1887

Chapter 16 : The General Stress Response in Alphaproteobacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The General Stress Response in Alphaproteobacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap16-2.gif

Abstract:

Extensive studies with the model organisms and have led to the identification of two regulatory networks controlling general stress response. Genes encoding histidine kinases are found in the vicinity of in several Alphaproteobacteria. However, the involvement of one of these histidine kinases in the PhyR cascade has not been demonstrated so far. Francez-Charlot et al. proposed that σ or several members of the σ family are responsible for transcription of stress-related genes. In several Alphaproteobacteria, a gene encoding a histidine kinase is found at the locus. Signal perception in the σ and σ regulatory cascades has been described as highly complex, as a result of the necessity to integrate multiple signals; such complexity can be expected in Alphaproteobacteria too and may reflect an adaptation to the various environments in which the organisms live. In , the RpoE2/ σ homolog, RpoE4, was shown to be involved in oxidative and osmotic stresses. Genes encoding catalase, the DNA protection protein Dps or DNA repair enzymes, known to be crucial for σ-dependent resistance to oxidative stress, are controlled by the cascade in several species. All regulons contain several regulators whose functions are mainly unknown, such as kinases and response regulators of His-Asp phosphorelays, onecomponent systems, and sigma factors, such as RpoH.

Citation: Francez-Charlot A, Frunzke J, Vorholt J. 2011. The General Stress Response in Alphaproteobacteria, p 291-300. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch16

Key Concept Ranking

General Stress Response
0.5047399
Glycogen Debranching Enzyme
0.4736101
DNA Repair Enzyme
0.41332024
Reactive Oxygen Species
0.40459743
0.5047399
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1A.
Figure 1A.

(A) Conservation of the - - locus in selected members of the Alphaproteobacteria. Adapted from Gourion et al. ( ).

Citation: Francez-Charlot A, Frunzke J, Vorholt J. 2011. The General Stress Response in Alphaproteobacteria, p 291-300. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1B.
Figure 1B.

(B) Multiple sequence alignment of PhyR (top) and σ (bottom) homologs. Conserved residues are highlighted in black (identical residues) and gray (similar residues). The regions important for σ factor function are indicated above. (B) Francez-Charlot et al. ( ).

Citation: Francez-Charlot A, Frunzke J, Vorholt J. 2011. The General Stress Response in Alphaproteobacteria, p 291-300. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Model of the core cascade controlling general stress response in Alphaproteobacteria. Under nonstressed conditions (left box) σ is inhibited by the anti-sigma factor NepR. Upon sensing of a stress stimulus (right box) the corresponding histidine kinase activates PhyR by phosphorylation of the conserved aspartate residue in the C-terminal receiver domain (a kinase activating PhyR has not yet been identified experimentally; however, genes encoding histidine kinases are often genetically linked to in Alphaproteobacteria). In its phosphorylated state, PhyR is able to sequester the anti-sigma factor NepR. This partner-switching mechanism allows the release of the ECF sigma factor σ, leading to the activation of stress genes.

Citation: Francez-Charlot A, Frunzke J, Vorholt J. 2011. The General Stress Response in Alphaproteobacteria, p 291-300. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816841.ch16
1. Alvarez-Martinez, C. E.,, R. L. Baldini, and, S. L. Gomes. 2006. A Caulobacter crescentus extracytoplasmic function sigma factor mediating the response to oxidative stress in stationary phase. J. Bacteriol. 188:18351846.
2. Alvarez-Martinez,, C. E.,, R. F. Lourenco,, R. L. Baldini,, M. T. Laub, and, S. L. Gomes. 2007. The ECF sigma factor σT is involved in osmotic and oxidative stress responses in Caulobacter crescentus. Mol. Microbiol. 66:12401255.
3. Braeken,, K., M. Fauvart,, M. Vercruysse,, S. Beullens,, I. Lambrichts, and, J. Michiels. 2008. Pleiotropic effects of a rel mutation on stress survival of Rhizobium etli CNPAF512. BMC Microbiol. 8:219.
4. Campbell,, E. A.,, J. L. Tupy,, T. M. Gruber,, S. Wang,, M. M. Sharp,, C. A. Gross, and, S. A. Darst. 2003. Crystal structure of Escherichia coli σE with the cytoplasmic domain of its anti-σ RseA. Mol. Cell 11:10671078.
5. Campbell, E. A.,, L. F. Westblade, and, S. A. Darst. 2008. Regulation of bacterial RNA polymerase sigma factor activity: a structural perspective. Curr. Opin. Microbiol. 11:121127.
6. Campbell,, E. A.,, R. Greenwell,, J. R. Anthony,, S. Wang,, L. Lim,, K. Das,, H. J. Sofia,, T. J. Donohue, and, S. A. Darst. 2007. A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria. Mol. Cell 27:793805.
7. Chen,, H., K. Gao,, E. Kondorosi,, A. Kondorosi, and, B. G. Rolfe. 2005. Functional genomic analysis of global regulator NolR in Sinorhizobium meliloti. Mol. Plant-Microbe Interact. 18:13401352.
8. Corpe, W. A., and, S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 62:243250.
9. Cytryn,, E. J.,, D. P. Sangurdekar,, J. G. Streeter,, W. L. Franck,, W. S. Chang,, G. Stacey,, D. W. Emerich,, T. Joshi,, D. Xu, and, M. J. Sadowsky. 2007. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J. Bacteriol. 189:67516762.
10. Davey, M. E., and, F. J. de Bruijn. 2000. A homologue of the tryptophan-rich sensory protein TspO and FixL regulate a novel nutrient deprivation-induced Sinorhizobium meliloti locus. Appl. Environ. Microbiol. 66:53535359.
11. Delory, M.,, R. Hallez,, J. J. Letesson, and, X. De Bolle. 2006. An RpoH-like heat shock sigma factor is involved in stress response and virulence in Brucella melitensis 16M. J. Bacteriol. 188:77077710.
12. Eisenstark, A.,, M. J. Calcutt,, M. Becker-Hapak, and, A. Ivanova. 1996. Role of Escherichia coli rpoS and associated genes in defense against oxidative damage. Free Radic. Biol. Med. 21:975993.
13. Elbein,, A. D.,, Y. T. Pan,, I. Pastuszak, and, D. Carroll. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology 13:17R-27R.
14. Fischer, B.,, G. Rummel,, P. Aldridge, and, U. Jenal. 2002. The FtsH protease is involved in development, stress response and heat shock control in Caulobacter crescentus. Mol. Microbiol. 44:461478.
15. Flechard, M.,, C. Fontenelle,, A. Trautwetter,, G. Ermel, and, C. Blanco. 2009. Sinorhizobium meliloti rpoE2 is necessary for H2O2 stress resistance during the stationary growth phase. FEMS Microbiol. Lett. 290:2531.
16. Francez-Charlot,, A., J. Frunzke,, C. Reichen,, J. Zingg-Ebneter,, B. Gourion, and, J. A. Vorholt. 2009. Sigma factor mimicry involved in regulation of general stress response. Proc. Natl. Acad. Sci. USA 106:34673472.
17. Galperin, M. Y. 2006. Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol. 188:41694182.
18. Gibson,, K. E.,, G. R. Campbell,, J. Lloret, and, G. C. Walker. 2006. CbrA is a stationary-phase regulator of cell surface physiology and legume symbiosis in Sinorhizobium meliloti. J. Bacteriol. 188:45084521.
19. Gordia, S., and, C. Gutierrez. 1996. Growth-phase-dependent expression of the osmotically inducible gene osmC of Escherichia coli K-12. Mol. Microbiol. 19:729736.
20. Gourion,, B., A. Francez-Charlot, and, J. A. Vorholt. 2008. PhyR is involved in the general stress response of Methylobacterium extorquens AM1. J. Bacteriol. 190:10271035.
21. Gourion, B., M. Rossignol, and, J. A. Vorholt. 2006. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc. Natl. Acad. Sci. USA 103:1318613191.
22. Gourion,, B., S. Sulser,, J. Frunzke,, A. Francez-Charlot,, P. Stiefel,, G. Pessi,, J. A. Vorholt, and, H. M. Fischer. 2009. The PhyRsigma(EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. Mol. Microbiol. 73:291305.
23. Hindupur,, A., D. Liu,, Y. Zhao,, H. D. Bellamy,, M. A. White, and, R. O. Fox. 2006. The crystal structure of the E. coli stress protein YciF. Protein Sci. 15:26052611.
24. Hottes,, A. K.,, M. Meewan,, D. Yang,, N. Arana,, P. Romero,, H. H. McAdams, and, C. Stephens. 2004. Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J. Bacteriol. 186:14481461.
25. Hu,, P.,, E. L. Brodie,, Y. Suzuki,, H. H. McAdams, and, G. L. Andersen. 2005. Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J. Bacteriol. 187:84378449.
26. Krol, E., and, A. Becker. 2004. Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol. Genet. Genomics 272:117.
27. Lee,, E. J.,, N. Karoonuthaisiri,, H. S. Kim,, J. H. Park,, C. J. Cha,, C. M. Kao, and, J. H. Roe. 2005. A master regulator σB governs osmotic and oxidative response as well as differentiation via a network of sigma factors in Streptomyces coelicolor. Mol. Microbiol. 57:12521264.
28. Lery,, L. M.,, W. M. von Kruger,, F. C. Viana,, K. R. Teixeira, and, P. M. Bisch. 2008. A comparative proteomic analysis of Gluconacetobacter diazotrophicus PAL5 at exponential and stationary phases of cultures in the presence of high and low levels of inorganic nitrogen compound. Biochim. Biophys. Acta 1784:15781589.
29. Lesniak,, J.,, W. A. Barton, and, D. B. Nikolov. 2003. Structural and functional features of the Escherichia coli hydroperoxide resistance protein OsmC. Protein Sci. 12:28382843.
30. Liu,, D., Y. Zhao,, X. Fan,, Y. Sun, and, R. O. Fox. 2004. Escherichia coli stress protein YciF: expression, crystallization and preliminary crystallographic analysis. Acta Crystallogr. Sect. D Biol. Crystallogr. 60:23892390.
31. Martinez-Salazar,, J. M.,, E. Salazar,, S. Encarnacion,, M. A. Ramirez-Romero, and, J. Rivera. 2009. Role of the extracytoplasmic function sigma factor RpoE4 in oxidative and osmotic stress responses in Rhizobium etli. J. Bacteriol. 191:41224132.
32. McGrath,, P. T.,, H. Lee,, L. Zhang,, A. A. Iniesta,, A. K. Hottes,, M. H. Tan,, N. J. Hillson,, P. Hu,, L. Shapiro, and, H. H. McAdams. 2007. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat. Biotechnol. 25:584592.
33. Oke,, V.,, B. G. Rushing,, E. J. Fisher,, M. Moghadam-Tabrizi, and, S. R. Long. 2001. Identification of the heat-shock sigma factor RpoH and a second RpoH-like protein in Sinorhizobium meliloti. Microbiology 147:23992408.
34. Patankar, A. V., and, J. E. Gonzalez. 2009. An orphan LuxR homolog of Sinorhizobium meliloti affects stress adaptation and competition for nodulation. Appl. Environ. Microbiol. 75:946955.
35. Rava, P. S.,, L. Somma, and, H. M. Steinman. 1999. Identification of a regulator that controls stationary-phase expression of catalase-peroxidase in Caulobacter crescentus. J. Bacteriol. 181:61526159.
36. Robertson, G. T., and, R. M. Roop Jr. 1999. The Brucella abortus host factor I (HF-I) protein contributes to stress resistance during stationary phase and is a major determinant of virulence in mice. Mol. Microbiol. 34:690700.
37. Roop,, R. M.,, 2nd,, J. M. Gee,, G. T. Robertson,, J. M. Richardson,, W. L. Ng, and, M. E. Winkler. 2003. Brucella stationaryphase gene expression and virulence. Annu. Rev. Microbiol. 57:5776.
38. Sauviac, L.,, H. Philippe,, K. Phok, and, C. Bruand. 2007. An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. J. Bacteriol. 189:42044216.
39. Schnell, S., and, H. M. Steinman. 1995. Function and stationaryphase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus. J. Bacteriol. 177:59245929.
40. Shin,, D. H.,, I. G. Choi,, D. Busso,, J. Jancarik,, H. Yokota,, R. Kim, and, S. H. Kim. 2004. Structure of OsmC from Escherichia coli: a salt-shock-induced protein. Acta Crystallogr. Sect. D Biol. Crystallogr. 60:903911.
41. Sigaud, S.,, V. Becquet,, P. Frendo,, A. Puppo, and, D. Herouart. 1999. Differential regulation of two divergent Sinorhizobium meliloti genes for HPII-like catalases during free-living growth and protective role of both catalases during symbiosis. J. Bacteriol. 181:26342639.
42. Staron,, A.,, H. J. Sofia,, S. Dietrich,, L. E. Ulrich,, H. Liesegang, and, T. Mascher. 2009. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol. Microbiol. 74:557581.
43. Steinman, H. M.,, F. Fareed, and, L. Weinstein. 1997. Catalaseperoxidase of Caulobacter crescentus: function and role in stationary-phase survival. J. Bacteriol. 179:68316836.
44. Streeter, J. G. 2003. Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J. Appl. Microbiol. 95:484491.
45. Sy,, A.,, A. C. Timmers,, C. Knief, and, J. A. Vorholt. 2005. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71:72457252.
46. Thorne, S. H., and, H. D. Williams. 1997. Adaptation to nutrient starvation in Rhizobium leguminosarum bv. phaseoli: analysis of survival, stress resistance, and changes in macromolecular synthesis during entry to and exit from stationary phase. J. Bacteriol. 179:68946901.
47. Tittabutr,, P., W. Payakapong,, N. Teaumroong,, N. Boonkerd,, P. W. Singleton, and, D. Borthakur. 2006. The alternative sigma factor RpoH2 is required for salt tolerance in Sinorhizobium sp. strain BL3. Res. Microbiol. 157:811818.
48. Viollier,, P. H.,, G. H. Kelemen,, G. E. Dale,, K. T. Nguyen,, M. J. Buttner, and, C. J. Thompson. 2003. Specialized osmotic stress response systems involve multiple SigB-like sigma factors in Streptomyces coelicolor. Mol. Microbiol. 47:699714.
49. Völker, U.,, K. K. Andersen,, H. Antelmann,, K. M. Devine, and, M. Hecker. 1998. One of two osmC homologs in Bacillus subtilis is part of the σB-dependent general stress regulon. J. Bacteriol. 180:42124218.
50. Vriezen, J. A.,, F. J. de Bruijn, and, K. Nusslein. 2006. Desiccation responses and survival of Sinorhizobium meliloti USDA 1021 in relation to growth phase, temperature, chloride and sulfate availability. Lett. Appl. Microbiol. 42:172178.
51. Weber, A.,, S. A. Kogl, and, K. Jung. 2006. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J. Bacteriol. 188:71657175.
52. Wortinger, M. A.,, E. M. Quardokus, and, Y. V. Brun. 1998. Morphological adaptation and inhibition of cell division during stationary phase in Caulobacter crescentus. Mol. Microbiol. 29:963973.
53. Zeller, T., and, G. Klug. 2004. Detoxification of hydrogen peroxide and expression of catalase genes in Rhodobacter. Microbiology 150:34513462.

Tables

Generic image for table
Table 1.

and homologs present in the genomes of selected Alphaproteobacteria

Citation: Francez-Charlot A, Frunzke J, Vorholt J. 2011. The General Stress Response in Alphaproteobacteria, p 291-300. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch16
Generic image for table
Table 2.

Overview of stress-related target genes of the PhyR/NepR/σ cascade

Citation: Francez-Charlot A, Frunzke J, Vorholt J. 2011. The General Stress Response in Alphaproteobacteria, p 291-300. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error