1887

Chapter 7 : Cellular Response to Heat Shock and Cold Shock

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cellular Response to Heat Shock and Cold Shock, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap07-2.gif

Abstract:

This chapter reviews the molecular response of bacteria to shifts in either high or low temperatures. It discusses the inputs to each response, the outputs needed to cope with the sudden stress, and the molecular circuitry that controls these stress responses, and reviews the strategies utilized to cope with sudden heat stress or cold shock by mesophilic bacteria, focusing on , the most completely studied bacterial species. The chapter talks about the relationship between temperature and the steady-state growth rate for this organism, and considers how responds to shift to both high and low temperatures, with a goal of integrating our knowledge about each response. Although the focus is on , the strategies used by with those used by , are compared. When cells are shifted within the normal growth range, there is little or no lag in adaptation to the new growth rate and neither a heat shock response (HSR) nor a cold shock response (CSR) is elicited. The demonstration that overproduction of a variety of unfolded proteins triggers the HSR without temperature shift solidified the idea that such molecules serve as a signal controlling the response. Molecular understanding of this signaling mechanism is described in the circuitry section. RhlB is present during cold shock and it is not clear whether degradosomes contain both helicases or whether different populations of degradosomes contain one or the other. More DnaK is associated with the degradosome during cold shock.

Citation: Lim B, Gross C. 2011. Cellular Response to Heat Shock and Cold Shock, p 93-114. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch7

Key Concept Ranking

CssRS Two-Component Regulatory System
0.4531718
0.4531718
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Growth rate of B/r as a function of temperature. The specific growth rate (k, hour), log scale, is plotted against the inverse of absolute temperature (K). Individual datum points are marked with degrees Celsius: •, in a rich medium; ○, in a glucose-minimal medium. (Reprinted from Herendeen, S. L., R. A. VanBogelen, and F. C. Neidhardt. 1979. Levels of major proteins of Escherichia coli during growth at different temperatures. 185–194, with permission of the publisher. Copyright 1979 by the American Society for Microbiology.)

Citation: Lim B, Gross C. 2011. Cellular Response to Heat Shock and Cold Shock, p 93-114. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Rates of HSP synthesis during temperature upshift and downshift. (A) HSP production during a temperature shift from 30° to 42°C reveals three distinct phases: induction, adaptation, and steady state. (B) Repression of HSP production during a temperature shift from 42° to 30°C.

Citation: Lim B, Gross C. 2011. Cellular Response to Heat Shock and Cold Shock, p 93-114. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Wiring diagram of σ regulation. There are three primary modes of regulation as follows: (i) excess free DnaK/J and GroEL/S chaperones directly bind to and inactivate σ; (ii) the FtsH protease degrades σ, with chaperones participating in this process; and (iii) temperature directly controls the rate of σ translation. Misfolded proteins titrate chaperones from these regulatory roles, allowing active σ to increase the synthesis of chaperones and proteases during conditions where they are needed. (Reprinted from Guisbert, E., T. Yura, V. A. Rhodius, and C. A. Gross. 2008. Convergence of molecular, modeling, and systems approaches for an understanding of the heat shock response. 545–554, with permission of the publisher. Copyright 2008 by the American Society for Microbiology.)

Citation: Lim B, Gross C. 2011. Cellular Response to Heat Shock and Cold Shock, p 93-114. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Summary of the major transcription factors and their regulatory systems involved in the HSR of (A) The immediate response is controlled by σ, which is negatively regulated by an anti-σ factor. During heat shock, signals release the anti-σ factor, thereby allowing σ to activate transcription of the heat shock regulon. (B) During heat and secretion stress, the CssRS two-component regulatory system recognizes unfolded proteins at the cell wall-membrane interface activating transcription of the proteases, and . (C) The inhibition of the repressor HrcA leads to transcription of the chaperone system GroEL/S. During heat shock, GroEL/S is occupied with unfolded proteins, unable to renature HrcA molecules, thereby decreasing active HrcA. (D) The degradation of the repressor CtsR leads to transcription of ClpP peptidase. During heat shock, the arginine kinase MscB is released from binding to the protease complex ClpCP upon an increase in unfolded proteins. This release allows MscB to phosphorylate CtsR, facilitating its recognition by ClpCP for degradation.

Citation: Lim B, Gross C. 2011. Cellular Response to Heat Shock and Cold Shock, p 93-114. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Summary of the major outputs during the CSR. (A) Regulation and modulation of the 30S and 70S ribosomal subunits by various proteins translated during cold shock; (B) formation and regulation of the degradosome; (C) production of trehalose, a major osmoprotectant during cold shock; (D) RNA chaperone activity and RNA protection by the RNA-binding cold shock proteins, CspA, CspB, CspE, CspG, and CspI; (E) regulation of RNase III activity by YmdB; and (F) transcriptional repression and DNA negative supercoiling by HNS and gyrase.

Citation: Lim B, Gross C. 2011. Cellular Response to Heat Shock and Cold Shock, p 93-114. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Expression regulation of and the genes in the operon region in the chromosome. (A) Several cold-shock induced genes are located downstream of the gene. Transcription occurs at several promoters in the region (Ishii et al., ; Regnier and Portier, ; Portier et al., ; Regnier and Grunberg-Manago, ; Granston et al., ; Regnier and Grunberg-Manago, ; Zaslaver et al., ), designated as “P”; however, transcription termination, designated as “T,” prevents robust transcription of downstream genes. During cold shock, the induction of the Csps prevents transcription termination, allowing for increased expression of downstreams genes, including . Below the schematic of the genomic architecture are the documented mRNA transcripts that contain . The RNase III cleavage site is designated as R III (Regnier and Grunberg-Manago, ). (B) An RNase III site exists between the two promoters driving expression. The regulatory expression components of are shown with the designations as described previously (Cummings et al., ; Giangrossi et al., ).

Citation: Lim B, Gross C. 2011. Cellular Response to Heat Shock and Cold Shock, p 93-114. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816841.ch07
1. Agafonov, D. E.,, V. A. Kolb, and, A. S. Spirin. 2001. Ribosome-associated protein that inhibits translation at the aminoacyltRNA binding stage. EMBO Rep. 2:399402.
2. Aguilar, P. S.,, J. E. Cronan, Jr., and, D. De Mendoza. 1998. A Bacillus subtilis gene induced by cold shock encodes a membrane phospholipid desaturase. J. Bacteriol. 180:21942200.
3. Aguilar, P. S.,, P. Lopez, and, D. De Mendoza. 1999. Transcriptional control of the low-temperature-inducible des gene, encoding the delta5 desaturase of Bacillus subtilis. J. Bacteriol. 181:70287033.
4. Akiyama, Y., and, K. Ito. 2003. Reconstitution of membrane proteolysis by FtsH. J. Biol. Chem. 278:1814618153.
5. Akiyama,, Y., Y. Shirai, and, K. Ito. 1994. Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions. J. Biol. Chem. 269:52255229.
6. Akiyama,, Y., T. Yoshihisa, and, K. Ito. 1995. FtsH, a membranebound ATPase, forms a complex in the cytoplasmic membrane of Escherichia coli. J. Biol. Chem. 270:2348523490.
7. Altabe, S. G.,, P. Aguilar,, G. M. Caballero, and, D. De Mendoza. 2003. The Bacillus subtilis acyl lipid desaturase is a delta5 desaturase. J. Bacteriol. 185:32283231.
8. Ayala-castro, C., A. Saini, and, F. W. Outten. 2008. Fe-S cluster assembly pathways in bacteria. Microbiol. Mol. Biol. Rev. 72:110125., table of contents.
9. Bae, W.,, S. Phadtare,, K. Severinov, and, M. Inouye. 1999. Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein. Mol. Microbiol. 31:14291441.
10. Bae, W.,, B. Xia,, M. Inouye, and, K. Severinov. 2000. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc. Natl. Acad. Sci. USA 97:77847789.
11. Bang,, I. S.,, J. G. Frye,, M. Mcclelland,, J. Velayudhan, and, F. C. Fang. 2005. Alternative sigma factor interactions in Salmonella: sigma and sigma promote antioxidant defences by enhancing sigma levels. Mol. Microbiol. 56:811823.
12. Berney,, M.,, H. U. Weilenmann,, J. Ihssen,, C. Bassin, and, T. Egli. 2006. Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA, and solar disinfection. Appl. Environ. Microbiol. 72:25862593.
13. Blaszczak,, A., C. Georgopoulos, and, K. Liberek. 1999. On the mechanism of FtsH-dependent degradation of the sigma 32 transcriptional regulator of Escherichia coli and the role of the Dnak chaperone machine. Mol. Microbiol. 31:157166.
14. Brandi,, A.,, C. L. Pon, and, C. O. Gualerzi. 1994. Interaction of the main cold shock protein CS7.4 (CspA) of Escherichia coli with the promoter region of hns. Biochimie 76:10901098.
15. Brandi,, A., P. Pietroni,, C. O. Gualerzi, and, C. L. Pon. 1996. Posttranscriptional regulation of CspA expression in Escherichia coli. Mol. Microbiol. 19:231240.
16. Brandi,, A., R. Spurio,, C. O. Gualerzi, and, C. L. Pon. 1999. Massive presence of the Escherichia coli ‘major cold-shock protein’ CspA under non-stress conditions. EMBO J. 18:16531659.
17. Brown, L., and, T. Elliott. 1996. Efficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene. J. Bacteriol. 178:37633770.
18. Bugl,, H.,, E. B. Fauman,, B. L. Staker,, F. Zheng,, S. R. Kushner,, M. A. Saper,, J. C. Bardwell, and, U. Jakob. 2000. RNA methylation under heat shock control. Mol. Cell 6:349360.
19. Bukau, B., and, A. L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92:351366.
20. Carpousis, A. J. 2007. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E. Annu. Rev. Microbiol. 61:7187.
21. Cheng,, B.,, C. X. Zhu,, C. Ji,, A. Ahumada, and, Y. C. Tse-Dinh. 2003. Direct interaction between Escherichia coli RNA polymerase and the zinc ribbon domains of DNA topoisomerase I. J. Biol. Chem. 278:3070530710.
22. Cummings,, H. S.,, J. F. Sands,, P. C. Foreman,, J. Fraser, and, J. W. Hershey. 1991. Structure and expression of the infA operon encoding translational initiation factor IF1. Transcriptional control by growth rate. J. Biol. Chem. 266:1649116498.
23. Cunning, C., and, T. Elliott. 1999. RpoS synthesis is growth rate regulated in Salmonella typhimurium, but its turnover is not dependent on acetyl phosphate synthesis or PTS function. J. Bacteriol. 181:48534862.
24. Dammel, C. S., and, H. F. Noller. 1995. Suppression of a coldsensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. Genes Dev. 9:626637.
25. Darmon,, E., D. Noone,, A. Masson,, S. Bron,, O. P. Kuipers,, K. M. Devine, and, J. M. Van Dijl. 2002. A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J. Bacteriol. 184:56615671.
26. Derre,, I., G. Rapoport, and, T. Msadek. 1999. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol. Microbiol. 31:117131.
27. Diaz,, A. R.,, M. C. Mansilla,, A. J. Vila, and, D. De Mendoza. 2002. Membrane topology of the acyl-lipid desaturase from Bacillus subtilis. J. Biol. Chem. 277:4809948106.
28. El-Samad,, H., H. Kurata,, J. C. Doyle,, C. A. Gross, and, M. Khammash. 2005. Surviving heat shock: control strategies for robustness and performance. Proc. Natl. Acad. Sci. USA 102:27362741.
29. El-Samad, H., and, M. Khammash. 2006. Regulated degradation is a mechanism for suppressing stochastic fluctuations in gene regulatory networks. Biophys. J. 90:37493761.
30. Erickson,, J. W.,, V. Vaughn,, W. A. Walter,, F. C. Neidhardt, and, C. A. Gross. 1987. Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene. Genes Dev. 1:419432.
31. Etchegaray, J. P.,, P. G. Jones, and, M. Inouye. 1996. Differential thermoregulation of two highly homologous cold-shock genes, cspA and cspB, of Escherichia coli. Genes Cells 1:171178.
32. Fang,, L., Y. Hou, and, M. Inouye. 1998. Role of the cold-box region in the 5’ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J. Bacteriol. 180:9095.
33. Fang, L.,, W. Jiang,, W. Bae, and, M. Inouye. 1997. Promoterindependent cold-shock induction of cspA and its derepression at 37 degrees C by mRNA stabilization. Mol. Microbiol. 23:355364.
34. Feng,, Y., H. Huang,, J. Liao, and, S. N. Cohen. 2001. Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J. Biol. Chem. 276:3165131656.
35. Fuhrmann,, J., A. Schmidt,, S. Spiess,, A. Lehner,, K. Turgay,, K. Mechtler,, E. Charpentier, and, T. Clausen. 2009. McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324:13231327.
36. Gamer,, J., H. Bujard, and, B. Bukau. 1992. Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 69:833842.
37. Gamer,, J., G. Multhaup,, T. Tomoyasu,, J. S. Mccarty,, S. Rudiger,, H. J. Schonfeld,, C. Schirra,, H. Bujard, and, B. Bukau. 1996. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. EMBO J. 15:607617.
38. Gao,, J., K. Lee,, M. Zhao,, J. Qiu,, X. Zhan,, A. Saxena,, C. J. Moore,, S. N. Cohen, and, G. Georgiou. 2006. Differential modulation of E. Coli mRNA abundance by inhibitory proteins that alter the composition of the degradosome. Mol. Microbiol. 61:394406.
39. Genevaux, P., C. Georgopoulos, and, W. L. Kelley. 2007. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol. 66:840857.
40. Georgopoulos, C. 2006. Toothpicks, serendipity and the emergence of the Escherichia coli DnaK (Hsp70) and GroEL (Hsp60) chaperone machines. Genetics 174:16991707.
41. Giangrossi,, M., A. Brandi,, A. M. Giuliodori,, C. O. Gualerzi, and, C. L. Pon. 2007. Cold-shock-induced de novo transcription and translation of infA and role of IF1 during cold adaptation. Mol. Microbiol. 64:807821.
42. Giuliodori,, A. M.,, A. Brandi,, M. Giangrossi,, C. O. Gualerzi, and, C. L. Pon. 2007a. Cold-stress-induced de novo expression of infC and role of IF3 in cold-shock translational bias. RNA 13:13551365.
43. Giuliodori,, A. M.,, C. O. Gualerzi,, S. Soto,, J. Vila, and, M. M. Tavio. 2007b. Review on bacterial stress topics. Ann. N. Y. Acad. Sci. 1113:95104.
44. Goldenberg, D., I. Azar, and, A. B. Oppenheim. 1996. Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli. Mol. Microbiol. 19:241248.
45. Goldstein, J.,, N. S. Pollitt, and, M. Inouye. 1990. Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 87:283287.
46. Granston, A. E.,, D. L. Thompson, and, D. I. Friedman. 1990. Identification of a second promoter for the metY-nusA-infB operon of Escherichia coli. J. Bacteriol. 172:23362342.
47. Graumann, P., and, M. A. Marahiel. 1997. Effects of heterologous expression of CspB, the major cold shock protein of Bacillus subtillis, on protein synthesis in Escherichia coli. Mol. Gen. Genet. 253:745752.
48. Gualerzi, C. O.,, A. M. Giuliodori, and, C. L. Pon. 2003. Transcriptional and post-transcriptional control of cold-shock genes. J. Mol. Biol. 331:527539.
49. Guisbert,, E., C. Herman,, C. Z. Lu, and, C. A. Gross. 2004. A chaperone network controls the heat shock response in E. Coli. Genes Dev. 18:28122821.
50. Guisbert,, E., T. Yura,, V. A. Rhodius, and, C. A. Gross. 2008. Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol. Mol. Biol. Rev. 72:545554.
51. Hager, J.,, B. L. Staker,, H. Bugl, and, U. Jakob. 2002. Active site in RrmJ, a heat shock-induced methyltransferase. J. Biol. Chem. 277:4197841986.
52. Hanna, M. M., and, K. Liu. 1998. Nascent RNA in transcription complexes interacts with CspE, a small protein in E. Coli implicated in chromatin condensation. J. Mol. Biol. 282:227239.
53. Hecker,, M., W. Schumann, and, U. Volker. 1996. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19:417428.
54. Hecker, M., and, U. Volker. 1998. Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon. Mol. Microbiol. 29:11291136.
55. Helmann,, J. D.,, M. F. Wu,, P. A. Kobel,, F. J. Gamo,, M. Wilson,, M. M. Morshedi,, M. Navre, and, C. Paddon. 2001. Global transcriptional response of Bacillus subtilis to heat shock. J. Bacteriol. 183:73187328.
56. Hengge-Aronis, R.,, R. Lange,, N. Henneberg, and, D. Fischer. 1993. Osmotic regulation of rpoS-dependent genes in Escherichia coli. J. Bacteriol. 175:259265.
57. Hengge-Aronis, R.,, W. Klein,, R. Lange,, M. Rimmele, and, W. Boos. 1991. Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J. Bacteriol. 173:79187924.
58. Herendeen, S. L.,, R. A. VanBogelen, and, F. C. Neidhardt. 1979. Levels of major proteins of Escherichia coli during growth at different temperatures. J. Bacteriol. 139:185194.
59. Herman, C.,, D. Thevenet,, R. D’Ari, and, P. Bouloc. 1995. Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. USA 92:35163520.
60. Herman,, C., S. Prakash,, C. Z. Lu,, A. Matouschek, and, C. A. Gross. 2003. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol. Cell 11:659669.
61. Hirsch, M., and, T. Elliott. 2005. Fis regulates transcriptional induction of RpoS in Salmonella enterica. J. Bacteriol. 187:15681580.
62. Homuth, G.,, S. Masuda,, A. Mogk,, Y. Kobayashi, and, W. Schumann. 1997. The dnaK operon of Bacillus subtilis is heptacistronic. J. Bacteriol. 179:11531164.
63. Horikoshi, M.,, T. Yura,, S. Tsuchimoto,, Y. Fukumori, and, M. Kanemori. 2004. Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. J. Bacteriol. 186:74747480.
64. Hyyrylainen, H. L.,, M. Sarvas, and, V. P. Kontinen. 2005. Transcriptome analysis of the secretion stress response of Bacillus subtilis. Appl. Microbiol. Biotechnol. 67:389396.
65. Ingraham,, J. L., and, A. G. Marr. 1996. Effect of temperature, pressure, pH, and osmotic stress on growth, P. 1570–1578. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C., C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter, and, H. E. Umbarger (ed.), Escherichia coli and Salmonella Cellular and Molecular Biology, 2nd ed, vol. 2. ASM Press, Washington, DC.
66. Inouye, M., and, S. Phadtare. 2004. Cold shock response and adaptation at near-freezing temperature in microorganisms. Sci. STKE 2004:pe26.
67. Ishii,, S., K. Kuroki, and, F. Imamoto. 1984. Trnametf2 gene in the leader region of the nusA operon in Escherichia coli. Proc. Natl. Acad. Sci. USA 81:409413.
68. Ito, K., and, Y. Akiyama. 2005. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol. 59:211231.
69. Jiang,, W., L. Fang, and, M. Inouye. 1996. The role of the 5’-end untranslated region of the mRNA for CspA, the major coldshock protein of Escherichia coli, in cold-shock adaptation. J. Bacteriol. 178:49194925.
70. Jiang,, W., Y. Hou, and, M. Inouye. 1997. CspA, the major coldshock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272:196202.
71. Jones, P. G.,, M. Cashel,, G. Glaser, and, F. C. Neidhardt. 1992a. Function of a relaxed-like state following temperature downshifts in Escherichia coli. J. Bacteriol. 174:39033914.
72. Jones, P. G., and, M. Inouye. 1994. The cold-shock response—a hot topic. Mol. Microbiol. 11:811818.
73. Jones, P. G., and, M. Inouye. 1996. RbfA, a 30S ribosomal binding factor, is a cold-shock protein whose absence triggers the coldshock response. Mol. Microbiol. 21:12071218.
74. Jones,, P. G.,, R. Krah,, S. R. Tafuri, and, A. P. Wolffe. 1992b. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J. Bacteriol. 174:57985802.
75. Jones,, P. G.,, M. Mitta,, Y. Kim,, W. Jiang, and, M. Inouye. 1996. Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 93:7680.
76. Jones, P. G.,, R. A. VanBogelen, and, F. C. Neidhardt. 1987. Induction of proteins in response to low temperature in Escherichia coli. J. Bacteriol. 169:20922095.
77. Kandror, O., A. DeLeon, and, A. L. Goldberg. 2002. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. USA 99:97279732.
78. Kandror, O., and, A. L. Goldberg. 1997. Trigger factor is induced upon cold shock and enhances viability of Escherichia coli at low temperatures. Proc. Natl. Acad. Sci. USA 94:49784981.
79. Kempf, B., and, E. Bremer. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170:319330.
80. Kim, K. S.,, R. Manasherob, and, S. N. Cohen. 2008. YmdB: a stress-responsive ribonuclease-binding regulator of E. Coli RNase III activity. Genes Dev. 22:34973508.
81. Kirstein, J.,, D. A. Dougan,, U. Gerth,, M. Hecker, and, K. Turgay. 2007. The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J. 26:20612070.
82. Korber,, P.,, J. M. Stahl,, K. H. Nierhaus, and, J. C. Bardwell. 2000. Hsp15: a ribosome-associated heat shock protein. EMBO J. 19:741748.
83. Korber,, P., T. Zander,, D. Herschlag, and, J. C. Bardwell. 1999. A new heat shock protein that binds nucleic acids. J. Biol. Chem. 274:249256.
84. Kruger, E.,, D. Zuhlke,, E. Witt,, H. Ludwig, and, M. Hecker. 2001. Clp-mediated proteolysis in gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J. 20:852863.
85. Kruger, E., and, M. Hecker. 1998. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J. Bacteriol. 180:66816688.
86. Kruger, E.,, T. Msadek,, S. Ohlmeier, and, M. Hecker. 1997. The Bacillus subtilis clpC operon encodes DNA repair and competence proteins. Microbiology 143 (pt 4):13091316.
87. Kurata,, H., H. El-Samad,, R. Iwasaki,, H. Ohtake,, J. C. Doyle,, I. Grigorova,, C. A. Gross, and, M. Khammash. 2006. Modulebased analysis of robustness tradeoffs in the heat shock response system. PLoS Comput. Biol. 2:e59.
88. Kusukawa, N., and, T. Yura. 1988. Heat shock protein GroE of Escherichia coli: key protective roles against thermal stress. Genes Dev. 2:874882.
89. La teana,, A., A. Brandi,, M. Falconi,, R. Spurio,, C. L. Pon, and, C. O. Gualerzi. 1991. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc. Natl. Acad. Sci. USA 88:1090710911.
90. Lee,, S. J.,, A. Xie,, W. Jiang,, J. P. Etchegaray,, P. G. Jones, and, M. Inouye. 1994. Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol. Microbiol. 11:833839.
91. Li, M., and, S. L. Wong. 1992. Cloning and characterization of the groESL operon from Bacillus subtilis. J. Bacteriol. 174:39813992.
92. Liberek, K.,, T. P. Galitski,, M. Zylicz, and, C. Georgopoulos. 1992. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the sigma 32 transcription factor. Proc. Natl. Acad. Sci. USA 89:35163520.
93. Liou,, G. G.,, H. Y. Chang,, C. S. Lin, and, S. Lin-chao. 2002. DEAD box RhlB RNA helicase physically associates with exoribonuclease PNPase to degrade double-stranded RNA independent of the degradosome-assembling region of RNase E. J. Biol. Chem. 277:4115741162.
94. McCarty,, J. S.,, S. Rudiger,, H. J. Schonfeld,, J. Schneider-Mergener,, K. Nakahigashi,, T. Yura, and, B. Bukau. 1996. Regulatory region C of the E. Coli heat shock transcription factor, sigma32, constitutes a DnaK binding site and is conserved among eubacteria. J. Mol. Biol. 256:829837.
95. Mitta,, M., L. Fang, and, M. Inouye. 1997. Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol. Microbiol. 26:321335.
96. Morita, M.,, M. Kanemori,, H. Yanagi, and, T. Yura. 1999a. Heatinduced synthesis of sigma32 in Escherichia coli: structural and functional dissection of rpoH mRNA secondary structure. J. Bacteriol. 181:401410.
97. Morita,, M. T.,, Y. Tanaka,, T. S. Kodama,, Y. Kyogoku,, H. Yanagi, and, T. Yura. 1999b. Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. Genes Dev. 13:655665.
98. Msadek,, T., F. Kunst, and, G. Rapoport. 1994. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc. Natl. Acad. Sci. USA 91:57885792.
99. Muffler,, A., D. Fischer, and, R. Hengge-Aronis. 1996. The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev. 10:11431151.
100. Muffler, A.,, D. D. Traulsen,, D. Fischer,, R. Lange, and, R. Hengge-Aronis. 1997a. The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the sigmaS subunit of RNA polymerase in Escherichia coli. J. Bacteriol. 179:297300.
101. Muffler, A.,, M. Barth,, C. Marschall, and, R. Hengge-Aronis. 1997b. Heat shock regulation of sigmaS turnover: a role for DnaK and relationship between stress responses mediated by sigmaS and sigma32 in Escherichia coli. J. Bacteriol. 179:445452.
102. Nanamiya,, H., Y. Ohashi,, K. Asai,, S. Moriya,, N. Ogasawara,, M. Fujita,, Y. Sadaie, and, F. Kawamura. 1998. ClpC regulates the fate of a sporulation initiation sigma factor, sigmaH protein, in Bacillus subtilis at elevated temperatures. Mol. Microbiol. 29:505513.
103. Nonaka,, G., M. Blankschien,, C. Herman,, C. A. Gross, and, V. A. Rhodius. 2006. Regulon and promoter analysis of the E. Coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev. 20:1776 1789.
104. Nord,, S.,, G. O. Bylund,, J. M. Lovgren, and, P. M. Wikstrom. 2009. The RimP protein is important for maturation of the 30S ribosomal subunit. J. Mol. Biol. 386:742753.
105. Obrist, M., and, F. Narberhaus. 2005. Identification of a turnover element in region 2.1 of Escherichia coli sigma32 by a bacterial one-hybrid approach. J. Bacteriol. 187:38073813.
106. Packschies,, L., H. Theyssen,, A. Buchberger,, B. Bukau,, R. S. Goody, and, J. Reinstein. 1997. GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. Biochemistry 36:34173422.
107. Phadtare, S., and, K. Severinov. 2005a. Extended -10 motif is critical for activity of the cspA promoter but does not contribute to low-temperature transcription. J. Bacteriol. 187:65846589.
108. Phadtare, S., and, K. Severinov. 2005b. Nucleic acid melting by Escherichia coli CspE. Nucleic Acids Res. 33:55835590.
109. Phadtare, S., and, M. Inouye. 2004. Genome-wide transcriptional analysis of the cold shock response in wild-type and coldsensitive, quadruple-csp-deletion strains of Escherichia coli. J. Bacteriol. 186:70077014.
110. Phadtare, S., and, M. Inouye. 2001. Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J. Bacteriol. 183:12051214.
111. Phadtare,, S., M. Inouye, and, K. Severinov. 2004. The mechanism of nucleic acid melting by a CspA family protein. J. Mol. Biol. 337:147155.
112. Phadtare,, S., M. Inouye, and, K. Severinov. 2002a. The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J. Biol. Chem. 277:72397245.
113. Phadtare, S.,, S. Tyagi,, M. Inouye, and, K. Severinov. 2002b. Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells. J. Biol. Chem. 277:4670646711.
114. Phadtare,, S., T. Kazakov,, M. Bubunenko,, D. L. Court,, T. Pestova, and, K. Severinov. 2007. Transcription antitermination by translation initiation factor IF1. J. Bacteriol. 189:40874093.
115. Phadtare,, S., V. Tadigotla,, W. H. Shin,, A. Sengupta, and, K. Severinov. 2006. Analysis of Escherichia coli global gene expression profiles in response to overexpression and deletion of CspC and CspE. J. Bacteriol. 188:25212527.
116. Polissi,, A., W. De Laurentis,, S. Zangrossi,, F. Briani,, V. Longhi,, G. Pesole, and, G. Deho. 2003. Changes in Escherichia coli transcriptome during acclimatization at low temperature. Res. Microbiol. 154:573580.
117. Portier, C.,, L. Dondon,, M. Grunberg-Manago, and, P. Regnier. 1987. The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5’ end. EMBO J. 6:21652170.
118. Prud’homme-Genereux,, A.,, R. K. Beran,, I. Iost,, C. S. Ramey,, G. A. Mackie, and, R. W. Simons. 2004. Physical and functional interactions among RNase E, polynucleotide phosphorylase and the cold-shock protein, CsdA: evidence for a ‘cold shock degradosome’. Mol. Microbiol. 54:14091421.
119. Regnier, P., and, C. Portier. 1986. Initiation, attenuation and RNase III processing of transcripts from the Escherichia coli operon encoding ribosomal protein S15 and polynucleotide phosphorylase. J. Mol. Biol. 187:2332.
120. Regnier, P., and, M. Grunberg-Manago. 1989. Cleavage by RNase III in the transcripts of the met Y-nus-A-infB operon of Escherichia coli releases the tRNA and initiates the decay of the downstream mRNA. J. Mol. Biol. 210:293302.
121. Regnier, P., and, M. Grunberg-Manago. 1990. RNase III cleavages in non-coding leaders of Escherichia coli transcripts control mRNA stability and genetic expression. Biochimie 72:825834.
122. Regonesi,, M. E.,, M. Del favero,, F. Basilico,, F. Briani,, L. Benazzi,, P. Tortora,, P. Mauri, and, G. Deho. 2006. Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. Biochimie 88:151161.
123. Riley,, M., T. Abe,, M. B. Arnaud,, M. K. Berlyn,, F. R. Blattner,, R. R. Chaudhuri,, J. D. Glasner,, T. Horiuchi,, I. M. Keseler,, T. Kosuge,, H. Mori,, N. T. Perna,, G. Plunkett, 3rd,, K. E. Rudd,, M. H. Serres,, G. H. Thomas,, N. R. Thomson,, D. Wishart, and, B. L. Wanner. 2006. Escherichia coli K-12: a cooperatively developed annotation snapshot—2005. Nucleic Acids Res. 34:19.
124. Rodrigues, D. F., and, J. M. Tiedje. 2008. Coping with our cold planet. Appl. Environ. Microbiol. 74:16771686.
125. Rodriguez,, F., F. Arsene-ploetze,, W. Rist,, S. Rudiger,, J. Schneider-Mergener,, M. P. Mayer, and, B. Bukau. 2008. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol. Cell 32:347358.
126. Schmidt,, A., M. Schiesswohl,, U. Volker,, M. Hecker, and, W. Schumann. 1992. Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis. J. Bacteriol. 174:39933999.
127. Schulz, A., and, W. Schumann. 1996. Hrca, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J. Bacteriol. 178:10881093.
128. Schumann, W. 2009. Temperature sensors of eubacteria. Adv. Appl. Microbiol. 67:213256.
129. Selby, C. P., and, A. Sancar. 1993. Molecular mechanism of transcription-repair coupling. Science 260:5358.
130. Skowyra, D., and, S. Wickner. 1995. GrpE alters the affinity of DnaK for ATP and Mg2+. Implications for the mechanism of nucleotide exchange. J. Biol. Chem. 270:2628226285.
131. Sprengart, M. L.,, E. Fuchs, and, A. G. Porter. 1996. The downstream box: an efficient and independent translation initiation signal in Escherichia coli. EMBO J. 15:665674.
132. Srivastava,, R.,, M. S. Peterson, and, W. E. Bentley. 2001. Stochastic kinetic analysis of the Escherichia coli stress circuit using sigma(32)-targeted antisense. Biotechnol. Bioeng. 75:120129.
133. Staker, B. L.,, P. Korber,, J. C. Bardwell, and, M. A. Saper. 2000. Structure of Hsp15 reveals a novel RNA-binding motif. EMBO J. 19:749757.
134. Straus, D., W. Walter, and, C. A. Gross. 1990. DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev. 4:22022209.
135. Straus, D. B.,, W. A. Walter, and, C. A. Gross. 1989. The activity of sigma 32 is reduced under conditions of excess heat shock protein production in Escherichia coli. Genes Dev. 3:20032010.
136. Straus, D. B.,, W. A. Walter, and, C. A. Gross. 1987. The heat shock response of E. Coli is regulated by changes in the concentration of sigma 32. Nature 329:348351.
137. Tatsuta, T.,, D. M. Joob,, R. Calendar,, Y. Akiyama, and, T. Ogura. 2000. Evidence for an active role of the DnaK chaperone system in the degradation of sigma(32). FEBS Lett. 478:271275.
138. Tatsuta,, T., T. Tomoyasu,, B. Bukau,, M. Kitagawa,, H. Mori,, K. Karata, and, T. Ogura. 1998. Heat shock regulation in the ftsH null mutant of Escherichia coli: dissection of stability and activity control mechanisms of sigma32 in vivo. Mol. Microbiol. 30:583593.
139. Testerman,, T. L.,, A. Vazquez-torres,, Y. Xu,, J. Jones-Carson,, S. J. Libby, and, F. C. Fang. 2002. The alternative sigma factor sigmaE controls antioxidant defences required for Salmonella virulence and stationary-phase survival. Mol. Microbiol. 43:771782.
140. Tomoyasu,, T., J. Gamer,, B. Bukau,, M. Kanemori,, H. Mori,, A. J. Rutman,, A. B. Oppenheim,, T. Yura,, K. Yamanaka,, H. Niki, et al. 1995. Escherichia coli FtsH is a membrane-bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J. 14:25512560.
141. Tomoyasu, T.,, T. Ogura,, T. Tatsuta, and, B. Bukau. 1998. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Mol. Microbiol. 30:567581.
142. Tsui, H. C.,, G. Feng, and, M. E. Winkler. 1996. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock. J. Bacteriol. 178:57195731.
143. Turgay, K.,, L. W. Hamoen,, G. Venema, and, D. Dubnau. 1997. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev. 11:119128.
144. VanBogelen, R. A.,, M. A. Acton, and, F. C. Neidhardt. 1987. Induction of the heat shock regulon does not produce thermotolerance in Escherichia coli. Genes Dev. 1:525531.
145. VanBogelen, R. A., and, F. C. Neidhardt. 1990. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA 87:55895593.
146. Vila-Sanjurjo,, A.,, B. S. Schuwirth,, C. W. Hau, and, J. H. Cate. 2004. Structural basis for the control of translation initiation during stress. Nat. Struct. Mol. Biol. 11:10541059.
147. Wade,, J. T.,, D. C. Roa,, D. C. Grainger,, D. Hurd,, S. J. Busby,, K. Struhl, and, E. Nudler. 2006. Extensive functional overlap between sigma factors in Escherichia coli. Nat. Struct. Mol. Biol. 13:806814.
148. Weber,, H., T. Polen,, J. Heuveling,, V. F. Wendisch, and, R. Hengge. 2005. Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187:15911603.
149. Weber, M. H., and, M. A. Marahiel. 2002. Coping with the cold: the cold shock response in the gram-positive soil bacterium Bacillus subtilis. Philos. Trans. R. Soc. Lond B Biol. Sci. 357:895907.
150. Westers,, H., L. Westers,, E. Darmon,, J. M. Van Dijl,, W. J. Quax, and, G. Zanen. 2006. The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. FEBS J. 273:38163827.
151. White-Ziegler,, C. A.,, S. Um,, N. M. Perez,, A. L. Berns,, A. J. Malhowski, and, S. Young. 2008. Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154:148166.
152. Wilson,, A. C.,, C. C. Wu,, J. R. Yates III, and, M. Tan. 2005. Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein. J. Bacteriol. 187:75357542.
153. Wolffe, A. P. 1994. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays 16:245251.
154. Yamanaka,, K., M. Mitta, and, M. Inouye. 1999. Mutation analysis of the 5’ untranslated region of the cold shock cspA mRNA of Escherichia coli. J. Bacteriol. 181:62846291.
155. Yura,, T., E. Guisbert,, M. Poritz,, C. Z. Lu,, E. Campbell, and, C. A. Gross. 2007. Analysis of σ32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response. Proc. Natl. Acad. Sci. USA 104:1763817643.
156. Zangrossi,, S., F. Briani,, D. Ghisotti,, M. E. Regonesi,, P. Tortora, and, G. Deho. 2000. Transcriptional and post-transcriptional control of polynucleotide phosphorylase during cold acclimation in Escherichia coli. Mol. Microbiol. 36:14701480.
157. Zaslaver,, A., A. Bren,, M. Ronen,, S. Itzkovitz,, I. Kikoin,, S. Shavit,, W. Liebermeister,, M. G. Surette, and, U. Alon. 2006. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat. Methods 3:623628.
158. Zhao, K., M. Liu, and, R. R. Burgess. 2005. The global transcriptional response of Escherichia coli to induced sigma 32 protein involves sigma 32 regulon activation followed by inactivation and degradation of sigma 32 in vivo. J. Biol. Chem. 280:1775817768.
159. Zhou,, Y. N.,, N. Kusukawa,, J. W. Erickson,, C. A. Gross, and, T. Yura. 1988. Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. J. Bacteriol. 170:36403649.
160. Zuber, U., and, W. Schumann. 1994. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J. Bacteriol. 176:13591363.

Tables

Generic image for table
Table 1.

Localization and functional classification of σ regulon members

Citation: Lim B, Gross C. 2011. Cellular Response to Heat Shock and Cold Shock, p 93-114. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error