M. Johnson, and, R. A. Barnes. 2006. The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a routine clinical setting. Clin. Infect. Dis. 42:479486.
116. Wiesinger-Mayr, H.,, K. Vierlinger,, R. Pichler,, A. Kriegner,, A. M. Hirschl,, E. Presterl,, L. Bodrossy, and, C. Noehammer. 2007. Identification of human pathogens isolated from blood using microarray hybridisation and signal pattern recognition. BMC Microbiol. 14:78.
117. Wilson, D. A.,, M. J. Joyce,, S. S. Hall,, L. B. Reller,, G. D. Roberts,, G. S. Hall,, B. D. Alexander, and, G. W. Procop. 2005. Multicenter evaluation of a Candida albicans peptide nucleic acid fluorescent in situ hybridization probe for characterization of yeast isolates from blood cultures. J. Clin. Microbiol. 43:29092912.
118. Wu, Y. D.,, L. H. Chen,, X. J. Wu,, S. Q. Shang,, J. T. Lou,, L. Z. Du, and, Z. Y. Zhao. 2008. Gram stain-specific-probe-based real-time PCR for diagnosis and discrimination of bacterial neonatal sepsis. J. Clin. Microbiol. 46:26132619.
119. Wyllie, D. H.,, I. C. Bowler, and, T. E. Peto. 2004. Relation between lymphopenia and bacteraemia in UK adults with medical emergencies. J. Clin. Pathol. 57:950955.
120. Yadav, A. K.,, G. C. Wilson,, P. L. Prasad, and, P. K. Menon. 2005. Polymerase chain reaction in rapid diagnosis of neonatal sepsis. Indian Pediatr. 42:681685.
121. Yang, S.,, and R. E. Rothman. 2004. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 4:337348.
122. Yesilkaya, H.,, F. Meacci,, S. Niemann,, D. Hillemann,, S. Rüsch-Gerdes, LONG DRUG Study Group, M. R. Barer,, P. W. Andrew, and, M. R. Oggioni. 2006. Evaluation of molecular-beacon, TaqMan, and fluorescence resonance energy transfer probes for detection of antibiotic resistance-conferring single nucleotide polymorphisms in mixed Mycobacterium tuberculosis DNA extracts. J. Clin. Microbiol. 44:38263829.
123. Zaragoza, R.,, A. Artero,, J. J. Camareno,, S. Sancho,, R. González, and, J. M. Nogueira. 2003. The influence of inadequate empirical antimicrobial treatment on patients with bloodstream infections in an intensive care unit. Clin. Microbiol. Infect. 9:412418.

Tables

Generic image for table
TABLE 1

Use of FISH or chemiluminescent probe matrix for identification of microorganisms in blood cultures

Citation: Savelkoul P, Peters R. 2011. Molecular Approaches to the Diagnosis of Sepsis, p 751-765. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch49
Generic image for table
TABLE 2

Characteristics of studies on direct detection of bacteremia in blood with eubacterial PCR assay

Citation: Savelkoul P, Peters R. 2011. Molecular Approaches to the Diagnosis of Sepsis, p 751-765. In Persing D, Tenover F, Tang Y, Nolte F, Hayden R, van Belkum A (ed), Molecular Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555816834.ch49

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error