Chapter 9 : Osmotic Stress

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Osmotic Stress, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap09-2.gif


Osmotic stress tolerance mechanisms determine whether bacteria survive or grow because osmotic stress profoundly affects the structure, physics, and chemistry of bacterial cells. In vitro studies have shown that K glutamate differentially modulates transcription mediated by the σ and σ RNA polymerases of , the latter being central to many stress response. Progress toward understanding the structural changes associated with the opening of representative channels is discussed in this chapter. The study of osmoregulatory proteins is motivated partly by a desire to understand how cells sense osmotic pressure (osmosensing). During the last decade, representative osmoregulatory transporters and mechanosensitive (MS) channels have been shown to both sense osmotic pressure changes (osmosensing) and respond by modulating transmembrane solute distribution (osmoregulation) after purification and reconstitution in proteoliposomes. The osmoregulation of protein activity is discussed by focusing on representative proteins that have been studied. In many bacteria, the proportion of anionic phospholipids increases and the fatty acid composition changes with cultivation at high salinity. For , growth at high osmolality increases the proportion of CL at the expense of PE without changing the proportion of PG or the fatty acid composition. Interest in the osmoregulation of transcription was stimulated by a desire to understand how osmolality can direct gene expression. Studies focused on promoter identification and the identification of transcriptional regulatory proteins were complicated by multiple factors, including transcription that depends on multiple promoters and σ factors.

Citation: Wood J. 2011. Osmotic Stress, p 133-156. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch9

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Organic solutes that accumulate in osmotically stressed bacteria A. Glutamate accumulates as a K counterion. Compatible solutes such as trehalose, glycine betaine, proline, and ectoine are synthesized from endogenous substrates or transported into the cytoplasm. Extended lists of solutes that accumulate in response to osmotic and other stresses are provided elsewhere (Roberts, ).

Citation: Wood J. 2011. Osmotic Stress, p 133-156. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Bacterial osmoregulatory mechanisms. Osmotic shifts cause water to flow across the phospholipid bilayer. Aqua-porins may accelerate osmotic swelling or shrinkage by contributing to that passive flux. When the external osmolality increases, K is immediately pumped into the cytoplasm and organic anions of metabolic origin may accumulate as counterions. Compatible solutes are synthesized from endogenous substrates. If osmoprotectants are available in the external medium, they are transported into the cell by osmoprotectant transporters where they act as, or are converted to, compatible solutes. This may attenuate the K response. When the external osmolality decreases abruptly, MS channels open to release solutes and cell lysis is averted.

Citation: Wood J. 2011. Osmotic Stress, p 133-156. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

MS channel MscS. Crystal structures provide valuable insights into osmosensory mechanisms even though they do not directly represent the structures of molecules in strained biological membranes. This figure represents the crystal structures of native MS channel MscS from (left, Protein Data Bank Identification Number [PDB ID] 2OAU [Bass et al., ]) and its variant MscS-A106V (right, PDB ID 2VV5 [Wang et al., ]). Each is shown as it would appear from the membrane plane (top) and as it would appear from the periplasm (bottom). Residues 94–112 of each subunit, colored black, constitute the pore-lining α-helices. The crystal structure of the native protein (left) is believed to represent the closed channel whereas the crystal structure of MscS-A106V (right) is believed to represent an open conformation (see further discussion in the text). Crystal structures that are believed to represent closed and expanded intermediate states of channel MscL have also been published (PDB ID 2OAR [Chang et al., ] and PDB ID 3HZQ [Liu et al., ], respectively).

Citation: Wood J. 2011. Osmotic Stress, p 133-156. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abramson,, J., I. Smirnova,, V. Kasho,, G. Verner,, H. R. Kaback, and, S. Iwata. 2003. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610615.
2. Altendorf,, K.,, I. R. Booth,, J. D. Gralla,, J.-C. Greie,, A. Z. Rosenthal, and, J. M. Wood. 2009. Chapter 5.4.5, Osmotic stress. In R. Curtiss III et al. (ed.), EcoSal—Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC. http://www.ecosal.org.
3. Anishkin, A., and, S. Sukharev. 2009. State-stabilizing interactions in bacterial mechanosensitive channel gating and adaptation. J. Biol. Chem. 284:1915319157.
4. Anishkin, A., and, S. I. Sukharev. 2004. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys. J. 86:2895.
5. Anishkin,, A., V. Gendel,, N. A. Sharifi,, C. S. Chiang,, L. Shirinian,, H. R. Guy, and, S. I. Sukharev. 2003. On the conformation of the COOH-terminal domain of the large mechanosensitive channel MscL. J. Gen. Physiol. 121:244.
6. Arthur,, D. C.,, A. F. Ghetu,, M. J. Gubbins,, R. A. Edwards,, L. S. Frost, and, J. N. M. Glover. 2003. FinO is an RNA chaperone that facilitates sense-antisense RNA interactions. EMBO J. 22:63466355.
7. Asha, H., and, J. Gowrishankar. 1993. Regulation of kdp operon expression in Escherichia coli: evidence against turgor as signal for transcriptional control. J. Bacteriol. 175:45284537.
8. Auton, M.,, D. W. Bolen, and, J. Rösgen. 2008. Structural thermodynamics of protein preferential solvation: osmolyte solvation of proteins, aminoacids, and peptides. Proteins 73:802813.
9. Balaji,, B., K. O’Connor,, J. R. Lucas,, J. M. Anderson, and, L. N. Csonka. 2005. Timing of induction of osmotically controlled genes in Salmonella enterica Serovar Typhimurium, determined with quantitative real-time reverse transcription-PCR. Appl. Environ. Microbiol. 71:82738283.
10. Bass, R. B.,, P. Strop,, M. Barclay, and, D. C. Rees. 2002. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1587.
11. Benaroudj,, N.,, D. H. Lee, and, A. L. Goldberg. 2001. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 276:2426124267.
12. Berrier, C.,, M. Besnard,, B. Ajouz,, A. Coulombe, and, A. Ghazi. 1996. Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J. Membrane Biol. 151:175187.
13. Biemans-Oldehinkel, E., and, B. Poolman. 2003. On the role of the two extracytoplasmic substrate-binding domains in the ABC transporter OpuA. EMBO J. 22:59835993.
14. Biemans-Oldehinkel, E.,, N. A. Mahmood, and, B. Poolman. 2006. A sensor for intracellular ionic strength. Proc. Natl. Acad. Sci. USA 103:1062410629.
15. Bischoff,, M., P. Dunman,, J. Kormanec,, D. Macapagal,, E. Murphy,, W. Mounts,, B. Berger-Bächi, and, S. Projan. 2004. Microarraybased analysis of the Staphylococcus aureus sigmaB regulon. J. Bacteriol. 186:40854099.
16. Bolen, D. W. 2001. Protein stabilization by naturally occurring osmolytes. Meth. Mol. Biol. 168:1736.
17. Bolen, D. W., and, I. V. Baskakov. 2001. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol. 310:955963.
18. Booth, I. R. 1985. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49:359378.
19. Booth, I. R., and, C. F. Higgins. 1990. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress? FEMS Microbiol. Rev. 75:239246.
20. Booth,, I. R.,, M. D. Edwards,, S. Black,, U. Schumann, and, S. Miller. 2007. Mechanosensitive channels in bacteria: signs of closure? Nat. Rev. Microbiol. 5:431440.
21. Botzenhardt,, J., S. Morbach, and, R. Kramer. 2004. Activity regulation of the betaine transporter BetP of Corynebacterium glutamicum in response to osmotic compensation. Biochim. Biophys. Acta 1667:229240.
22. Bouffartigues, E.,, M. Buckle,, C. Badaut,, A. Travers, and, S. Rimsky. 2007. H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat. Struct. Mol. Biol. 14:441448.
23. Boulanger,, A., A. Francez-Charlot,, A. Conter,, M. P., Castanié-Cornet,, K. Cam, and, C. Gutierrez. 2005. Multistress regulation in Escherichia coli: expression of osmB involves two independent promoters responding either to sigmaS or to the RcsCDB His-Asp phosphorelay. J. Bacteriol. 187:32823286.
24. Bouvier,, J., P. Bordes,, Y. Romeo,, A. Fourcans,, I. Bouvier, and, C. Gutierrez. 2006. Characterization of OpuA, a glycine- betaine uptake system of Lactococcus lactis. J. Mol. Microbiol. Biotechnol. 2:199205.
25. Bouvier,, J., S. Gordia,, G. Kampmann,, R. Lange,, R. Hengge-Aronis, and, C. Gutierrez. 1998. Interplay between global regulators of Escherichia coli: effect of RpoS, Lrp and H-NS on transcription of the gene osmC. Mol. Microbiol. 28:971980.
26. Bremer, E., and, R. Krämer. 2000. Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria, P. 79–97. In G. Storz and, R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, DC.
27. Brigulla,, M., T. Hoffmann,, A. Krisp,, A. Völker,, E. Bremer, and, U. Völker. 2003. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J. Bacteriol. 185:43054314.
28. Brown, A. D. 1990. Microbial Water Stress Physiology: Principles and Perspectives. John Wiley & Sons, Chichester, UK.
29. Calamita,, G., B. Kempf,, M. Bonhivers,, W. R. Bishai,, E. Bremer, and, P. Agre. 1998. Regulation of the Escherichia coli water channel gene aqpZ. Proc. Natl. Acad. Sci. USA 95:36273631.
30. Calamita,, G.,, W. R. Bishai,, G. M. Preston,, W. B. Guggino, and, P. Agre. 1995. Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli. J. Biol. Chem. 270:2906329066.
31. Cánovas,, D., S. Fletcher,, M. Hayashi, and, L. N. Csonka. 2001. Role of trehalose in growth at high temperature of Salmonella enterica serovar Typhimurium. J. Bacteriol. 183:33653371.
32. Cánovas,, D., C. Vargas,, M. I. Calderón,, A. Ventosa, and, J. J. Nieto. 1998. Characterization of the genes for the biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halomonas elongata DSM 3043. Syst. Appl. Microbiol. 21:487497.
33. Cantor, C. R., and, P. R. Schimmel. 1980. Biophysical Chemistry. W. H. Freeman & Company, San Francisco, CA.
34. Cao,, Y., G. Varo,, M. Chang,, B. Ni,, R. Needleman, and, J. K. Lanyi. 1991. Water is required for proton transfer from aspartate-96 to the bacteriorhodopsin Schiff base. Biochemistry. 30:1097210979.
35. Capp,, M. W.,, D. S. Cayley,, W. Zhang,, H. J. Guttman,, S. E. Melcher,, R. M. Saecker,, C. F. Anderson, and, M. T. Record, Jr. 1996. Compensating effects of opposing changes in putrescine (2+) and K+ concentrations on lac repressor-lac operator binding: in vitro thermodynamic analysis and in vivo relevance. J. Mol. Biol. 258:2536.
36. Cayley, D. S.,, H. J. Guttman, and, M. T. Record, Jr. 2000. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J. 78:17481764.
37. Cayley,, S.,, B. A. Lewis,, H. J. Guttman, and, M. T. Record, Jr. 1991. Characterization of the cytoplasm of Escherichia coli K-12 as a function of external osmolarity: implications for protein-DNA interactions in vivo. J. Mol. Biol. 222:281300.
38. Cayley, S., and, M. T. Record, Jr. 2003. Roles of cytoplasmic osmolytes, water and crowding in the response of Escherichia coli to osmotic stress: biophysical basis of osmoprotection by glycine betaine. Biochem. 42:1259612609.
39. Cayley, S., and, M. T. Record, Jr. 2004. Large changes in cytoplasmic biopolymer concentration with osmolality indicate that macromolecular crowding may regulate protein-DNA interactions and growth rate in osmotically stressed Escherichia coli K-12. J. Mol. Recog. 17:488496.
40. Chang,, G.,, R. H. Spencer,, A. T. Lee,, M. T. Barclay, and, D. C. Rees. 1998. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:22202226.
41. Cheung,, K. J.,, V. Badarinarayana,, D. W. Selinger,, D. Janse, and, G. M. Church. 2007. A microarray-based antibiotic screen identifies a regulatory role for supercoiling in the osmotic stress response of Escherichia coli. Genome Res. 13:206215.
42. Chiang, C. S.,, L. Shirinian, and, S. I. Sukharev. 2005. Capping transmembrane helices of MscL with aromatic residues changes channel response to membrane stretch. Biochem. 44:1258912597.
43. Collins, K. D., and, M. W. Washabaugh. 1985. The Hofmeister effect and the behaviour of water at interfaces. Quart. Rev. Biophys. 18:323422.
44. Conter,, A., C. Menchon, and, C. Gutierrez. 1997. Role of DNA supercoiling and rpoS sigma factor in the osmotic and growth phase-dependent induction of the gene osmE of Escherichia coli K12. J. Mol. Biol. 273:7583.
45. Corry, B., and, B. Martinac. 2008. Bacterial mechanosensitive channels: experiment and theory. Biochim. Biophys. Acta 1778:18591870.
46. Cronan, J. E. 2003. Bacterial membrane lipids: where do we stand? Annu. Rev. Microbiol. 57:203224.
47. Cruickshank,, C. C.,, R. F. Minchin,, A. C. Le Dain, and, B. Martinac. 1997. Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys. J. 73:19251931.
48. Csonka, L. N. 1989. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev. 53:121147.
49. Csonka, L. N., and, A. D. Hanson. 1991. Prokaryotic osmoregulation: genetics and physiology. Ann. Rev. Microbiol. 45:569606.
50. Culham,, D. E.,, A. Hillar,, J. Henderson,, A. Ly,, Ya. I., Vernikovska,, K. I. Racher,, J. M. Boggs, and, J. M. Wood. 2003b. Creation of a fully functional, cysteine-less variant of osmosensor and proton-osmoprotectant symporter ProP from Escherichia coli and its application to assess the transporter’s membrane orientation. Biochemistry. 42:1181511823.
51. Culham,, D. E.,, A. Lu,, M. Jishage,, K. A. Krogfelt,, A. Ishihama, and, J. M. Wood. 2001. The osmotic stress response and virulence in pyelonephritis isolates of Escherichia coli: contributions of rpoS, proP, proU and other systems. Microbiol. 147:16571670.
52. Culham,, D. E.,, B. Lasby,, A. G. Marangoni,, J. L. Milner,, B. A. Steer,, R. W. van Nues, and, J. M. Wood. 1993. Isolation and sequencing of Escherichia coli gene proP reveals unusual structural features of the osmoregulatory proline/betaine transporter, ProP. J. Mol. Biol. 229:268276.
53. Culham,, D. E.,, B. Tripet,, K. I. Racher,, R. T. Voegele,, R. S. Hodges, and, J. M. Wood. 2000. The role of the carboxyl terminal α-helical coiled-coil domain in osmosensing by transporter ProP of Escherichia coli. J. Mol. Recog. 13:114.
54. Culham, D. E.,, J. Henderson,, R. A. Crane, and, J. M. Wood. 2003a. Osmosensor ProP of Escherichia coli responds to the concentration, chemistry and molecular size of osmolytes in the proteoliposome lumen. Biochem. 42:410420.
55. Culham, D. E.,, T. Romantsov, and, J. M. Wood. 2008a. Roles of K+, H+, H2O and ΔΨ in solute transport mediated by major facilitator superfamily members ProP and LacY. Biochem. 47:81768185.
56. Culham,, D. E.,, Y. I. Vernikovska,, N. Tschowri,, R. A., B. Keates,, J. M. Wood, and, J. M. Boggs. 2008b. Periplasmic loops of osmosensory transporter ProP in Escherichia coli are sensitive to osmolality. Biochem. 47:1358413593.
57. Delamarche,, C., D. Thomas,, J.-P. Rolland,, A. Froger,, J. Gouranton,, M. Svelto,, P. Agre, and, G. Calamita. 1999. Visualization of AqpZ-mediated water permeability in Escherichia coli by cryoelectron microscopy. J. Bacteriol. 181:41934197.
58. Dinnbier,, U., E. Limpinsel,, R. Schmid, and, E. P. Bakker. 1988. Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells of Escherichia coli K-12 to elevated sodium chloride concentrations. Arch. Microbiol. 150:348357.
59. Dong, T., and, H. E. Schellhorn. 2009. Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC Genomics 10:349.
60. Durell, S. R., and, H. R. Guy. 1999. Structural models of the KtrB, TrkH and Trk1,2 symporters based on the structure of the KcsA K+ channel. Biophys. J. 77:789807.
61. Durell,, S. R.,, Y. Hao,, T. Nakamura,, E. P. Bakker, and, H. R. Guy. 1999. Evolutionary relationship between K+ channels and symporters. Biophys. J. 77:775788.
62. Edwards, M. D.,, W. Bartlett, and, I. R. Booth. 2008. Pore mutations of the Escherichia coli MscS channel affect desensitisation but not ionic preference. Biophys. J. 94:30033013.
63. Edwards,, M. D.,, Y. Li,, S. Kim,, S. Miller,, W. Bartlett,, S. Black,, S. Dennison,, I. Iscla,, P. Blount,, J. U. Bowie, and, I. R. Booth. 2005. Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat. Struct. Mol. Biol. 12:113119.
64. Elowitz,, M. B.,, M. G. Surette,, P. E. Wolf,, J. B. Stock, and, S. Leibler. 1999. Protein mobility in the cytoplasm of Escherichia coli. J. Bacteriol. 181:197203.
65. Farwick, M.,, R. M. Siewe, and, R. Krämer. 1995. Glycine betaine uptake after hyperosmotic shift in Corynebacterium glutamicum. J. Bacteriol. 177:46904695.
66. Fletcher, S., D. Rhodes, and, L. N. Csonka. 2001. Analysis of the effects of osmoprotectants on the high osmolality-dependent induction of increased thermotolerance in Salmonella Typhimurium. Food Microbiol. 18:345354.
67. Folgering,, J. H. A.,, P. C. Moe,, G. K. Schuurman-Wolters,, P. Blount, and, B. Poolman. 2005. Lactococcus lactis uses MscL as its principal mechanosensitive channel. J. Biol. Chem. 280:87848792.
68. Follmann,, M., M. Becker,, I. Ochrombel,, V. Ott,, R. Krämer, and, K. Marin. 2009. Potassium transport in Corynebacterium glutamicum is facilitated by the putative channel protein CglK, which is essential for pH homeostasis and growth at acidic pH. J. Bacteriol. 191:29442952.
69. Foster, J. W. 2004. Escherichia coli acid resistance: tales of an amateur acidophile. Nature Rev. Microbiol. 2:898907.
70. Germer,, J., A. Muffler, and, R. Hengge-Aronis. 1998. Trehalose is not relevant for in vivo activity of sigma(S)-containing RNA polymerase in Escherichia coli. J. Bacteriol. 180:16031606.
71. Gralla, J. D., and, Y. X. Huo. 2008. Remodeling and activation of Escherichia coli RNA polymerase by osmolytes. Biochem. 47:1318913196.
72. Gralla, J. D., and, J. R. Vargas. 2006. Potassium glutamate as a transcriptional inhibitor during bacterial osmoregulation. EMBO J. 25:15151521.
73. Gramman, K., A. Volke, and, H. J. Kunte. 2002. New type of osmoregulated solute transporter identified in halophilic members of the bacteria domain: TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM 2581(T). J. Bacteriol. 184:30783085.
74. Greie, J.-C., and, K. Altendorf. 2007. The K+-translocating Kdp-FABC complex from Escherichia coli: A P-type ATPase with unique features. J. Bioenerg. Biomembr. 39:397402.
75. Guan, L., and, H. R. Kaback. 2006. Lessons from lactose permease. Annu. Rev. Biophys. Biomol. Struct. 35:6791.
76. Guillier,, M., S. Gottesman, and, G. Storz. 2006. Modulating the outer membrane with small RNAs. Genes Dev. 20:23382348.
77. Gunasekera, T. S.,, L. N. Csonka, and, O. Paliy. 2008. Genome-wide transcriptional responses of Escherichia coli K-12 to continuous osmotic and heat stresses. J. Bacteriol. 190:37123720.
78. Gutierrez, C.,, J. Barondess,, C. Manoil, and, J. Beckwith. 1987. The use of transposon TnphoA to detect genes for cell envelope proteins subjected to a common regulatory stimulus. J. Mol. Biol. 195:289297.
79. Guttman,, H. J.,, S. Cayley,, M. Li,, C. F. Anderson, and, M. T. Record, Jr. 1995. K+ -ribosome interactions determine the large enhancements of 39K NMR transverse relaxation rates in the cytoplasm of Escherichia coli K-12. Biochemistry 34:13931404.
80. Ha,, J.-H.,, M. W. Capp,, M. D. Hohenwalter,, M. Baskerville, and, M. T. Record, Jr. 1992. Thermodynamic stoichiometries of participation of water, cations and anions in specific and nonspecific binding of lac repressor to DNA: Possible origins of the “glutamate effect” on protein-DNA interactions. J. Mol. Biol. 228:252264.
81. Hale, T. L. 1991. Genetic basis of virulence in Shigella species. Microbiol. Rev. 55:206224.
82. Hamann,, K., P. Zimmann, and, K. Altendorf. 2008. Reduction of turgor is not the stimulus for the sensor kinase KdpD of Escherichia coli. J. Bacteriol. 190:23602367.
83. Harms,, C., Y. Domoto,, C. Celik,, E. Rahe,, S. Stumpe,, R. Schmid,, T. Nakamura, and, E. P. Bakker. 2001. Identification of the ABC protein SapD as the subunit that confers ATP dependence to the K+-uptake systems TrkH and TrkG from Escherichia coli K-12. Microbiol. 147:29913003.
84. Harold, F. M. 2002. Force and compliance: rethinking morphogenesis in walled cells. Fungal Genet. Biol. 37:271282.
85. Harries, D., and, J. Rösgen. 2008. A practical guide on how osmolytes modulate macromolecular properties. Meth. Cell. Biol. 84:679735.
86. Hengge-Aronis, R. 1996. Back to log phase: sigmaS as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol. Microbiol. 21:887893.
87. Hengge-Aronis, R.,, R. Lange,, N. Henneberg, and, D. Fischer. 1993. Osmotic regulation of rpoS-dependent genes in Escherichia coli. J. Bacteriol. 175:259265.
88. Higgins,, C. F.,, C. J. Dorman,, D. A. Stirling,, L. Waddell,, I. R. Booth,, G. May, and, E. Bremer. 1988. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52:569584.
89. Hillar,, A., B. Tripet,, D. Zoetewey,, J. M. Wood,, R. S. Hodges, and, J. M. Boggs. 2003. Detection of α-helical coiled-coil dimer formation by spin-labeled synthetic peptides: a model parallel coiled-coil peptide and the antiparallel coiled-coil formed by a replica of the ProP C-terminus. Biochem. 42:1517015178.
90. Hoffmann,, T., A. Schütz,, M. Brosius,, A. Völker,, U. Völker, and, E. Bremer. 2002. High-salinity-induced iron limitation in Bacillus subtilis. J. Bacteriol. 184:718727.
91. Hoffmann, T.,, C. Boiangiu,, S. Moses, and, E. Bremer. 2008. Responses of Bacillus subtilis to hypotonic challenges: physiological contributions of mechanosensitive channels to cellular survival. Appl. Environ. Microbiol. 74:24542460.
92. Horlacher, R., and, W. Boos. 1997. Characterization of TreR, the major regulator of the Escherichia coli trehalose system. J. Biol. Chem. 272:1302613032.
93. Horn,, C., E. Bremer, and, L. Schmitt. 2003. Nucleotide dependent monomer/dimer equilibrium of OpuAA, the nucleotide-binding protein of the osmotically regulated ABC transporter OpuA from Bacillus subtilis. J. Mol. Biol. 334:403419.
94. Horn,, C., S. Jenewein,, B. Tshapek,, W. Bouschen,, S. Metzger,, E. Bremer, and, L. Schmitt. 2008. Monitoring conformational changes during the catalytic cycle of OpuAA, the ATPase subunit of the ABC transporter OpuA from Bacillus subtilis. Biochem. J. 412:233244.
95. Horn,, C., L. Sohn-Bösser,, J. Breed,, W. Welte,, L. Schmitt, and, E. Bremer. 2006. Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from Bacillus subtilis for the compatible solutes glycine betaine and proline betaine. J. Mol. Biol. 357:592606.
96. Houssin, C.,, N. Eynard,, E. Shechter, and, A. Ghazi. 1991. Effect of osmotic pressure on membrane energy-linked functions in Escherichia coli. Biochim. Biophys. Acta 1056:7684.
97. Huo, Y. X.,, A. Z. Rosenthal, and, J. D. Gralla. 2008. General stress response signalling: unwrapping transcription complexes by DNA relaxation via the sigma38 C-terminal domain. Mol. Microbiol. 70:369378.
98. Ignatova, Z., and, L. M. Gierasch. 2005. Aggregation of a slow-folding mutant of a beta-clam protein proceeds through a monomeric nucleus. Biochem. 44:72667274.
99. Ignatova, Z., and, L. M. Gierasch. 2007. Effects of osmolytes on protein folding and aggregation in cells. Methods Enzymol. 428:355372.
100. Jiang,, M.,, S. M. Sullivan,, A. K. Walker,, J. R. Strahler,, P. C. Andrews, and, J. R. Maddock. 2007. Identification of novel Escherichia coli ribosome-associated proteins using isobaric tags and multidimensional protein identification techniques. J. Bacteriol. 189:34343444.
101. Jovanovich, S. B.,, M. Martinell,, M. T. Record, Jr., and, R. B. Burgess. 1988. Rapid response to osmotic upshift by osmoregulated genes in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 170:534539.
102. Jung,, J. U.,, C. Gutierrez,, F. Martin,, M. Ardourel, and, M. Villarejo. 1990. Transcription of osmB, a gene encoding an Escherichia coli lipoprotein, is regulated by dual signals. J. Biol. Chem. 265:1057410581.
103. Jung, K., and, K. Altendorf. 2002. Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli. J. Mol. Microbiol. Biotechnol. 4:223228.
104. Kandror, O., A. DeLeon, and, A. L. Goldberg. 2002. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc. Natl. Acad. Sci. USA 99:97279732.
105. Kempf, B., and, E. Bremer. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments. Arch. Microbiol. 170:319330.
106. Kempf,, B., J. Gade, and, E. Bremer. 1997. Lipoprotein from the osmoregulated ABC transport system OpuA of Bacillus subtilis: Purification of the glycine betaine binding protein and characterization of a functional lipidless mutant. J. Bacteriol. 179:62136220.
107. Kloda, A., and, B. Martinac. 2001. Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J. 20:18881896.
108. Ko,, R.,, L. T. Smith, and, G. M. Smith. 1994. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. J. Bacteriol. 176:426431.
109. Koch, A. L. 1990. The surface stress theory for the case of Escherichia coli: the paradoxes of gram-negative growth. Res. Microbiol. 141:119130.
110. Konopka,, M. C.,, I. A. Shkel,, S. Cayley,, M. T. Record, and, J. C. Weisshaar. 2007a. Crowding and confinement effects on protein diffusion in vivo. J. Bacteriol. 188:61156123.
111. Konopka, M. C.,, J. C. Weisshaar, and, M. T. Record, Jr. 2007b. Methods of changing biopolymer volume fraction and cytoplasmic solute concentrations for in vivo biophysical studies. Methods Enzymol. 428:487504.
112. Konopka,, M. C.,, K. A. Sochacki,, B. P. Bratton,, I. A. Shkel,, M. T. Record, and, J. C. Weisshaar. 2009. Cytoplasmic protein mobility in osmotically stressed Escherichia coli. J. Bacteriol. 191:231237.
113. Koo, S.-P.,, C. F. Higgins, and, I. R. Booth. 1991. Regulation of compatible solute accumulation in Salmonella typhimurium: evidence for a glycine betaine efflux system. J. Gen. Microbiol. 137:26172625.
114. Kraegeloh, A., and, H. J. Kunte. 2002. Novel insights into the role of potassium for osmoregulation in Halomonas elongata. Extremophiles 6:453462.
115. Krämer, R. 2009. Osmosensing and osmosignaling in Corynebacterium glutamicum. Amino Acids 37:487497.
116. Krämer, R.,, C. Lambert,, C. Hoischen, and, H. Ebbighausen. 1990. Uptake of glutamate in Corynebacterium glutamicum. 1. Kinetic properties and regulation by internal pH and potassium. Eur. J. Biochem. 194:929935.
117. Krämer, R., and, S. Morbach. 2004. BetP of Corynebacterium glutamicum, a transporter with three different functions: betaine transport, osmosensing, and osmoregulation. Biochim. Biophys. Acta 1658:3136.
118. Kunte, H. J. 2004. Osmoregulated solute transport in halophilic bacteria, P. 155–164. In A. Ventosa (ed.), Halophilic Microorganisms. Springer-Verlag, Berlin.
119. Kunte,, H. J.,, R. A. Crane,, D. E. Culham,, D. Richmond, and, J. M. Wood. 1999. Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coli K-12. J. Bacteriol. 181:15371543.
120. Laimins, L. A.,, D. B. Rhoads, and, W. Epstein. 1981. Osmotic control of kdp operon expression in Escherichia coli. Proc. Natl. Acad. Sci. USA 78:464468.
121. Landis, L., J. Xu, and, R. C. Johnson. 1999. The cAMP receptor protein CRP can function as an osmoregulator of transcription in Escherichia coli. Genes Dev. 13:30813091.
122. Lange,, R., M. Barth, and, R. Hengge-Aronis. 1993. Complex transcriptional control of the σS-dependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary phase response of Escherichia coli. J. Bacteriol. 175:79107917.
123. Lange, R., and, R. Hengge-Aronis. 1994. The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev. 8:16001612.
124. Lanyi, J. K. 2004. Bacteriorhodopsin. Annu. Rev. Physiol. 66:665688.
125. Lee,, E. J.,, N. Karoonuthaisiri,, H. S. Kim,, J. H. Park,, C. J. Cha,, C. M. Kao, and, J. H. Roe. 2005. A master regulator sigmaB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol. Microbiol. 57:12521264.
126. Levina,, N.,, S. Tötemeyer,, N. R. Stokes,, P. Louis,, M. A. Jones, and, I. R. Booth. 1999. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18:17301737.
127. Li,, C.,, M. D. Edwards,, H. Jeong,, J. Roth, and, I. R. Booth. 2007. Identification of mutations that alter the gating of the Escherichia coli mechanosensitive channel protein, MscK. Mol. Microbiol. 64:560574.
128. Li, Y.,, P. C. Moe,, S. Chandrasekaran,, I. R. Booth, and, P. Blount. 2002. Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J. 21:53235330.
129. Liu,, F.,, D. E. Culham,, Ya., I., Vernikovska,, R. A., B. Keates,, J. M. Boggs, and, J. M. Wood. 2007. Structure and function of the XIIth transmembrane segment in osmosensor and osmoprotectant transporter ProP of Escherichia coli. Biochem. 46:56475655.
130. Liu,, Z.,, C. S. Ghandi, and, D. C. Rees. 2009. Structure of tetrameric MscL in an expanded intermediate state. Nature 461:120126.
131. Louis,, P.,, H. G. Trüper, and, E. A. Galinski. 1994. Survival of Escherichia coli during drying and storage in the presence of compatible solutes. Appl. Microbiol. Biotechnol. 41:684688.
132. Ly,, A., J. Henderson,, A. Lu,, D. E. Culham, and, J. M. Wood. 2004. The osmoregulatory systems of Escherichia coli: Identification of BCCT family member BetU and distributions of betU and trkG among pathogenic and non-pathogenic isolates. J. Bacteriol. 186:296306.
133. MacMillan,, S. V.,, D. A. Alexander,, D. E. Culham,, H. J. Kunte,, E. V. Marshall,, D. Rochon, and, J. M. Wood. 1999. The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in Escherichia coli. Biochim. Biophys. Acta 1420:3044.
134. Mahmood,, N. A.,, E. Biemans-Oldehinkel,, J. S. Patzlaff,, G. K. Schuurman-Wolters, and, B. Poolman. 2006. Ion specificity and ionic strength dependence of the osmoregulatory ABC transporter OpuA. J. Biol. Chem. 281:2983029839.
135. Mahmood, N. A.,, E. Biemans-Oldehinkel, and, B. Poolman. 2009. Engineering of ion sensing by the cystathionine beta-synthase module of the ABC transporter OpuA. J. Biol. Chem. 284:1436814376.
136. Mallo, R. C., and, M. T. Ashby. 2006. AqpZ-mediated water permeability in Escherichia coli measured by stopped-flow spectroscopy. J. Bacteriol. 188:820822.
137. Martinac,, B., J. Adler, and, C. Kung. 1990. Mechanosensitive ion channels of E. Coli activated by amphipaths. Nature 348:261263.
138. Martinac,, B., M. Buehner,, A. H. Delcour,, J. Adler, and, C. Kung. 1987. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84:2301.
139. McLaggan, D.,, J. Naprstek,, E. T. Buurman, and, W. Epstein. 1994. Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. J. Biol. Chem. 269:19111917.
140. McLeod,, S. M.,, J. Xu,, S. E. Cramton,, T. Gaal,, R. L. Gourse, and, R. C. Johnson. 1999. Localization of amino acids required for Fis to function as a class II transcriptional activator at the RpoS-dependent proP P2 promoter. J. Mol. Biol. 294:333346.
141. McLeod,, S. M.,, S. E. Aiyar,, R. L. Gourse, and, R. C. Johnson. 2002. The C-terminal domains of the RNA polymerase alpha subunits: contact site with Fis and localization during coactivation with CRP at the Escherichia coli proP P2 promoter. J. Mol. Biol. 316:517529.
142. Meury, J. 1988. Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli. Arch. Microbiol. 149:232239.
143. Meury, J. 1994. Immediate and transient inhibition of the respiration of Escherichia coli under hyperosmotic shock. FEMS Microbiol. Lett. 121:281286.
144. Meury, J., and, A. Kepes. 1981. The regulation of potassium fluxes for the adjustment and maintenance of potassium levels in Escherichia coli. Eur. J. Biochem. 119:165170.
145. Meury,, J., A. Robin, and, P. Monnier-Champeix. 1985. Turgor-controlled K+ fluxes and their pathways in Escherichia coli. Eur. J. Biochem. 151:613619.
146. Miller,, S., W. Bartlett,, S. Chandrasekaran,, S. Simpson,, M. Edwards, and, I. R. Booth. 2003. Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J. 22:3646.
147. Milner, J. L.,, S. Grothe, and, J. M. Wood. 1988. Proline porter II is activated by a hyperosmotic shift in both whole cells and membrane vesicles of Escherichia coli K12. J. Biol. Chem. 263:1490014905.
148. Milner, J. L., and, J. M. Wood. 1989. Insertion proQ220::Tn5 alters regulation of proline porter II, a transporter of proline and glycine betaine in Escherichia coli. J. Bacteriol. 171:947951.
149. Möker, N.,, J. Krämer,, G. Unden,, R. Krämer, and, S. Morbach. 2007a. In vitro analysis of the two-component system MtrB-MtrA from Corynebacterium glutamicum. J. Bacteriol. 189:36453649.
150. Möker,, N., M. Brocker,, S. Schaffer,, R. Krämer,, S. Morbach, and, M. Bott. 2004. Deletion of the genes encoding the MtrA-MtrB two-component system of Corynebacterium glutamicum has a strong influence on cell morphology, antibiotics susceptibility and expression of genes involved in osmoprotection. Mol. Microbiol. 54:420438.
151. Möker, N.,, P. Reihlen,, R. Krämer, and, S. Morbach. 2007b. Osmosensing properties of the histidine protein kinase MtrB from Corynebacterium glutamicum. J. Biol. Chem. 282:2766627677.
152. Morbach, S., and, R. Krämer. 2002. Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria. Chembiochem. 3:384397.
153. Mullineaux, C. W.,, A. Nenninger,, N. Ray, and, C. Robinson. 2006. Diffusion of green fluorescent protein in three cell environments in Escherichia coli. J. Bacteriol. 188:34423448.
154. Munro, G. F.,, K. Hercules,, J. Morgan, and, W. Sauerbier. 1972. Dependence of the putrescine content of Escherichia coli on the osmotic strength of the medium. J. Biol. Chem. 247:12721280.
155. Nakamura, T.,, S. Hirano,, W. Ito, and, M. Wachi. 2007. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid production. Appl. Environ. Microbiol. 73:44914498.
156. Nikaido, H. 2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67:593656.
157. Nomura,, T., M. Sokabe, and, K. Yoshimura. 2006. Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys. J. 91:28742881.
158. Nottebrock, D.,, U. Meyer,, R. Krämer, and, S. Morbach. 2003. Molecular and biochemical characterization of mechanosensitive channels in Corynebacterium glutamicum. FEMS Microbiol. Lett. 218:305309.
159. Obis,, D., A. Guillot,, J.-C. Gripon,, P. Renault,, A. Bolotin, and M.-Y. Mistou. 1999. Genetic and biochemical characterization of a high-affinity betaine uptake system (BusA) in Lactococcus lactis reveals a new functional organization within bacteria ABC transporters. J. Bacteriol. 181:62386246.
160. Ohwada, T., and, S. Sagisaka. 1987. An immediate and steep increase in ATP concentration in response to reduced turgor pressure in Escherichia coli B. Arch. Biochem. Biophys. 259:157163.
161. Ono,, H., K. Sawada,, N. Khunajakr,, T. Tao,, M. Yamamoto,, A. Shinmyo,, M. Takano, and, Y. Murooka. 1999. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J. Bacteriol. 181:9199.
162. Oren, A. 2002. Halophilic Microorganisms in their Environments. Kluwer Academic Publishers, Dordrecht, Netherlands.
163. Ott, V.,, J. Koch,, K. Späte,, S. Morbach, and, R. Krämer. 2008. Regulatory properties and interaction of the C- and N-terminal domains of BetP, an osmoregulated betaine transporter from Corynebacterium glutamicum. Biochem. 47:1220812218.
164. Ou, X.,, P. Blount,, R. J. Hoffman, and, C. Kung. 1998. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl. Acad. Sci. USA 95:1147111475.
165. Ozcan,, N.,, C. S. Ejsing,, A. Shevchenko,, A. Lipski,, S. Morbach, and R. Krämer. 2007. Osmolality, temperature, and membrane lipid composition modulate the activity of betaine transporter BetP in Corynebacterium glutamicum. J. Bacteriol. 189:74857496.
166. Ozcan,, N., R. Kramer, and, S. Morbach. 2005. Chill activation of compatible solute transporters in Corynebacterium glutamicum at the level of transport activity. J. Bacteriol. 187:47524759.
167. Padan,, E., E. Bibi,, M. Ito, and, T. A. Krulwich. 2005. Alkaline pH homeostasis in bacteria: new insights. Biochim. Biophys. Acta 1717:6788.
168. Padan, E., and, T. A. Krulwich. 2000. Sodium stress, P. 117–130. In G. Storz and, R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, DC.
169. Pané-Farré, J.,, B. Jonas,, K. Förstner,, S. Engelmann, and, M. Hecker. 2006. The sigmaB regulon in Staphylococcus aureus and its regulation. Int. J. Med. Microbiol. 296:237258.
170. Parsegian, V. A.,, R. P. Rand, and, D. C. Rau. 1995. Macromolecules and water: probing with osmotic stress. Methods Enzymol. 259:4395.
171. Patten,, C. L.,, M. G. Kirchhof,, M. R. Schertzberg,, R. A. Morton, and, H. E. Schellhorn. 2004. Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12. Mol. Gen. Genet. 272:580591.
172. Patzlaff, J. S.,, T. van der Heide, and, B. Poolman. 2003. The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278:2954629551.
173. Perozo, E.,, A. Kloda,, D. M. Cortes, and, B. Martinac. 2001. Site-directed spin-labeling of reconstituted MscL in the closed state. J. Gen. Physiol. 118:193205.
174. Perozo, E.,, A. Kloda,, D. M. Cortes, and, B. Martinac. 2002b. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol. 9:696703.
175. Perozo, E.,, D. M. Cortes,, P. Sompornpisut,, A. Kloda, and, B. Martinac. 2002a. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418:942948.
176. Peter,, H., A. Burkovski, and, R. Krämer. 1996. Isolation, characterization, and expression of the Corynebacterium glutamicum betP gene, encoding the transport system for the compatible solute glycine betaine. J. Bacteriol. 178:52295234.
177. Peter,, H., A. Burkovski, and, R. Krämer. 1998. Osmo-sensing by N- and C-terminal extensions of the glycine betaine uptake system BetP of Corynebacterium glutamicum. J. Biol. Chem. 273:25672574.
178. Poolman,, B.,, J. J. Spitzer, and, J. M. Wood. 2004. Bacterial osmosensing: roles of membrane structure and electrostatics in lipid-protein and protein-protein interactions. Biochim. Biophys. Acta 1666:88104.
179. Poolman,, B., P. Blount,, J. H. A. Folgering,, R. H. E. Friesen,, P. C. Moe, and, T. van der Heide. 2002. How do membrane proteins sense water stress? Mol. Microbiol. 44:889902.
180. Powl, A. M.,, J. M. East, and, A. G. Lee. 2003. Lipid-protein interactions studied by introduction of a tryptophan residue: The mechanosensitive channel MscL. Biochem. 42:1430614317.
181. Powl, A. M.,, J. M. East, and, A. G. Lee. 2005a. Heterogeneity in the binding of lipid molecules to the surface of a membrane protein: hot spots for anionic lipids on the mechanosensitive channel of large conductance MscL and effects on conformation. Biochem. 44:58735883.
182. Powl,, A. M.,, J. N. Wright,, J. M. East, and, A. G. Lee. 2005b. Identification of the hydrophobic thickness of a membrane protein using fluorescence spectroscopy: studies with the mechanosensitive channel MscL. Biochem. 44:57135721.
183. Racher, K. I.,, D. E. Culham, and, J. M. Wood. 2001. Requirements for osmosensing and osmotic activation of transporter ProP from Escherichia coli. Biochem. 40:73247333.
184. Randall,, K., M. Lever,, B. A. Peddie, and, S. T. Chambers. 1996. Natural and synthetic betaines counter the effects of high NaCl and urea concentrations. Biochim. Biophys. Acta 1291:189194.
185. Record,, M. T.,, Jr.,, E. S. Courtenay,, S. Cayley, and, H. J. Guttman. 1998a. Biophysical compensation mechanisms buffering E. Coli protein-nucleic acid interactions against changing environments. Trends Biochem. Sci. 23:190194.
186. Record, M. T., Jr., W. Zhang, and, C. F. Anderson. 1998b. Analysis of effects of salts and uncharged solutes on protein and nucleic acid equilibria and processes: a practical guide to recognizing and interpreting polyelectrolyte effects, Hofmeister effects, and osmotic effects of salts. Adv. Protein Chem. 51:281353.
187. Ressl, S.,, A. C. Terwisscha van Scheltinga,, C. Vonrhein,, V. Ott, and, C. Ziegler. 2009. Molecular basis of transport and regulation in the Na(+)/betaine symporter BetP. Nature 458:4752.
188. Rhoads, D. B.,, L. A. Laimins, and, W. Epstein. 1978. Functional organization of the kdp genes of Escherichia coli K12. J. Bacteriol. 135:445452.
189. Roberts, M. F. 2006. Characterization of organic compatible solutes of halotolerant and halophilic microorganisms. Meth. Microbiol. 35:615647.
190. Roberts, M. F. 2004. Osmoadaptation and osmoregulation in archaea: update 2004. Front. Biosci. 9:19992019.
191. Romantsov,, T.,, A. R. Battle,, J. M. Hendel,, B. Martinac, and, J. M. Wood. 2010. Protein localization in Escherichia coli cells: comparison of cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. J. Bacteriol. 192:912924.
192. Romantsov,, T., S. Helbig,, D. E. Culham,, C. Gill,, L. Stalker, and, J. M. Wood. 2007. Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol. Microbiol. 64:14551465.
193. Romantsov,, T., L. Stalker,, D. E. Culham, and, J. M. Wood. 2008. Cardiolipin controls the osmotic stress response and the subcellular location of transporter ProP in Escherichia coli. J. Biol. Chem. 283:1231412323.
194. Romantsov, T., and, J. M. Wood. 2009. Cardiolipin and the osmotic stress responses of bacteria. Biochim. Biophys. Acta 1788:20922100.
195. Romeo,, Y., J. Bouvier, and, C. Gutierrez. 2007. Osmotic regulation of transcription in Lactococcus lactis: ionic-strength dependent binding of the BusR repressor to the busA promoter. FEBS Lett. 581:33873390.
196. Romeo,, Y., D. Obis,, J. Bouvier,, A. Guillot,, A. Fourcans,, I. Bouvier,, C. Gutierrez, and, M.-Y. Mistou. 2003. Osmoregulation in Lactococcus lactis: BusR, a transcriptional repressor of the glycine betaine uptake system BusA. Mol. Microbiol. 47:11351147.
197. Rosenthal, A. Z.,, Y. Kim, and, J. D. Gralla. 2008. Poising of E. Coli RNA polymerase and its release from the σ38 C-terminal tail for osmY transcription. J. Mol. Biol. 376:938949.
198. Rösgen, J. 2007. Molecular basis of osmolyte effects on protein and metabolites. Methods Enzymol. 428:459486.
199. Roth, W. G.,, M. P. Leckie, and, D. N. Dietzler. 1985. Osmotic stress drastically inhibits active transport of carbohydrates by Escherichia coli. Biochem. Biophys. Res. Commun. 126:434441.
200. Rübenhagen, R.,, H. Roensch,, H. Jung,, R. Krämer, and, S. Morbach. 2000. Osmosensor and osmoregulator properties of the betaine carrier BetP from Corynebacterium glutamicum in proteoliposomes. J. Biol. Chem. 275:735741.
201. Rübenhagen,, R., S. Morbach, and, R. Krämer. 2001. The osmoreactive betaine carrier BetP from Corynebacterium glutamicum is a sensor for cytoplasmic K+. EMBO J. 20:54125420.
202. Ruffert, S.,, C. Berrier,, R. Krämer, and, A. Ghazi. 1999. Identification of mechanosensitive ion channels in the cytoplasmic membrane of Corynebacterium glutamicum. J. Bacteriol. 181:16731676.
203. Ruffert, S.,, C. Lambert,, H. Peter,, V. F. Wendisch, and, R. Krämer. 1997. Efflux of compatible solutes in Corynebacterium glutamicum mediated by osmoregulated channel activity. Eur. J. Biochem. 247:572580.
204. Rychlik, I., and, P. A. Barrow. 2005. Salmonella stress management and its relevance to behaviour during intestinal colonisation and infection. FEMS Microbiol. Rev. 29:10211040.
205. Santos,, H., P. Lamosa, and, N. Borges. 2008. Characterization and quantification of compatible solutes in (hyper)thermophilic microorganisms. Methods Microbiol. 35:173199.
206. Saum, R.,, A. Mingote,, H. Santos, and, V. Müller. 2009. Genetic analysis of the role of the ABC transporter Ota and Otb in glycine betaine transport in Methanosarcina mazei Gö1. Arch. Microbiol. 191:291301.
207. Sayeed, W. M., and, J. E. Baenziger. 2009. Structural characterization of the osmosensor ProP. Biochim. Biophys. Acta 1788:11081115.
208. Schellhorn,, H. E.,, J. P. Audia,, L. I. Wei, and, L. Chang. 1998. Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J. Bacteriol. 180:62836291.
209. Schiefner,, A., J. Breed,, L. Bösser,, S. Kneip,, J. Gade,, G. Holtmann,, K. Diedrichs,, W. Welte, and, E. Bremer. 2004. Cation-pi interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligandbinding protein ProX from Escherichia coli. J. Biol. Chem. 279:55885596.
210. Schiller, D.,, D. Kruse,, H. Kneifel,, R. Krämer, and, A. Burkovski. 2000. Polyamine transport and role of potE in response to osmotic stress in Escherichia coli. J. Bacteriol. 182:62476249.
211. Schiller,, D., R. Krämer, and, S. Morbach. 2004a. Cation specificity of osmosensing by the betaine carrier BetP of Corynebacterium glutamicum. FEBS Lett. 563:108112.
212. Schiller, D.,, R. Rübenhagen,, R. Krämer, and, S. Morbach. 2004b. The C-terminal domain of the betaine carrier BetP of Coryne-bacterium glutamicum is directly involved in sensing K+ as an osmotic stimulus. Biochem. 43:55835591.
213. Schiller, D.,, V. Ott,, R. Kraemer, and, S. Morbach. 2006. Influence of membrane composition on osmosensing by the betaine carrier BetP from Corynebacterium glutamicum. J. Biol. Chem. 281:77377746.
214. Schleyer, M., R. Schmid, and, E. P. Bakker. 1993. Transient, specific and extremely rapid release of osmolytes from growing cells of Escherichia coli K-12 exposed to hypoosmotic shock. Arch. Microbiol. 160:424431.
215. Schlösser, A.,, M. Meldorf,, S. Stumpe,, E. P. Bakker, and, W. Epstein. 1995. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J. Bacteriol. 177:19081910.
216. Schumann,, U.,, M. D. Edwards,, C. Li, and, I. R. Booth. 2004. The conserved carboxy-terminus of the MscS mechanosensitive channel is not essential but increases stability and activity. FEBS Lett. 572:233237.
217. Shebuski, J. R.,, O. Vilhelmsson, and, K. J. Miller. 2000. Effects of growth at low water activity on the thermal tolerance of Staphylococcus aureus. J. Food Prot. 63:12771281.
218. Slauch, J. M., and, T. J. Silhavy. 1996. The porin regulon: A paradigm for the two-component regulatory systems, P. 383–417. In E. C. C. Lin and, A. S. Lynch (ed.), Regulation of Gene Expression in Escherichia coli. Chapman and Hall, New York, NY.
219. Sleator, R. D.,, C. G. M. Gahan, and, C. Hill. 2003. A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Appl. Environ. Microbiol. 69:19.
220. Smith, L. T. 1996. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces. Appl. Environ. Microbiol. 62:30883093.
221. Smith, L. T.,, J.-A. Pocard,, T. Bernard, and, D. Le Rudulier. 1988. Osmotic control of betaine biosynthesis and degradation in Rhizobium meliloti. J. Bacteriol. 170:31423149.
222. Smith,, M. N.,, R. A. Crane,, R. A. B. Keates, and, J. M. Wood. 2004. Overexpression, purification and characterization of ProQ, a post-translational regulator for osmoregulatory transporter ProP of Escherichia coli. Biochem. 43:1297912989.
223. Smith,, M. N.,, S. C. Kwok,, R. S. Hodges, and, J. M. Wood. 2007. Structural and functional analysis of ProQ: an osmoregulatory protein of Escherichia coli. Biochem. 46:30843095.
224. Smith-Frieday, M. N. 2009. Characterization of ProQ: An RNA binding protein modulating expression of the osmosensor and osmoregulator ProP of Eschericia coli. Ph. D. thesis. University of Guelph, Ontario, Canada.
225. Smits,, S. H.,, M. Höing,, J. Lecher,, M. Jebbar,, L. Schmitt, and, E. Bremer. 2008. The compatible-solute-binding protein OpuAC from Bacillus subtilis: ligand binding, site-directed mutagenesis, and crystallographic studies. J. Bacteriol. 190:56635671.
226. Soupene, E.,, N. King,, H. Lee, and, S. Kustu. 2002. Aquaporin Z of Escherichia coli: reassessment of its regulation and physiological role. J. Bacteriol. 184:43044307.
227. Spanheimer, R., and, V. Müller. 2008. The molecular basis of salt adaptation in Methanosarcina mazei Gö1. Arch. Microbiol. 190:271279.
228. Stalmach, M. E.,, S. Grothe, and, J. M. Wood. 1983. Two proline porters in Escherichia coli K-12. J. Bacteriol. 156:481486.
229. Steinbacher,, S., R. Bass,, P. Strop, and, D. C. Rees. 2007. Structures of the prokaryotic mechanosensitive channels MscL and MscS. Curr. Top. Membranes 58:124.
230. Street, T. O.,, D. W. Bolen, and, G. D. Rose. 2006. A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA 103:1399714002.
231. Strøm, A. R., and, I. Kaasen. 1993. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol. Microbiol. 8:205210.
232. Stumpe,, S., A. Schlösser,, M. Schleyer, and, E. P. Bakker. 1996. K+ circulation across the prokaryotic cell membrane: K+-uptake systems, P. 473–499. In W. N. Konings,, H. R. Kaback, and J. S., Lolkema (ed.), Transport Processes in Eukaryotic and Prokaryotic Organisms, Handbook of Biological Physics, Vol. 2. Elsevier Science B. V., Amsterdam, Netherlands.
233. Sugiura, A.,, K. Nakashima,, K. Tanaka, and, T. Mizuno. 1992. Clarification of the structural and functional features of the osmoregulated kdp operon of Escherichia coli. Mol. Microbiol. 6:17691776.
234. Sukharev, S. 2002. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys. J. 83:290298.
235. Sukharev,, S. I.,, P. Blount,, B. Martinac,, F. R. Blattner, and, C. Kung. 1994. A large-conductance mechanosensitive channel in E. Coli encoded by mscL alone. Nature 368:265268.
236. Sukharev,, S. I.,, W. J. Sigurdson,, C. Kung, and, F. Sachs. 1999. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113:525540.
237. Sunda, W.,, D. J. Kieber,, R. P. Kiene, and, S. Huntsman. 2002. An antioxidant function for DMSP and DMS in marine algae. Nature 418:317320.
238. Sutherland,, L., J. Cairney,, M. J. Elmore,, I. R. Booth, and, C. F. Higgins. 1986. Osmotic regulation of transcription: Induction of the proU betaine transport gene is dependent on accumulation of intracellular potassium. J. Bacteriol. 168:805814.
239. Sweeney, T. E., and, C. A. Beuchat. 1993. Limitations of methods of osmometry: measuring the osmolality of biological fluids [editorial]. Am. J. Physiol. 264:R46980.
240. Tanghe,, A., P. Van Dijck, and, J. M. Thevelein. 2006. Why do microorganisms have aquaporins? Trends Microbiol. 14:7885.
241. Timasheff, S. N. 1998. Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated. Adv. Protein Chem. 51:355432.
242. Tkachenko, A. G.,, O. Salakhetdinova, and, M. R. Pshenichnov. 1997. Exchange of putrescine and potassium between cells and media as a factor in the adaptation of Escherichia coli to hyperosmotic shock. Mikrobiologiya 66:329334.
243. Trchounian, A., and, H. Kobayashi. 1999. Kup is the major K+ uptake system in Escherichia coli upon hyper-osmotic stress at low pH. FEBS Lett. 447:144148.
244. Tsatskis,, Y., J. Khambati,, M. Dobson,, M. Bogdanov,, W. Dowhan, and, J. M. Wood. 2005. The osmotic activation of transporter ProP is tuned by both its C-terminal coiled-coil and osmotically induced changes in phospholipid composition. J. Biol. Chem. 280:4138741394.
245. Tsatskis,, Y.,, S. C. Kwok,, E. Becker,, C. Gill,, M. N. Smith,, L. Stalker,, R. S. Hodges, and, J. M. Wood. 2007. Coiled-coil orientation switching places osmosensory transporter ProP in an osmolality-refractory state. Biochemistry 47:6072.
246. Typas, A.,, S. Stella,, R. C. Johnson, and, R. Hengge. 2007. The -35 sequence location and the Fis-sigma factor interface determine sigmas selectivity of the proP (P2) promoter in Escherichia coli. Mol. Microbiol. 63:780796.
247. Valentin-Hansen,, P., M. Eriksen, and, C. Udesen. 2004. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Mol. Microbiol. 51:15251533.
248. van den Bogaart, G.,, N. Hermans,, V. Krasnikov, and, B. Poolman. 2007. Protein mobility and diffusive barriers in Escherichia coli: consequences of osmotic stress. Mol. Microbiol. 64:858871.
249. van der Heide, T., and, B. Poolman. 2000. Osmoregulated ABC-transport system of Lactococcus lactis senses water stress via changes in the physical state of the membrane. Proc. Natl. Acad. Sci. USA 97:71027106.
250. van der Heide, T.,, M. C. A. Stuart, and, B. Poolman. 2001. On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. EMBO J. 20:70227032.
251. van Schaik, W., and, T. Abee. 2005. The role of sigmaB in the stress response of Gram-positive bacteria - targets for food preservation and safety. Curr. Opin. Biotechnol. 16:218224.
252. van Schaik,, W., M. van der Voort,, D. Molenaar,, R. Moezelaar,, W. M. De Vos, and, T. Abee. 2007. Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB regulated genes in low-GC-content gram-positive bacteria. J. Bacteriol. 189:43844390.
253. Ventosa, A. 2004. Halophilic Microorganisms. Springer-Verlag, Berlin, Germany.
254. Ventosa, A.,, J. J. Nieto, and, A. Oren. 1998. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62:504544.
255. Vijayakumar,, S. R.,, M. G. Kirchhof,, C. L. Patten, and, H. E. Schellhorn. 2005. RpoS-regulated genes of Escherichia coli identified by random lacZ fusion mutagenesis. J. Bacteriol. 186:84998507.
256. von Heinje, G. 2006. Membrane-protein topology. Nat. Rev. Mol. Cell Biol. 7:909918.
257. Vora, T., B. Corry, and, S. H. Chung. 2006. Brownian dynamics investigation into the conductance state of the MscS channel crystal structure. Biochim. Biophys. Acta 1758:730737.
258. Wahome, P. G., and, P. Setlow. 2008. Growth, osmotic downshock resistance and differentiation of Bacillus subtilis strains lacking mechanosensitive channels. Arch. Microbiol. 189:4958.
259. Wang, A. J., and, D. W. Bolen. 1997. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36:91019108.
260. Wang,, W.,, S. S. Black,, M. D. Edwards,, S. Miller,, W. Bartlett,, C. dong,, J. Naismith, and, I. R. Booth. 2008. The structure of an open form of an E. Coli mechanosensitive channel reveals the molecular basis of gating. Science 321:11791183.
261. Weber, A., and, K. Jung. 2002. Profiling early osmostress-dependent gene expression in Escherichia coli using DNA microarrays. J. Bacteriol. 184:55025507.
262. Weber, A.,, S. A. Kogl, and, K. Jung. 2006. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J. Bacteriol. 188:71657175.
263. Weber,, H., T. Polen,, J. Heuveling,, V. F. Wendisch, and, R. Hengge. 2005. Genome-wide analysis of the general stress response network in Escherichia coli: sigma S-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187:15911603.
264. Weinand,, M., R. Krämer, and, S. Morbach. 2007. Characterization of compatible solute transporter multiplicity in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 76:701708.
265. Welsh, D. T. 2000. Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate. FEMS Microbiol. Rev. 24:263290.
266. Welsh, D. T.,, R. H. Reed, and, R. A. Herbert. 1991. The role of trehalose in the osmoadaptation of Escherichia coli NCIB 9484: interaction of trehalose, K+ and glutamate during osmoadaptation in continuous culture. J. Gen. Microbiol. 137:745750.
267. Whatmore, A. M.,, J. A. Chudek, and, R. H. Reed. 1990. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J. Gen. Microbiol. 136:25272535.
268. Whatmore, A. M., and, R. H. Reed. 1990. Determination of tugor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. J. Gen. Microbiol. 136:25212526.
269. Wood, J. M. 1999. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63:230262.
270. Wood, J. M. 2006. Osmosensing by bacteria. Sci. STKE 357:pe43.
271. Wood, J. M. 2007. Bacterial osmosensing transporters. Methods Enzymol. 428:77107.
272. Wood,, J. M.,, D. E. Culham,, A. Hillar,, Ya. I. Vernikovska,, F. Liu,, J. M. Boggs, and, R. A. B. Keates. 2005. Structural model for the osmosensor, transporter, and osmoregulator ProP of Escherichia coli. Biochemistry 44:56345646.
273. Xu, J., and, R. C. Johnson. 1997. Cyclic AMP receptor protein functions as a repressor of the osmotically inducible promoter proP P1 in Escherichia coli. J. Bacteriol. 179:2410