1887

Chapter 5 : Roles of mRNA Stability, Translational Regulation, and Small RNAs in Stress Response Regulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Roles of mRNA Stability, Translational Regulation, and Small RNAs in Stress Response Regulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap05-2.gif

Abstract:

The largest class of small RNAs (sRNAs) regulate mRNA stability and translation by pairing with specific target mRNAs. The way in which the mRNA folds can profoundly affect all of its properties. Degradation by RNase E in vitro is known to be stimulated by a 5' monophosphate or 5' OH on the mRNA, even though the initial cleavage event may be far from the 5' end. Initiation of degradation at the 3' end of an mRNA without an internal endonucleolytic cut generally proceeds rapidly only in the absence of secondary structure, such as the stem loop from a factor-independent terminator. Most alterations in mRNA folding by regulatory molecules affect stability or translation, but co-transcriptional changes in folding can also affect mRNA fate via formation or failure to form RNA structures, thereby leading to transcription termination. More recently, it has become apparent that environmental sensing by the 5' end of an mRNA can occur directly, by binding of a small molecule ligand to the 5' UTR. The folding of these mRNA structures, called riboswitches, is modulated by the ligand, leading to transcription termination (OFF switches) or antitermination (ON switches), or translational regulation. Total deletion of CsrA is lethal in under many growth conditions, apparently because of redirection of the cell to hyperaccumulation of glycogen. Antisense RNAs, known to regulate plasmid stability, have now been found in bacteria and shown to play major regulatory roles.

Citation: Gottesman S. 2011. Roles of mRNA Stability, Translational Regulation, and Small RNAs in Stress Response Regulation, p 59-73. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch5

Key Concept Ranking

Ribosome Binding Site
0.59627324
Regulatory RNAs
0.56949043
Outer Membrane Proteins
0.47715196
0.59627324
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

mRNA stability determinants in . (A) A variety of features that may improve mRNA stability and (B) cellular processes that lead to mRNA cleavage and degradation. See text for references and details. Light arrows and other symbols show inefficient access of endonucleases and exonucleases to mRNA; darker arrows and symbols indicate better access. No 5′ to 3′ exonucleases are known in . Degradation is frequently initiated by endonucleases such as RNase E, followed by 3′ to 5′ exonuclease degradation by PNPase, RNase II, and RNase R. mRNA characteristics that protect from RNase E include a 5′-triphosphate; although this can be removed by RppH, secondary structure near the 5′ end may slow or block RppH action. Removal of the 5′ triphosphate increases activity of RNase E in endonucleolytic cleavage of the mRNA. Ribosome loading and translation may also block endonuclease action. 3′ to 5′ exonucleases are either blocked by terminator stem loops or unable to initiate with a short 3′ single-stranded extension; polyA polymerase may add a 3′ extension, allowing these nucleases to enter. Endoribonuclease III makes double-stranded cuts within bulges of stem loops; such cuts are then entry points for the 3′ to 5′ exonucleases.

Citation: Gottesman S. 2011. Roles of mRNA Stability, Translational Regulation, and Small RNAs in Stress Response Regulation, p 59-73. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Regulation at the ends of transcripts: (A) retroregulation and (B) attenuation. (A) In this generalized example, derived from the case of bacteriophage lambda regulation described in the text, promoter P leads to transcripts that end at the factor-independent terminator indicated by the stem loop and run of Us. This is relatively resistant to 3′ to 5′ exonucleases, which cannot access the short single-stranded region at the 3′ end of the transcript; the open reading frame (ORF) mRNA is present and can be translated. Promoter P includes an antitermination system that allows the RNA polymerase to read through the terminator, ending somewhere further downstream. This read-through transcript includes a stem loop that is a site for RNase III cleavage; the cleavage product is then sensitive to 3′ to 5′ exonucleases, decreasing mRNA levels and therefore decreasing expression of the ORF. The lightening bolts indicate where environmental or stress information can be sensed, in this case by differential expression of the P and P promoters. (B) Attenuation and riboswitches: The 5′ UTR of this gene can fold in two alternative structures. On the top line, the light gray sequence pairs with a downstream sequence, forming a terminator, and transcription does not extend into the downstream ORF. This terminator can form because the sequence in the dark heavy sequence is sequestered in the upstream stem loop. On the second line, the upstream sequestering structure does not form, and the dark sequence binds to the grey sequence, blocking formation of a terminator, and allowing transcription to continue into the ORF. Modulators of this folding can include small molecule ligands (as in riboswitches, shown in the top line by the hatched region, also where sensing of the cellular environment takes place), by stalled translation of an upstream leader peptide, or by interactions with uncharged tRNAs for T box regulation (see text).

Citation: Gottesman S. 2011. Roles of mRNA Stability, Translational Regulation, and Small RNAs in Stress Response Regulation, p 59-73. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Hfq trafficking to stimulate sRNA pairing to mRNAs. (A) Hfq binds to single-stranded regions in both sRNAs and mRNA targets. In some cases, binding leads to remodeling of the RNA, increasing the availability of pairing regions. Depicted is the remodeling of the mRNA by Hfq (Geissmann and Touati, ); the region of that pairs with the sRNA RyhB is shown in grey. Similar remodeling to open up stems has been observed for OxyS (Zhang et al., ), but remodeling is not detected in other cases of Hfq binding (Brescia et al., ). (B) It is not yet clear whether two Hfq rings interact, one binding to mRNA (in black) and one to sRNA (in gray), as shown, or if two RNAs bind to a single ring, stabilizing initial pairing. In at least one case, DsrA stimulation of translation, displacement of Hfq seems to be important to increase pairing, presumably improving activation of translation (Soper and Woodson, ).

Citation: Gottesman S. 2011. Roles of mRNA Stability, Translational Regulation, and Small RNAs in Stress Response Regulation, p 59-73. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816841.ch05
1. Altuvia, S. 2007. Identification of bacterial small non-coding RNAs: experimental approaches. Curr. Opin. Microbiol. 10:257261.
2. Altuvia, S.,, D. Weinstein-Fischer,, A. Zhang,, L. Postow, and, G. Storz. 1997. A small stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90:4353.
3. Argaman,, L., R. Hershberg,, J. Vogel,, G. Bejerano,, E. G. Wagner,, H. Margalit, and, S. Altuvia. 2001. Novel small RNA- encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 11:941950.
4. Babitzke, P.,, C. S. Baker, and, T. Romeo. 2009. Regulation of translation initiation by RNA binding proteins. Annu. Rev. Microbiol. 63:2744.
5. Bechhofer, D. H. 2009. Messenger RNA decay and maturation in Bacillus subtilis. Prog. Mol. Biol. Transl. Sci. 85:231273.
6. Bernstein,, J. A.,, A. B. Khodursky,, P.-H. Lin,, S. Lin-Chao, and, S. N. Cohen. 2002. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl. Acad. Sci. USA 99:96979702.
7. Boisset,, S., T. Geissmann,, E. Huntzinger,, P. Fechter,, N. Bendridi,, M. Possedko,, C. Chevalier,, A. C. Helfer,, Y. Benito,, A. Jacquier,, C. Gaspin,, F. Vandenesch, and, P. Romby. 2007. Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev. 21:13531366.
8. Brencic,, A.,, K. A. McFarland,, H. R. McManus,, C. Castang,, I. Mogno,, S. L. Dove, and, S. Lory. 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol. Microbiol. 73:434445.
9. Brennan, R. G., and, T. M. Link. 2007. Hfq structure, function and ligand binding. Curr. Opin. Microbiol. 10:125133.
10. Brescia,, C. C.,, P. J. Mikulecky,, A. L. Feig, and, D. D. Sledjeski. 2003. Identification of the Hfq-binding site on DsrA RNA:Hfq binds without altering DsrA secondary structure. RNA 9:3343.
11. Campbell, A. M. 1992. Chromosomal insertion sites for phages and plasmids. J. Bacteriol. 174:74957499.
12. Carpousis, A. J. 2007. The RNA degradosome of Escherichia coli: An mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61:7187.
13. Celesnik, H., A. Deana, and, J. G. Belasco. 2007. Initiation of RNA decay in Escherichia coli by 5’ pyrophosphate removal. Mol. Cell 27:7990.
14. Chavez,, R. G.,, A. F. Alvarez,, T. Romeo, and, D. Georgellis. 2010. The physiological stimulus for the BarA sensor kinase. J. Bacteriol. 192:20092012.
15. Chen,, S.,, E. A. Lesnik,, T. A. Hall,, R. Sampath,, R. H. Griffey,, D. J. Ecker, and, L. B. Blyn. 2002. A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. Biosystems 65:157177.
16. Darfeuille, F.,, C. Unoson,, J. Vogel, and, E. G. Wagner. 2007. An antisense RNA inhibits translation by competing with standby ribosomes. Mol. Cell 26:381392.
17. Deana, A., and, J. G. Belasco. 2005. Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Develop. 19:25262533.
18. Deana, A., H. Celesnik, and, J. G. Belasco. 2008. The bacterial enzyme RppH triggers messenger RNA degradation by 5’ pyrophosphate removal. Nature 451:355358.
19. De Lay, N., and, S. Gottesman. 2009. The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J. Bacteriol. 191:461476.
20. Dubnau, D. 1984. Translational attenuation: the regulation of bacterial resistance to the macrolide-lincosamide-streptogramin B antibiotics. CRC Crit. Rev. Biochem. 16:103132.
21. Dubuis, C.,, J. Rolli,, M. Lutz,, G. Defago, and, D. Haas. 2006. Thiamine-auxotrophic mutants of Pseudomonas fluorescens CHAO are defective in cell-cell signaling and biocontrol factor expression. Appl. Environ. Microbiol. 72:26062613.
22. Ellermeier, J. R., and, J. M. Slauch. 2008. Fur regulates expression of the Salmonella pathogenicity island 1 type III secretion system through HilD. J. Bacteriol. 190:476486.
23. Figueroa-Bossi, N.,, M. Valentini,, L. Malleret, and, L. Bossi. 2009. Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev. 23:19811985.
24. Fox,, K. A.,, A. Ramesh,, J. E. Stearns,, A. Bourgogne,, A. Reyes-Jara,, W. C. Winkler, and, D. A. Garsin. 2009. Multiple posttranscriptional regulatory mechanisms partner to control ethanolamine utilization in Enterococcus faecalis. Proc. Natl. Acad. Sci. USA 106:44354440.
25. Fozo, E. M.,, M. R. Hemm, and, G. Storz. 2008. Small toxic proteins and the antisense RNAs that repress them. Microbiol. Mol. Biol. Rev. 72:579589.
26. Gao,, J., K. Lee,, M. Zhao,, J. Qiu,, X. Zhan,, A. Saxena,, C. J. Moore,, S. N. Cohen, and, G. Georgiou. 2006. Differential modulation of E. coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol. Microbiol. 61:394406.
27. Geisinger, E.,, R. P. Adhikari,, R. Jin,, H. F. Ross, and, R. P. Novick. 2006. Inhibition of rot translation by RNAIII, a key feature of agr function. Mol. Microbiol. 61:10381048.
28. Geissmann, T. A., and, D. Touati. 2004. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator. EMBO J. 23:396405.
29. Gorke, B., and, J. Vogel. 2008. Noncoding RNA control of the making and breaking of sugars. Genes Dev. 22:29142925.
30. Gottesman, S. 2004. The small RNA regulators of Escherichia coli: roles and mechanisms. Ann. Rev. Microbiol. 58:303328.
31. Guillier, M., and, S. Gottesman. 2006. Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Mol. Microbiol. 59:231247.
32. Heeb, S.,, C. Blumer, and, D. Haas. 2002. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHAO. J. Bacteriol. 184:10461056.
33. Henkin, T. M. 2008. Riboswitch RNAs: using RNA to sense cellular metabolism. Genes Develop. 22:33833390.
34. Huntzinger,, E., S. Boisset,, C. Saveneau,, Y. Benito,, T. Geissmann,, A. Namane,, G. Lina,, J. Etienne,, B. Ehresmann,, C. Ehresmann,, A. Jacquier,, F. Vandenesch, and, P. Romby. 2005. Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO J. 24:824835.
35. Johansen, J.,, M. Eriksen,, B. Kallipolitis, and, P. Valentin-Hansen. 2008. Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case. J. Mol. Biol. 383:19.
36. Johansen, J.,, A. A. Rasmussen,, M. Overgaard, and, P. Valentin-Hansen. 2006. Conserved small non-coding RNAs that belong to the sigma(E) regulon: role in down-regulation of outer membrane proteins. J. Mol. Biol. 364:18.
37. Kawamoto, H.,, Y. Koide,, T. Morita, and, H. Aiba. 2006. Basepairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol. Microbiol. 61:10131022.
38. Keiler, K. C. 2008. Biology of trans-translation. Annu. Rev. Microbiol. 62:133151.
39. Kim, K.-S., R. Manasherob, and, S. N. Cohen. 2008. YmdB: a stress-responsive ribonuclease-binding regulator of E. coli RNase III activity. Genes Dev. 22:34973508.
40. Kushner,, S. R. 2007. Messenger RNA decay. In A. Bock,, R. C. III,, J. B. Kaper,, P. D. Karp,, F. C. Neidhardt,, T. Nyström,, J. M. Slauch,, C. L. Squires, and, D. Ussery (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, DC. doi: 10.1128/ecosal.4.6.4
41. Lapouge, K.,, M. Schubert,, F. H.-T. Allain, and, D. Haas. 2008. Gac/Rsm signal transduction pathway of g-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol. 67:241253.
42. Lease, R. A.,, M. Cusick, and, M. Belfort. 1998. Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc. Natl. Acad. Sci. USA 95:1245612461.
43. Lee, K.,, J. A. Bernstein, and, S. N. Cohen. 2002. RNase G complementation of rne null mutation identifies functional interrelationships with RNase E in Escherichia coli. Mol. Microbiol. 43:14451456.
44. Lee,, K., X. Zhan,, J. Gao,, J. Qiu,, Y. Feng,, R. Meganathan,, S. N. Cohen, and, G. Georgiou. 2003. RraA: a protein inhibitor of RNase E activity that globally modulates RNA abundance in E. coli. Cell 114:623634.
45. Lenz,, D. H.,, K. C. Mok,, B. N. Lilley,, R. V. Kulkarni,, N. S. Wingreen, and, B. L. Bassler. 2004. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:6982.
46. Li,, Z., and, M. P. Deutscher. 2007. Exoribonucleases and endoribonucleases. In A. Bock,, R. C. III,, J. B. Kaper,, P. D. Karp,, F. C. Neidhardt,, T. Nyström,, J. M. Slauch,, C. L. Squires, and, D. Ussery (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, DC. doi: 10.1128/ecosal.4.6.3
47. Liou, G.-G.,, H.-Y. Chang,, C.-S. Lin, and, S.-L. Chao. 2002. DEAD Box RhlB helicase physically associates with exoribonuclease PNPase to degrade double-stranded RNA independent of the degradosome-assembling region of RNase E. J. Biol. Chem. 277:4115741162.
48. Liu,, M. Y.,, G. Gui,, B. Wei,, J. F. Preston III,, L. Oakford,, U. Yuksel,, D. P. Giedroc, and, T. Romeo. 1997. The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J. Biol. Chem. 272:1750217510.
49. Majdalani, N.,, S. Chen,, J. Murrow,, K. St. John, and, S. Gottesman. 2001. Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol. Microbiol. 39:13821394.
50. Majdalani, N.,, C. Cunning,, D. Sledjeski,, T. Elliott, and, S. Gottesman. 1998. DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc. Natl. Acad. Sci. USA 95:1246212467.
51. Majdalani, N.,, D. Hernandez, and, S. Gottesman. 2002. Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol. Microbiol. 46:813826.
52. Mandin, P., and, S. Gottesman. 2010. Integrating anaerobic/aerobic sensing and the general stress response via the ArcZ small RNA. EMBO J. in press.
53. Massé, E.,, F. E. Escorcia, and, S. Gottesman. 2003. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev. 17:23742383.
54. Massé, E., and, S. Gottesman. 2002. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA 99:46204625.
55. Mikulecky,, P. J.,, M. K. Kaw,, C. C. Brescia,, J. C. Takach,, D. D. Sledjeski, and, A. I. Feig. 2004. Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs. Nat. Struc. Mol. Biol. 11:12061214.
56. Mohanty, B. K., and, S. R. Kushner. 1999. Analysis of the function of Escherichia coli poly(A) polymerase I in RNA metabolism. Mol. Microbiol. 34:10941108.
57. Møller,, T., T. Franch,, P. Hojrup,, D. R. Keene,, H. P. Bachinger,, R. Brennan, and, P. Valentin-Hansen. 2002a. Hfq: a bacterial Smlike protein that mediates RNA–RNA interaction. Mol. Cell 9:2330.
58. Møller, T.,, T. Franch,, C. Udesen,, K. Gerdes, and, P. Valentin- Hansen. 2002b. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16:16961706.
59. Moon, K., and, S. Gottesman. 2009. A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. Mol. Microbiol. 76:13141330.
60. Morita, T.,, W. El-Kazzaz,, Y. Tanaka,, T. Inada, and, H. Aiba. 2003. Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli. J. Biol. Chem. 278:1560815614.
61. Morita, T.,, K. Maki, and, H. Aiba. 2005. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev. 19:21762186.
62. Nicholson, A. W. 1999. Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol. Rev. 23:371390.
63. Opdyke, J. A.,, J. G. Kang, and, G. Storz. 2004. GadY, a small-RNA regulator of acid response genes in Escherichia coli. J. Bacteriol. 186:66986705.
64. Overgaard, M.,, J. Johansen,, J. Moller-Jensen, and, P. Valentin-Hansen. 2009. Switching off small RNA regulation with trap-mRNA. Mol. Microbiol. 73:790800.
65. Ow, M. C., and, S. R. Kushner. 2002. Initiation of tRNA maturation by RNase E is essential for cell viability in E. coli. Genes Dev. 16:11021115.
66. Papenfort,, K., V. Pfeiffer,, S. Lucchini,, A. Sonawane,, J. C. Hinton, and, J. Vogel. 2008. Systematic deletion of Salmonella small RNA genes identifies CyaR, a conserved CRP-dependent riboregulator of OmpX synthesis. Mol. Microbiol. 68:890906.
67. Papenfort,, K., V. Pfeiffer,, F. Mika,, S. Lucchini,, J. C. D. Hinton, and, J. Vogel. 2006. σE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol. Microbiol. 62:16741688.
68. Petersen, C. 1993. Translation and mRNA stability in bacteria: a complex relationship, P. 117–145. In J. G. Belasco and, G. Brawerman (ed.), Control of mRNA Stability. Academic Press, New York, NY.
69. Pfeiffer, V.,, K. Papenfort,, S. Lucchini,, J. C. D. Hinton, and, J. Vogel. 2009. Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation. Nat. Struct. Mol. Biol. 16:840846.
70. Prevost,, K., H. Salvail,, G. Desnoyers,, J. F. Jacques,, E. Phaneuf, and, E. Masse. 2007. The small RNA RyhB activates the translation of shiA mRNA encoding a permease of shikimate, a compound involved in siderophore synthesis Mol. Microbiol. 64:12601273.
71. Saavedra De Bast, M.,, N. Mine, and, L. Van Melderen. 2008. Chromosomal toxin-antitoxin systems may act as antiaddiction modules. J. Bacteriol. 190:46034609.
72. Sahr,, T., H. Bruggemann,, M. Jules,, M. Lomma,, C. Albert-Weissenberger,, C. Cazalet, and, C. Buchrieser. 2009. Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila. Mol. Microbiol. 72:741762.
73. Santos,, J. M.,, P. Freire,, F. S. Mesquita,, F. Mika,, R. Hengge, and, C. M. Arraiano. 2006. Poly(A)-polymerase I links transcription with mRNA degradation via σS proteolysis. Mol. Microbiol. 60:177188.
74. Schmeissner, U.,, K. McKenney,, M. Rosenberg, and, D. Court. 1984. Removal of a terminator structure by RNA processing regulates int gene expression. J. Mol. Biol. 176:3953.
75. Selinger,, D. W.,, R. M. Saxena,, K. J. Cheung,, G. M. Church, and, C. Rosenow. 2003. Global RNA half-life analysis in Escherichia coli reveals positional patterns of transcript degradation. Genome Res. 13:216233.
76. Sharma,, C. M.,, S. Hoffmann,, F. Darfeuille,, J. Reignier,, S. Findeiss,, A. Sittka,, S. Chabas,, K. Reiche,, J. Hackermuller,, R. Reinhardt,, P. F. Stadier, and, J. Vogel. 2010. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250-255.
77. Shu, C. J., and, I. B. Zhulin. 2002. ANTAR: an RNA-binding domain in transcription antitermination regulatory proteins. Trends Biochem. Sci. 27:35.
78. Singh,, D., S.-J. Chang,, P.-H. Lin,, O. V. Averina,, V. R. Kaberdin, and, S. Lin-Chao. 2009. Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 106:864869.
79. Sittka,, A., S. Lucchini,, K. Papenfort,, C. M. Sharma,, K. Rolle,, T. T. Binnewies,, J. C. D. Hinton, and, J. Vogel. 2009. Deep sequencing analysis of small noncoding RNA and mRNA targets of the global post-transcriptional regulator, Hfq. PLoS Genet. 4:e1000163.
80. Sledjeski, D. D.,, A. Gupta, and, S. Gottesman. 1996. The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J. 15:39934000.
81. Soper, T. J., and, S. A. Woodson. 2008. The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 14:19071917.
82. Storz, G., and, R. Hengge-Aronis. 2000. Bacterial Stress Responses, vol 1. ASM Press, Washington, DC.
83. Sudarsan,, N.,, E. R. Lee,, Z. Weinberg,, R. H. Moy,, J. N. Kim,, K. H. Link, and, R. R. Breaker. 2008. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411413.
84. Sun, X., and, R. M. Wartell. 2006. Escherichia coli Hfq binds A18 and DsrA domain II with similar 2:1 Hfq6/RNA stoichiometry using different surface sites. Biochemistry 45:48754887.
85. Suzuki, K.,, P. Babitzke,, S. R. Kushner, and, T. Romeo. 2009. Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev. 20:26052617.
86. Suzuki,, K., X. Wang,, T. Weilbacher,, A. K. Pernestig,, O. Melefors,, D. Georgellis,, P. Babitzke, and, T. Romeo. 2002. Regulatory circuitry of the CsrA/CsrB and BarA/UvrY systems of Escherichia coli. J. Bacteriol. 184:51305140.
87. Svenningsen, S. L.,, K. C. Tu, and, B. L. Bassler. 2009. Gene dosage compensation calibrates four regulatory RNAs to control Vibrio cholerae quorum sensing. EMBO J. 28:429439.
88. Swiercz,, J. P.,, Hindra, J. Bobek,, H. J. Haiser,, C. Di Berardo,, B. Tjaden, and, M. A. Elliot. 2008. Small non-coding RNAs in Streptomyces coelicolor. Nucleic Acids Res. 36:72407251.
89. Thompson, K. M.,, V. A. Rhodius, and, S. Gottesman. 2007. σE regulates and is regulated by a small RNA in Escherichia coli. J. Bacteriol. 189:42434256.
90. Timmermans, J., and, L. Van Melderen. 2009. Conditional essentiality of the csrA gene in Escherichia coli. J. Bacteriol. 191:17221724.
91. Tramonti, A.,, M. De Canio, and, D. De Biase. 2008. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol. Microbiol. 70:965982.
92. Tu, K. C., and, B. L. Bassler. 2007. Multiple small RNAs act additively to integrate sensory information and control quorum sensing in Vibrio harveyi. Genes Dev. 21:221233.
93. Turnbough Jr., C. L., and, R. L. Switzer. 2008. Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol. Mol. Biol. Rev. 72:266300.
94. Updegrove, T.,, N. Wilf,, X. Sun, and, R. M. Wartell. 2008. Effect of Hfq on RprA-rpoS mRNA pairing: Hfq-RNA binding and the influence of the 5’ rpoS mRNA leader region. Biochemistry 47:1118411195.
95. Urban, J. H., and, J. Vogel. 2007. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Res. 35:10181037.
96. Urban, J. H., and, J. Vogel. 2008. Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol. 6:e64.
97. Urbanowski, M. L.,, L. T. Stauffer, and, G. V. Stauffer. 2000. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol. Microbiol. 37:856868.
98. Vanderpool, C. K., and, S. Gottesman. 2004. Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system. Mol. Microbiol. 54:1076.
99. Vanderpool, C. K., and, S. Gottesman. 2007. The novel transcription factor SgrR coordinates the response to glucose-phosphate stress. J. Bacteriol. 189:22382248.
100. Van Melderen, L., and, M. Saavedra De Bast. 2009. Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genet. 5:e1000437.
101. Vincent, H. A., and, M. P. Deutscher. 2009. Insights into how RNase R degrades structured RNA: analysis of the nuclease domain. J. Mol. Biol. 387:570583.
102. Vogel, J. 2008. A rough guide to the non-coding RNA world of Salmonella. Mol. Microbiol. 71:111.
103. Vogel, J.,, L. Argaman,, E. G. Wagner, and, S. Altuvia. 2004. The small RNA IstR inhibits synthesis of an SOS-induced toxic peptide. Curr. Biol. 14:22712276.
104. Wadler, C. S., and, C. K. Vanderpool. 2010. A dual function for a bacterial small RNA: SgrS performs base pairing-dependent regulation and encodes a functional polypeptide. Proc. Natl. Acad. Sci. USA 104:20454-20459.
105. Wassarman,, K. M.,, F. Repoila,, C. Rosenow,, G. Storz, and, S. Gottesman. 2001. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev. 15:16371651.
106. Wassarman, K. S. 2007. 6S RNA: a regulator of transcription. Mol. Microbiol. 65:14251431.
107. Waters, L. S., and, G. Storz. 2009. Regulatory RNAs in bacteria. Cell 136:615628.
108. Weilbacher,, T., K. Suzuki,, A. K. Dubey,, X. Wang,, S. Gudapaty,, I. Morozov,, C. S. Baker,, D. Georgellis,, P. Babitzke, and, T. Romeo. 2002. A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol. Microbiol. 48:657670.
109. Wilderman,, P. J.,, N. A. Sowa,, D. J. FitzGerald,, P. C. FitzGerald,, S. Gottesman,, U. A. Ochsner, and, M. L. Vasil. 2004. Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis. Proc. Natl. Acad. Sci. USA 101:97929797.
110. Yanofsky, C. 2000. Transcription attenuation: once viewed as a novel regulatory strategy. J. Bacteriol. 182:18.
111. Zhang, A.,, K. M. Wassarman,, J. Ortega,, A. C. Steven, and, G. Storz. 2002. The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol. Cell 9:1122.
112. Zhang,, A.,, K. M. Wassarman,, C. Rosenow,, B. C. Tjaden,, G. Storz, and, S. Gottesman. 2003. Global analysis of small RNA and mRNA targets of Hfq. Mol. Microbiol. 50:11111124.
113. Zhao, M.,, L. Zhou,, Y. Kawarasaki, and, G. Georgiou. 2006. Regulation of RraA, a protein inhibitor of RNase E-mediated RNA decay. J. Bacteriol. 188:32573263.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error