Chapter 4 : The Role of Two-Component Signal Transduction Systems in Bacterial Stress Responses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

The Role of Two-Component Signal Transduction Systems in Bacterial Stress Responses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap04-2.gif


This chapter discusses the state of our understanding of two-component pathways on all levels, beginning with the initial input stimulus through the final output response. Its goal is to demonstrate the key principles and paradigms for how these signaling pathways work by drawing on specific, illustrative examples. Two-component signaling proteins are among the most prevalent signaling molecules in the bacterial kingdom and represent a primary means by which bacteria sense and respond to a range of stresses and environments. In many cases, histidine kinases are bifunctional: acting as both kinases and phosphatases for their cognate substrates. All histidine kinases have two conserved domains: the dimerization and phosphotransfer (DHp) domain and the catalytic and ATP-binding (CA) domain. Most bacteria are faced with a constantly changing environment and a multitude of stressors that challenge their survival. Two-component signaling proteins are one of the predominant means by which bacteria sense and respond to such challenges. Since their initial discovery two decades ago, histidine kinases and response regulators have been implicated in countless stress responses. But it remains a major challenge to understand how cells evolve new signaling pathways to respond to new stressors.

Citation: Laub M. 2011. The Role of Two-Component Signal Transduction Systems in Bacterial Stress Responses, p 45-58. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch4

Key Concept Ranking

Two-Component Signal Transduction Systems
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

(A) Schematic of the canonical two-component signaling system. In response to an input signal, the sensor histidine kinase uses ATP to autophosphorylate. The phosphoryl group is then transferred to a cognate response regulator to trigger an output. The symbol ~ indicates phosphorylation of the conserved histidine and aspartate in the histidine kinase and response regulator, respectively. (B) Schematic of a phosphorelay. After autophosphorylation, the hybrid histidine kinase will transfer the phosphoryl group intramolecularly to a response regulator-like domain. A histidine phosphotransferase then shuttles the phosphoryl group to a soluble response regulator that affects an output. In some cases, the hybrid kinase is split into a canonical histidine kinase and soluble response regulator (see, for example, Fig. 2A ).

Citation: Laub M. 2011. The Role of Two-Component Signal Transduction Systems in Bacterial Stress Responses, p 45-58. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Schematics of the phosphorelays controlling (A) sporulation in , (B) quorum-sensing in , and (C) the cell cycle in . The two-component signaling proteins in each panel are shaded in gray. Also shown are the auxiliary proteins that regulate phosphate flow through the pathway (see text for details), as well as the inputs and outputs for each pathway.

Citation: Laub M. 2011. The Role of Two-Component Signal Transduction Systems in Bacterial Stress Responses, p 45-58. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

(A) Domain architecture of response regulators. Six of the most common domains found adjacent to the receiver domain that is phosphorylated are shown (Galperin, ). Three are involved in DNA-binding and the regulation of transcription: wHTH (winged helix-turn-helix), HTH (helix-turn-helix), and AAA+ ATPase/FIS. Two are associated with cyclic-di-GMP signaling— GGDEF and EAL domains—each named for a conserved patch of residues that synthesize and degrade c-di-GMP, respectively. Many response regulators are also single-domain proteins and harbor only a phosphorylatable receiver domain. (B) Domain architecture of histidine kinases. The four most common domains found adjacent to the DHp and CA domains are PAS, HAMP, GAF, and TM (transmembrane) domains (Galperin, ). In many cases, the linker between the input and DHp domains is a so-called signaling, or S, helix. Note that the diagram only indicates the most proximal domain, but many histidine kinases contain multiple domains N-terminal to the DHp domain.

Citation: Laub M. 2011. The Role of Two-Component Signal Transduction Systems in Bacterial Stress Responses, p 45-58. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Anantharaman, V.,, S. Balaji, and, L. Aravind. 2006. The signaling helix: a common functional theme in diverse signaling proteins. Biol. Direct. 1:25.
2. Ansaldi, M.,, L. Théraulaz, and, V. Méjean. 2004. TorI, a response regulator inhibitor of phage origin in Escherichia coli. Proc. Natl. Acad. Sci. USA 101:94239428.
3. Antoniewski, C.,, B. Savelli, and, P. Stragier. 1990. The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol. 172:8693.
4. Armitage, J. P. 1999. Bacterial tactic responses. Adv. Microb. Physiol. 41:229289.
5. Bachhawat, P.,, G. V. Swapna,, G. T. Montelione, and, A. M. Stock. 2005. Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure 13:13531363.
6. Bader,, M., S. Sanowar,, M. Daley,, A. Schneider,, U. Cho,, W. Xu,, R. Klevit,, H. Le Moual, and, S. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461472.
7. Baikalov,, I., I. Schroder,, M. Kaczor-Grzeskowiak,, K. Grzeskowiak,, R. P. Gunsalus, and, R. E. Dickerson. 1996. Structure of the Escherichia coli response regulator NarL. Biochemistry 35:1105311061.
8. Batchelor, E., and, M. Goulian. 2006. Imaging OmpR localization in Escherichia coli. Mol. Microbiol. 59:17671778.
9. Bick,, M., V. Lamour,, K. Rajashankar,, Y. Gordiyenko,, C. Robinson, and, S. Darst. 2009. How to switch off a histidine kinase: crystal structure of Geobacillus stearothermophilus KinB with the inhibitor Sda. J. Mol. Biol. 386:163177.
10. Biondi,, E. G.,, S. J. Reisinger,, J. M. Skerker,, M. Arif,, B. S. Perchuk,, K. R. Ryan, and, M. T. Laub. 2006. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444:899904.
11. Bougdour,, A., C. Cunning,, P. J. Baptiste,, T. Elliott, and, S. Gottesman. 2008. Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol. Microbiol. 68:298313.
12. Bougdour, A.,, S. Wickner, and, S. Gottesman. 2006. Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev. 20:884897.
13. Burbulys, D.,, K. A. Trach, and, J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545552.
14. Burkholder, W. F., I. Kurtser, and, A. D. Grossman. 2001. Replication initiation proteins regulate a developmental checkpoint in Bacillus subtilis. Cell 104:269279.
15. Casino, P.,, V. Rubio, and, A. Marina. 2009. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139:112.
16. Chervitz, S. A., and, J. J. Falke. 1996. Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc. Natl. Acad. Sci. USA 93:25452550.
17. Cheung, J., and, W. Hendrickson. 2008. Crystal structures of C4-dicarboxylate ligand complexes with sensor domains of histidine kinases DcuS and DctB. J. Biol. Chem. 283:30256-30265.
18. Cheung, J., and, W. A. Hendrickson. 2009. Structural analysis of ligand stimulation of the histidine kinase NarX. Structure 17:190-201.
19. Cho,, H. S.,, S. Y. Lee,, D. Yan,, X. Pan,, J. S. Parkinson,, S. Kustu,, D. E. Wemmer, and, J. G. Pelton. 2000. NMR structure of activated CheY. J. Mol. Biol. 297:543551.
20. Cunningham, K., and, W. Burkholder. 2009. The histidine kinase inhibitor Sda binds near the site of autophosphorylation and may sterically hinder autophosphorylation and phosphotransfer to Spo0F. Mol. Microbiol. 71:659677.
21. Danese,, P. N.,, W. B. Snyder,, C. L. Cosma,, L. J. Davis, and, T. J. Silhavy. 1995. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev. 9:387398.
22. Da Re,, S., J. Schumacher,, P. Rousseau,, J. Fourment,, C. Ebel, and, D. Kahn. 1999. Phosphorylation-induced dimerization of the FixJ receiver domain. Mol. Microbiol. 34:504511.
23. Eguchi,, Y., J. Itou,, M. Yamane,, R. Demizu,, F. Yamato,, A. Okada,, H. Mori,, A. Kato, and, R. Utsumi. 2007. B1500, a small membrane protein, connects the two-component systems EvgS/EvgA and PhoQ/PhoP in Escherichia coli. Proc. Natl. Acad. Sci. USA 104:1871218717.
24. Ferrari,, F. A.,, K. Trach,, D. LeCoq,, J. Spence,, E. Ferrari, and, J. A. Hoch. 1985. Characterization of the spo0A locus and its deduced product. Proc. Natl. Acad. Sci. USA 82:26472651.
25. Fisher,, S. L.,, S. K. Kim,, B. L. Wanner, and, C. T. Walsh. 1996. Kinetic comparison of the specificity of the vancomycin resistance VanS for two response regulators, VanR and PhoB. Biochemistry 35:47324740.
26. Fleischer, R.,, R. Heermann,, K. Jung, and, S. Hunke. 2007. Purification, reconstitution, and characterization of the CpxRAP envelope stress system of Escherichia coli. J. Biol. Chem. 282:85838593.
27. Freeman, J. A., and, B. L. Bassler. 1999a. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol. Microbiol. 31:665677.
28. Freeman, J. A., and, B. L. Bassler. 1999b. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J. Bacteriol. 181:899906.
29. Freeman, J. A.,, B. N. Lilley, and, B. L. Bassler. 2000. A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol. Microbiol. 35:139149.
30. Galperin, M. Y. 2005. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol. 5:35.
31. Galperin, M. Y. 2006. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol. 188:41694182.
32. Gao, R.,, T. R. Mack, and, A. M. Stock. 2007. Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem. Sci. 32:225234.
33. Gao, R., Y. Tao, and, A. M. Stock. 2008. System-level mapping of Escherichia coli response regulator dimerization with FRET hybrids. Mol. Microbiol. 69:13581372.
34. Garcia Vescovi, E.,, F. C. Soncini, and, E. A. Groisman. 1996. Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84:165174.
35. Garnerone,, A. M.,, D. Cabanes,, M. Foussard,, P. Boistard, and, J. Batut. 1999. Inhibition of the FixL sensor kinase by the FixT protein in Sinorhizobium meliloti. J. Biol. Chem. 274:3250032506.
36. Goodman,, A., M. Merighi,, M. Hyodo,, I. Ventre,, A. Filloux, and, S. Lory. 2009. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev. 23:249259.
37. Grimshaw,, C. E.,, S. Huang,, C. G. Hanstein,, M. A. Strauch,, D. Burbulys,, L. Wang,, J. A. Hoch, and, J. M. Whiteley. 1998. Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 37:13651375.
38. Hall, M. N., and, T. J. Silhavy. 1981. Genetic analysis of the major outer membrane proteins of Escherichia coli. Annu. Rev. Genet. 15:91142.
39. Harper, S. M.,, L. C. Neil, and, K. H. Gardner. 2003. Structural basis of a phototropin light switch. Science 301:15411544.
40. Hecht,, G. B.,, T. Lane,, N. Ohta,, J. M. Sommer, and, A. Newton. 1995. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus. EMBO J. 14:39153924.
41. Hecht, G. B., and, A. Newton. 1995. Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol. 177:62236229.
42. Henke, J. M., and, B. L. Bassler. 2004. Three parallel quorumsensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186:69026914.
43. Hess, J. F.,, K. Oosawa,, N. Kaplan, and, M. I. Simon. 1988. Phosphorylation of three proteins in the signaling pathway of bacterial chemotaxis. Cell 53:7987.
44. Hess, J. F.,, K. Oosawa,, P. Matsumura, and, M. I. Simon. 1987. Protein phosphorylation is involved in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 84:76097613.
45. Hickman, J. W.,, D. F. Tifrea, and, C. S. Harwood. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc. Natl. Acad. Sci. USA 102:1442214427.
46. Hulko,, M., F. Berndt,, M. Gruber,, J. Linder,, V. Truffault,, A. Schultz,, J. Martin,, J. Schultz,, A. Lupas, and, M. Coles. 2006. The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126:929940.
47. Hung, D. Y., and, L. Shapiro. 2002. A signal transduction protein cues proteolytic events critical to Caulobacter cell cycle progression. Proc. Natl. Acad. Sci. USA 99:1316013165.
48. Igo, M. M.,, A. J. Ninfa, and, T. J. Silhavy. 1989a. A bacterial environmental sensor that functions as a protein kinase and stimulates transcriptional activation. Genes Dev. 3:598605.
49. Igo,, M. M.,, A. J. Ninfa,, J. B. Stock, and, T. J. Silhavy. 1989b. Phosphorylation and dephosphorylation of a bacterial transcriptional activator by a transmembrane receptor. Genes Dev. 3:17251734.
50. Iniesta,, A. A.,, P. T. McGrath,, A. Reisenauer,, H. H. Mcadams, and, L. Shapiro. 2006. A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc. Natl. Acad. Sci. USA 103:1093510940.
51. Ireton, K.,, D. Z. Rudner,, K. J. Siranosian, and, A. D. Grossman. 1993. Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcription factor. Genes Dev. 7:283294.
52. Jenal, U., and, M. Y. Galperin. 2009. Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics. Curr. Opin. Microbiol. 12:152160.
53. Jenal, U., and, J. Malone. 2006. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40:385407.
54. Jiang, M.,, W. Shao,, M. Perego, and, J. A. Hoch. 2000. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38:535542.
55. Jiang, P., and, A. J. Ninfa. 1999. Regulation of autophosphorylation of Escherichia coli nitrogen regulator II by the PII signal transduction protein. J. Bacteriol. 181:19061911.
56. Kato, A., and, E. A. Groisman. 2004. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor. Genes Dev. 18:23022313.
57. Kato, M.,, T. Mizuno,, T. Shimizu, and, T. Hakoshima. 1997. Insights into multistep phosphorelay from the crystal structure of the C-terminal HPt domain of ArcB. Cell 88:717723.
58. Keener, J., and, S. Kustu. 1988. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc. Natl. Acad. Sci. USA 85:49764980.
59. Kerff,, F., P. Charlier,, M. L. Colombo,, E. Sauvage,, A. Brans,, J. M. Frère,, B. Joris, and, E. Fonzé. 2003. Crystal structure of the sensor domain of the BlaR penicillin receptor from Bacillus licheniformis. Biochemistry 42:1283512843.
60. Kohanski,, M. A.,, D. J. Dwyer,, J. Wierzbowski,, G. Cottarel, and, J. J. Collins. 2008. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135:679690.
61. Kustu, S.,, A. K. North, and, D. S. Weiss. 1991. Prokaryotic transcriptional enhancers and enhancer-binding proteins. Trends Biochem. Sci. 16:397402.
62. Laub, M. T., and, M. Goulian. 2007. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41:121145.
63. Lee,, S. Y.,, H. S. Cho,, J. G. Pelton,, D. Yan,, E. A. Berry, and, D. E. Wemmer. 2001a. Crystal structure of activated CheY. Comparison with other activated receiver domains. J. Biol. Chem. 276:1642516431.
64. Lee,, S. Y.,, H. S. Cho,, J. G. Pelton,, D. Yan,, R. K. Henderson,, D. S. King,, L. Huang,, S. Kustu,, E. A. Berry, and, D. E. Wemmer. 2001b. Crystal structure of an activated response regulator bound to its target. Nat. Struct. Biol. 8:5256.
65. Loomis, W. F.,, A. Kuspa, and, G. Shaulsky. 1998. Two-component signal transduction systems in eukaryotic microorganisms. Curr. Opin. Microbiol. 1:643648.
66. McEwen, J., and, P. Silverman. 1980. Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions. Proc. Natl. Acad. Sci. USA 77:513517.
67. Merrikh, H.,, A. E. Ferrazzoli,, A. Bougdour,, A. Olivier-Mason, and, S. T. Lovett. 2009. A DNA damage response in Escherichia coli involving the alternative sigma factor, RpoS. Proc. Natl. Acad. Sci. USA 106:611616.
68. Möglich, A.,, R. A. Ayers, and, K. Moffat. 2009. Design and signaling mechanism of light-regulated histidine kinases. J. Mol. Biol. 385:14331444.
69. Muffler, A.,, D. Fischer,, S. Altuvia,, G. Storz, and, R. Hengge-Aronis. 1996. The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J. 15:13331339.
70. Nakano, S.,, M. M. Nakano,, Y. Zhang,, M. Leelakriangsak, and, P. Zuber. 2003. A regulatory protein that interferes with activator-stimulated transcription in bacteria. Proc. Natl. Acad. Sci. USA 100:42334238.
71. Neiditch,, M., M. Federle,, A. Pompeani,, R. Kelly,, D. Swem,, P. Jeffrey,, B. Bassler, and, F. Hughson. 2006. Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell 126:10951108.
72. Neiditch,, M. B.,, M. J. Federle,, S. T. Miller,, B. L. Bassler, and, F. M. Hughson. 2005. Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol. Cell 18:507518.
73. Ninfa, A. J., and, B. Magasanik. 1986. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 83:59095913.
74. Ninfa,, A. J.,, E. G. Ninfa,, A. N. Lupas,, A. Stock,, B. Magasanik, and, J. Stock. 1988. Crosstalk between bacterial chemotaxis signal transduction proteins and regulators of transcription of the Ntr regulon: evidence that nitrogen assimilation and chemotaxis are controlled by a common phosphotransfer mechanism. Proc. Natl. Acad. Sci. USA 85:54925496.
75. Nixon, B. T.,, C. W. Ronson, and, F. M. Ausubel. 1986. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA 83:78507854.
76. Ogino, T.,, M. Matsubara,, N. Kato,, Y. Nakamura, and, T. Mizuno. 1998. An Escherichia coli protein that exhibits phosphohistidine phosphatase activity towards the HPt domain of the ArcB sensor involved in the multistep His-Asp phosphorelay. Mol. Microbiol. 27:573585.
77. Ogura, M.,, K. Shimane,, K. Asai,, N. Ogasawara, and, T. Tanaka. 2003. Binding of response regulator DegU to the aprE promoter is inhibited by RapG, which is counteracted by extracellular PhrG in Bacillus subtilis. Mol. Microbiol. 49:16851697.
78. Ohta, N., and, A. Newton. 2003. The core dimerization domains of histidine kinases contain recognition specificity for the cognate response regulator. J. Bacteriol. 185:44244431.
79. Oosawa, K.,, J. F. Hess, and, M. I. Simon. 1988. Mutants defective in bacterial chemotaxis show modified protein phosphorylation. Cell 53:8996.
80. Ottemann, K. M.,, W. Xiao,, Y. K. Shin, and, D. E. Koshland, Jr. 1999. A piston model for transmembrane signaling of the aspartate receptor. Science 285:17511754.
81. Paul,, R., T. Jaeger,, S. Abel,, I. Wiederkehr,, M. Folcher,, E. G. Biondi,, M. T. Laub, and, U. Jenal. 2008. Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell 133:452461.
82. Paul,, R., S. Weiser,, N. C. Amiot,, C. Chan,, T. Schirmer,, B. Giese, and, U. Jenal. 2004. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 18:715727.
83. Perego, M. 2001. A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Mol. Microbiol. 42:133143.
84. Perego, M., P. Glaser, and, J. A. Hoch. 1996. Aspartyl-phosphate phosphatases deactivate the response regulator components of the sporulation signal transduction system in Bacillus subtilis. Mol. Microbiol. 19:11511157.
85. Perego,, M., C. Hanstein,, K. M. Welsh,, T. Djavakhishvili,, P. Glaser, and, J. A. Hoch. 1994. Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. Subtilis. Cell 79:10471055.
86. Perego, M., and, J. A. Hoch. 1996a. Cell-cell communication regulates the effects of protein aspartate phosphatases on the phosphorelay controlling development in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93:15491553.
87. Perego, M., and, J. A. Hoch. 1996b. Protein aspartate phosphatases control the output of two-component signal transduction systems. Trends Genet. 12:97101.
88. Pratt, L. A., and, T. J. Silhavy. 1996. The response regulator SprE controls the stability of RpoS. Proc. Natl. Acad. Sci. USA 93:24882492.
89. Sanna, M. G., and, M. I. Simon. 1996. In vivo and in vitro characterization of Escherichia coli protein CheZ gain- and loss-of-function mutants. J. Bacteriol. 178:62756280.
90. Siryaporn, A., and, M. Goulian. 2008. Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems in E. coli. Mol. Microbiol. 70:494506.
91. Skerker, J.,, M. Prasol,, B. Perchuk,, E. Biondi, and, M. Laub. 2005. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PloS Biol. 3:e334.
92. Skerker,, J. M.,, B. S. Perchuk,, A. Siryaporn,, E. A. Lubin,, O. Ashenberg,, M. Goulian, and, M. T. Laub. 2008. Rewiring the specificity of two-component signal transduction systems. Cell 133:10431054.
93. Solomon, J. M.,, B. A. Lazazzera, and, A. D. Grossman. 1996. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes Dev. 10:20142024.
94. Stephenson, K., and, J. A. Hoch. 2002. Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr. Opin. Pharmacol. 2:507512.
95. Stock, A.,, D. E. Koshland, Jr., and, J. Stock. 1985. Homologies between the Salmonella typhimurium CheY protein and proteins involved in the regulation of chemotaxis, membrane protein synthesis, and sporulation. Proc. Natl. Acad. Sci. USA 82:79897993.
96. Stock, A. M.,, V. L. Robinson, and, P. N. Goudreau. 2000. Two-component signal transduction. Annu. Rev. Biochem. 69:183215.
97. Taylor, B. L., and, I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479506.
98. Tomomori,, C., T. Tanaka,, R. Dutta,, H. Park,, S. K. Saha,, Y. Zhu,, R. Ishima,, D. Liu,, K. I. Tong,, H. Kurokawa,, H. Qian,, M. Inouye, and, M. Ikura. 1999. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat. Struct. Biol. 6:729734.
99. Trach, K. A., and, J. A. Hoch. 1993. Multisensory activation of the phosphorelay initiating sporulation in Bacillus subtilis: identification and sequence of the protein kinase of the alternate pathway. Mol. Microbiol. 8:6979.
100. Ulrich,, D. L.,, D. Kojetin,, B. L. Bassler,, J. Cavanagh, and, J. P. Loria. 2005. Solution structure and dynamics of LuxU from Vibrio harveyi, a phosphotransferase protein involved in bacterial quorum sensing. J. Mol. Biol. 347:297307.
101. Varughese,, K. I.,, Madhusudan,, X. Z. Zhou,, J. M. Whiteley, and, J. A. Hoch. 1998. Formation of a novel four-helix bundle and molecular recognition sites by dimerization of a response regulator phosphotransferase. Mol. Cell 2:485493.
102. Wang, L.,, R. Grau,, M. Perego, and, J. A. Hoch. 1997. A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev. 11:25692579.
103. Wassmann,, P., C. Chan,, R. Paul,, A. Beck,, H. Heerklotz,, U. Jenal, and, T. Schirmer. 2007. Structure of BeF3- -modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure 15:915927.
104. Watanabe, T.,, A. Okada,, Y. Gotoh, and, R. Utsumi. 2008. Inhibitors targeting two-component signal transduction. Adv. Exp. Med. Biol. 631:229236.
105. Weiss, V., and, B. Magasanik. 1988. Phosphorylation of nitrogen regulator I (NRI) of Escherichia coli. Proc. Natl. Acad. Sci. USA 85:89198923.
106. West, A. H., and, A. M. Stock. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26:369376.
107. White, R. A.,, H. Szurmant,, J. A. Hoch, and, T. Hwa. 2007. Features of protein-protein interactions in two-component signaling deduced from genomic libraries. Methods Enzymol. 422:75101.
108. Wyman,, C., I. Rombel,, A. K. North,, C. Bustamante, and, S. Kustu. 1997. Unusual oligomerization required for activity of NtrC, a bacterial enhancer-binding protein. Science 275:16581661.
109. Xu,, Q., D. Carlton,, M. D. Miller,, M. A. Elsliger,, S. Sri Krishna,, P. Abdubek,, T. Astakhova,, P. Burra,, H. J. Chiu,, T. Clayton,, M. C. Deller,, L. Duan,, Y. Elias,, J. Feuerhelm,, J. C. Grant,, A. Grzechnik,, S. K. Grzechnik,, G. Won Han,, L. Jaroszewski,, K. K. Jin,, H. E. Klock,, M. W. Knuth,, P. Kozbial,, A. Kumar,, D. Marciano,, D. McMullan,, A. T. Morse,, E. Nigoghossian,, L. Okach,, S. Oommachen,, J. Paulsen,, R. Reyes,, C. L. Rife,, N. Sefcovic,, C. Trame,, C. V. Trout,, H. van den Bedem,, D. Weekes,, K. O. Hodgson,, J. Wooley,, A. M. Deacon,, A. Godzik,, S. A. Lesley, and, I. A. Wilson. 2009. Crystal structure of histidine phosphotransfer protein ShpA, an essential regulator of stalk biogenesis in Caulobacter crescentus. J. Mol. Biol. 390:686698.
110. Xu, Q., and, A. H. West. 1999. Conservation of structure and function among histidine-containing phosphotransfer (HPt) domains as revealed by the crystal structure of YPD1. J. Mol. Biol. 292:10391050.
111. Zapf, J., U. Sen, Madhusudan,, J. A. Hoch, and, K. I. Varughese. 2000. A transient interaction between two phosphorelay proteins trapped in a crystal lattice reveals the mechanism of molecular recognition and phosphotransfer in signal transduction. Structure 8:851862.
112. Zhou,, Y., S. Gottesman,, J. R. Hoskins,, M. R. Maurizi, and, S. Wickner. 2001. The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev. 15:627637.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error