1887

Chapter 18 : Resistance of Bacterial Spores

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Resistance of Bacterial Spores, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap18-2.gif

Abstract:

This chapter discusses the resistance of spores of and , with focus species, in which spore resistance mechanisms are best understood, with most specific knowledge from work with spores. The spore coat plays a major role in spore resistance. First, some protective enzymes that are loosely associated with or integral components of the coat can inactivate toxic chemicals; two such enzymes are superoxide dismutase and catalase. Second, coat protein appears to act like ‘’reactive armor’’ detoxifying damaging chemicals before they can react with components in the spore’s interior. Spore structure is important in spore resistance and because spore structure is different than that of growing cells, the major features of spore structure and how these features contribute to spore resistance is outlined in the chapter. Spores of and are more resistant than growing cells to stress factors and studies have attempted to correlate differences in spore resistance with differences in spore structural or biochemical properties. It is reasonable to ask whether conclusions from work on one or two species are applicable to spores of other species, available evidence indicates that basic mechanisms of spore resistance are similar in spores of all and . Some resistance of core proteins to damage, in particular to chemicals, is likely because of mechanisms that also protect DNA, including detoxification of reactive chemicals by enzymes in the coat/exosporium, inactivation of toxic chemicals by reaction with coat components, and the low permeability of the inner membrane.

Citation: Setlow P. 2011. Resistance of Bacterial Spores, p 319-332. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Schematic structure of a / spore. Spore layers are not drawn to scale, the exosporium is not present on spores of some species, and spores of some species have large appendages arising from the exosporium or coat.

Citation: Setlow P. 2011. Resistance of Bacterial Spores, p 319-332. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Amino acid sequences of α/β-type SASPs from various and . Sequences are from one of these proteins in each species and data are from the NCBI database or Gold Tables Online of ongoing bacterial genome sequencing projects. Amino acid residues are shown in the one letter code and the regions highlighted in gray are the two large helical regions in the proteins, the initial region being helix 1 and the second region helix 2. The emboldened Met residue is protected from modification upon α/β-type SASP binding to DNA, the emboldened amino acid doublet with Glu as the first residue is the site cleaved by the SASP-specific protease following spore germination, and the Asn residue in the emboldened NG doublet deamidates rapidly and DNA binding blocks deamidation. The abbreviations for the species are as follows. : Afl, ; Ali, , Bam, ; Ban, ; Bbe, ; Bce, ; Bcl, ; Bco, ; Bfi, ; Bha, ; Bli, ; Bme, ; Bpu, ; Bsu, ; Bth, ; Bwe, ; Gka, ; Gst, ; Gth, ; Lsp, ; Oih, ; Pjd, ; and Pla, species are: Cac, ; Cba, ; Cbe, ; Cbo, ; Cbu, ; Cce, ; Cdi, ; Ckl, ; Cle, ; Cno, ; Cpe, ; Cph, ; Cra, ; Csp, ; Cso, , Cte, ; and Cth, . Note also that many α/β-type SASPs sequences available from are not shown here.

Citation: Setlow P. 2011. Resistance of Bacterial Spores, p 319-332. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Structure of dipicolinic acid (DPA). At physiological pH, both carboxyl groups will be ionized, allowing DPA to chelate divalent metal ions, in particular Ca.

Citation: Setlow P. 2011. Resistance of Bacterial Spores, p 319-332. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816841.ch18
1. Ablett, S.,, A. H. Darke,, P. J. Lillford, and, D. R. Martin. 1999. Glass formation and dormancy in bacterial spores. Int. J. Food Sci. Technol. 34:5969.
2. Atrih, A., and, S. J. Foster. 2001a. Analysis of the role of bacterial endospore cortex structure in resistance properties and demonstration of its conservation amongst species. J. Appl. Microbiol. 91:364372.
3. Atrih, A., and, S. J. Foster. 2001b. In vivo roles of the germination-specific lytic enzymes of Bacillus subtilis 168. Microbiology 147:5764.
4. Bosak, T.,, R. M. Losick, and, A. Pearson. 2008. A polycylic terpenoid that alleviates oxidative stress. Proc. Natl. Acad. Sci. USA 105:67256729.
5. Cano, R. J., and, M.K. Borucki. 1995. Revival and identification of bacterial spores in 25– to 40–million-year-old Dominican amber. Science 268:10601064.
6. Carroll, A. M.,, M. Plomp,, A.J. Malkin, and, P. Setlow. 2008. Protozoal digestion of coat-defective Bacillus subtilis spores produces “rinds” composed of insoluble coat proteins. Appl. Environ. Microbiol. 74:58755881.
7. Casillas-Martinez, L.,, A. Driks,, B. Setlow, and, P. Setlow. 2000. Lack of a significant role for the PerR regulator in Bacillus subtilis spore resistance. FEMS Microbiol. Lett. 188:203208.
8. Chen, Y.,, S. Fukuoka, and, S. Makino. 2000. A novel spore peptidoglycan hydolase of Bacillus cereus: biochemical characterization and nucleotide sequence of the corresponding gene, sleL. J. Bacteriol. 182:14991506.
9. Chen, Y.,, S. Miyata,, S. Makino, and, R. Moriyama. 1997. Molecular characterization of a germination-specific muramidase from Clostridium perfringens spores and nucleotide sequence of the corresponding gene. J. Bacteriol. 179:31813187.
10. Chirakkal, H.,, M. O’Rourke,, A. Atrih,, S. J. Foster, and, A. Moir. 2002. Analysis of cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology 148:23832392.
11. Coleman,, W. H.,, D. Chen,, Y.-Q. Li,, A.E. Cowan,, and P. Setlow. 2007. How moist heat kills spores of Bacillus subtilis. J. Bacteriol. 189:84588466.
12. Coleman, W. H., and, P. Setlow. 2009. Analysis of damage due to moist heat treatment of spores of Bacillus subtilis. J. Appl. Microbiol. 106:16001607.
13. Cortezzo, D. E., and, P. Setlow. 2005. Analysis of factors influencing the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. J. Appl. Microbiol. 98:606617.
14. Cortezzo, D. E.,, K. Koziol-Dube,, B. Setlow, and, P. Setlow. 2004. Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes the spores to subsequent stress. J. Appl. Microbiol. 97:838852.
15. Cowan,, A. E.,, D.E. Koppel,, B. Setlow,, and P. Setlow. 2003. A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy. Proc. Natl. Acad. Sci. USA 100:42094214.
16. Cowan,, A. E.,, E.M. Olivastro,, D.E. Koppel,, C. A. Loshon,, B. Setlow,, and P. Setlow. 2004. Lipids in the inner membrane of dormant spores of Bacillus species are immobile. Proc. Natl. Acad. Sci. USA 101:77337738.
17. Cybulski,, R. J.,, P. Sanz,, F. Alem,, S. Stibitz,, R. L. Bull, and, A.D. O’Brien. 2009. Four superoxide dismutases contribute to Bacillus anthracis virulence and provide spores with redundant protection from oxidative stress. Infect. Immun. 77:274285.
18. Daly, M. J. 2009. A new perspective on radiation resistance based on Deinococcus radiodurans. Nat. Rev. Microbiol. 7:237245.
19. de Benito Armas, A.,, N.L. Padula,, B. Setlow, and, P. Setlow. 2008. Sensitization of Bacillus subtilis spores to dry heat and desiccation by pre-treatment with oxidizing agents. Lett. Appl. Microbiol. 46:492497.
20. del Carmen Huesca Espitia, L.,, C. Caley,, I. Bagyan, and, P. Setlow. 2002. Base-change mutations induced by various treatments of Bacillus subtilis spores with and without DNA protective small, acid-soluble spore proteins. Mutat. Res. 503:7784.
21. Douki, T.,, B. Setlow, and, P. Setlow. 2005a. Effects of the binding of α/β-type small, acid-soluble spore proteins on the photochemistry of DNA in spores of Bacillus subtilis and in vitro. Photochem. Photobiol. 81:163169.
22. Douki, T.,, B. Setlow,, and P. Setlow. 2005b. Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochem. Photobiol. Sci. 4:591597.
23. Englander,, J.,, E. Klein,, V. Blumfield,, A. K. Sharma,, A.J. Doherty,, and A. Minsky. 2004. DNA toroids: framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores. J. Bacteriol. 186:59735977.
24. Foster, S. J., and, K. Johnstone. 1987. Purification and properties of a germination-specific cortex-lytic enzyme from spores of Bacillus megaterium KM. Biochem. J. 242:573579.
25. Fredrickson,, J. K.,, S.-M. Li,, E. K. Gaidamakova,, V.Y. Matrosova,, M. Zhai,, H. M. Sulloway,, J. C. Scholten,, M. G. Brown,, D. L. K. Balkwill, and, M.J. Daly. 2008. Protein oxidation: key to bacterial desiccation resistance. ISME J. 2:393403.
26. Frenkiel-Krispin,, D., J. Englander,, E. Shimoni,, M. Eisenstein,, E. Bullitt,, R. Horowitz-Scherer,, C. S. Hayes,, P. Setlow,, A. Minsky, and, S.G. Wolf. 2004. Structure of DNA-SspC complex: implications for DNA packaging, protection and repair in bacterial spores. J. Bacteriol. 186:35253530.
27. Gerhardt, P., and, R.E. Marquis. 1989. Spore thermoresistance mechanisms, 4363. In I. Smith,, R.A. Slepecky,, and P. Setlow (ed.), Regulation of Prokaryotic Development. ASM Press, Washington, DC.
28. Ghosh, S.,, B. Setlow,, P.G. Wahome,, A.E. Cowan,, M. Plomp,, A. J. Malkin,, and P. Setlow. 2008. Characterization of spores of Bacillus subtilis that lack most coat layers. J. Bacteriol. 190:67416748.
29. Griffiths, K., and, P. Setlow. 2009. Effects of modification of membrane lipid composition on Bacillus subtilis sporulation and spore properties. J. Appl. Microbiol. 106:20642078.
30. Hayes, C. S., and, P. Setlow. 1997. Analysis of deamidation of small, acid-soluble spore proteins from Bacillus subtilis in vitro and in vivo. J. Bacteriol. 179:60206027.
31. Henriques,, A. O.,, and C.P. Moran,, Jr. 2007. Structure, assembly, and function of the spore surface layers. Annu. Rev. Microbiol. 61:555588.
32. Holtmann, G., and, E. Bremer. 2004. Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J. Bacteriol. 186:16831693.
33. Ibarra,, J. R.,, A.D. Orozco,, J.A. Rojas,, K. Lopez,, P. Setlow,, R. E. Yasbin,, and M. Pedraza-Reyes. 2008. Role of the Nfo and ExoA apurinic/apyrimidinic endonucleases in repair of DNA damage during outgrowth of Bacillus subtilis spores. J. Bacteriol. 190:20312038.
34. Jones, C. A.,, N.L. Padula, and, P. Setlow. 2005. Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis. J. Appl. Microbiol. 99:14841494.
35. Kennedy, M. J., S. L. Reader, and, L.M. Swiercyzinski. 1994. Preservation records of micro-organisms: evidence of the tenacity of life. Microbiology 140:25132529.
36. Klobutcher, L. A.,, K. Ragkousi, and, P. Setlow. 2006. The Bacillus subtilis spore coat provides “eat resistance” during phagosomal predation by the protozoan Tetrahymena thermophila. Proc. Natl. Acad. Sci. USA 103:165170.
37. Laaberki, M. H., and, J. Dworkin. 2008. Role of spore coat proteins in the resistance of Bacillus subtilis spores to Caenorhabditis elegans predation. J. Bacteriol. 190:61976203.
38. Lee,, K. S.,, D. Bumbaca,, J. Kosman,, P. Setlow, and, M.J. Jedrzejas. 2007. Structure of a protein-DNA complex essential for DNA protection in spores of Bacillus species. Proc. Natl. Acad. Sci. USA 105:28062811.
39. Leuschner, R. G., and, P.J. Lillford. 2003. Thermal properties of bacterial spores and biopolymers. Int. J. Food Microbiol. 80:131143.
40. Leyva-Illades, J. F.,, B. Setlow,, M.R. Sarker, and, P. Setlow. 2007. Effect of a small, acid-soluble spore protein from Clostridium perfringens on the resistance properties of Bacillus subtlis spores. J. Bacteriol. 189:79277931.
41. Li, J., and, B.A. McClane. 2008. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates. PLoS Pathog. 4: e100056.
42. Loshon,, C. A.,, P.C. Genest,, B. Setlow,, and P. Setlow. 1999. Formaldehyde kills spores of Bacillus subtilis by DNA damage and small, acid-soluble proteins of the α/β-type protect against this DNA damage. J. Appl. Microbiol. 87:814.
43. Loshon,, C. A.,, P.G. Wahome,, M.W. Maciejewski,, and P. Setlow. 2006. Levels of glycine betaine in growing cells and spores of Bacillus species and lack of effect of glycine betaine on spore properties. J. Bacteriol. 188:31533158.
44. Magge, A.,, A.C. Granger,, P.G. Wahome,, B. Setlow,, V. R. Vepachedu,, C. A. Loshon,, L. Peng,, D. Chen,, Y.-Q. Li,, and P. Setlow. 2008. Role of dipicolinic acid in the germination, stability and viability of spores of Bacillus subtilis. J. Bacteriol. 190:47984807.
45. Masayama, A.,, H. Fukuoka,, S. Kato,, T. Yoshimura,, M. Moriyama,, and R. Moriyama. 2006. Subcellular localization of a germination-specific cortex-lytic enzyme, SleB, of Bacilli during sporulation. Genes Genet. Syst. 81:163169.
46. Melly, E., and, P. Setlow. 2001. Heat shock proteins do not influence wet heat resistance of Bacillus spores. J. Bacteriol. 183:779784.
47. Moeller, R.,, E. Stackebrandt,, G. Reitz,, T. Berger,, P. Rettberg,, A. J. Doherty,, G. Horneck, and, W.L. Nicholson. 2007b. Role of DNA repair by nonhomologous-end joining in Bacillus subtilis spore resistance to extreme dryness, mono- and polychromatic UV, and ionizing radiation. J. Bacteriol. 187:33063311.
48. Moeller, R.,, G. Horneck,, E. Rabbow,, G. Reitz,, C. Meyer,, U. Hornemann,, and D. Stöffler. 2008a. Role of DNA protection and repair in resistance of Bacillus subtilis spores to ultrahigh shock pressures simulating hypervelocity impacts. Appl. Environ. Microbiol. 74:66826689.
49. Moeller, R.,, G. Horneck,, R. Facius, and, E. Stackebrandt. 2005. Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol. Ecol. 51:231236.
50. Moeller, R.,, P. Setlow,, G. Horneck,, T. Berger,, G. Reitz,, P. Rutberg,, A. J. Doherty,, R. Okayasu, and, W.L. Nicholson. 2008b. Role of major small, acid-soluble spore proteins and spore specific and universal DNA repair mechanisms in the resistance of Bacillus subtilis spores to high energy charged (HZE) particle bombardment. J. Bacteriol. 190:11341140.
51. Moeller, R.,, P. Setlow,, G. Reitz, and, W.L. Nicholson. 2009. Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar radiation. Appl. Environ. Microbiol. 75:52025208.
52. Moeller, R.,, T. Douki,, J. Cadet,, E. Stackebrandt,, W.L. Nicholson,, P. Rettberg,, G. Reitz,, and G. Horneck. 2007a. UV-radiationinduced formation of DNA bipyrimidine photoproducts in Bacillus subtilis endospores and their repair during germination. Int. Microbiol. 10:3946.
53. Nicholson, W. L.,, A.C. Schuerger, and, P. Setlow. 2005. The solar UV environment and bacterial spore UV resistance: considerations for panspermia and planetary protection. Mutat. Res. 571:249264.
54. Nicholson, W. L.,, B. Setlow, and, P. Setlow. 2002. UV photochemistry of DNA in vitro and in Bacillus subtilis spores at earthambient and low atmospheric pressure: implications for spore survival on other planets or moons in the solar system. Astrobiology 2:417425.
55. Nicholson, W. L.,, N. Munakata,, G. Horneck,, H.J. Melosh,, and P. Setlow. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548572.
56. Orsburn, B.,, S. B. Melville, and, D.L. Popham. 2008. Factors contributing to heat resistance of Clostridium perfringens endospores. Appl. Environ. Microbiol. 74:33283335.
57. Orsburn, B.,, K. Sucre,, D. L. Popham, and, S.B. Melville. 2009. The SpmA/B and DacF proteins of Clostridium perfringens play important roles in spore heat rsistance. FEMS Microbiol. Lett. 291:188194.
58. Paidhungat, M.,, B. Setlow,, A. Driks, and, P. Setlow. 2000. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J. Bacteriol. 182:55055512.
59. Palop, A.,, G.C. Rutherford, and, R. E Marquis. 1996. Hydroperoxide inactivation of enzymes within spores of Bacillus megaterium ATCC19213. FEMS Microbiol. Lett. 44:283287.
60. Palop, A.,, G.C. Rutherford, and, R. E Marquis. 1998. Inactivation of enzymes within spores of Bacillus megaterium ATCC19213 by hydroperoxides. Can. J. Microbiol. 44:465470.
61. Paredes-Sabja, D.,, D. Raju,, J. A. Torres, and, M.R. Sarker. 2008a. Role of small, acid-soluble spore proteins in the resistance of Clostridium perfringens spores to chemicals. Int. J. Food Microbiol. 122:333335.
62. Paredes-Sabja, D.,, N. Sarker,, B. Setlow,, P. Setlow, and, M. Sarker. 2008b. Roles of DacB and Spm proteins in Clostridium perfringens spore resistance to moist heat and chemicals. Appl. Environ. Microbiol. 74:37303738.
63. Paredes-Sabja, D.,, B. Setlow,, P. Setlow and, M.R. Sarker. 2008c. Characterization of Clostridium perfringens spores that lack SpoVA proteins and dipicolinic acid. J. Bacteriol. 190:46484659.
64. Paredes-Sabja, D.,, P. Setlow, and, M.R. Sarker. 2009. SleC is essential for cortex peptidoglycan hydrolysis during germination of spores of the pathogenic bacterium Clostridium perfingens. J. Bacteriol. 191:27112720.
65. Pogliano, K.,, E. Harry, and, R. Losick. 1995. Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol. Microbiol. 18:459470.
66. Raju, D.,, P. Setlow, and, M. Sarker. 2007. Antisense RNA-mediated decreased synthesis of small, acid-soluble spore proteins leads to decreased resistance of Clostridium perfringens spores to moist heat and UV radiation. Appl. Environ. Microbiol. 73:20482053.
67. Raju, D.,, M. Walters,, P. Setlow, and, M.F. Sarker. 2006. Investigating the role of small, acid-soluble spore proteins (SASPs) in the resistance of Clostridum perfringens spores to heat. BMC Microbiol. 6:50.
68. Ross, M. A., and, P. Setlow. 2000. The Bacillus subtilis Hbsu protein modifies the effects of α/β-type small, acid-soluble spore proteins on DNA. J. Bacteriol. 182:19421948.
69. Salas-Pacheco, J. M.,, B. Setlow,, P. Setlow, and, M. Pedraza-Reyes. 2005. Role of the Nfo (YqfS) and ExoA apurinic/apyrimidinic endonucleases in protecting Bacillus subtilis spores from DNA damage. J. Bacteriol. 187:73747381.
70. Schumann, W. 2003. The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 8:207217.
71. Setlow, B.,, C.A. Loshon,, P.C. Genest,, A.E. Cowan,, C. Setlow,, and P. Setlow. 2002. Mechanisms of killing of spores of Bacillus subtilis by acid, alkali and ethanol. J. Appl. Microbiol. 92:362375.
72. Setlow, B.,, and P. Setlow. 1994. Heat inactivation of Bacillus subtilis spores lacking small, acid-soluble spore proteins is accompanied by generation of abasic sites in spore DNA. J. Bacteriol. 176:21112113.
73. Setlow, B.,, S. Atluri,, R. Kitchel,, K. Koziol-Dube, and, P. Setlow. 2006. Role of dipicolinic acid in the resistance and stability of spores of Bacillus subtilis. J. Bacteriol. 188:37403747.
74. Setlow, P. 2000. Resistance of bacterial spores, P. 217230. In G. Storz and, R. Hengge-Aronis, (ed.), Bacterial Stress Responses. ASM Press, Washington, DC.
75. Setlow, P. 2003. Spore germination. Curr. Opin. Microbiol. 6:550556.
76. Setlow, P. 2006. Spores of Bacillus subtilis: their resistance to radiation, heat and chemicals. J. Appl. Microbiol. 101:514525.
77. Setlow, P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol. 15:172180.
78. Setlow, P., and, E.A. Johnson. 2007. Spores and their significance, P. 3567. In M.P. Doyle,, and L.R. Beuchat (ed.), Food Microbiology, Fundamentals and Frontiers, 3rd ed. ASM Press, Washington, DC.
79. Slieman, T. A., and, W.L. Nicholson. 2001. Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation. Appl. Environ. Microbiol. 67:12741279.
80. Sohail, A.,, C. S. Hayes,, P. Setlow, and, A.S. Bhagwat. 2002. Protection of DNA by α/β-type small, acid-soluble proteins from Bacillus subtilis spores against cytosine deamination. Biochemistry 41:1132511330.
81. Stecchini, M. L.,, M. Del Torre,, E. Vennir,, A. Morettin,, P. Furlan,, and E. Maltini. 2006. Glassy state in Bacillus subtilis spores analyzed by differential scanning calorimetry. Int. J. Food Microbiol. 106:286290.
82. Storz, G., and, J.A. Imlay. 1999. Oxidative stress. Curr. Opin. Microbiol. 2:188194.
83. Subramanian, A.,, J. Ahn,, V.M. Balasubramaniam, and, J. Rodriguez-Saona. 2007. Monitoring biochemical changes in bacterial spore during thermal and pressure-assisted thermal processing using FT-IR spectroscopy. J. Agric. Food Chem. 55:93119317.
84. Sunde, E. P.,, P. Setlow,, L. Hederstedt, and, B. Halle. 2009. The physical state of water in bacterial spores. Proc. Natl. Acad. Sci. USA 106:1933419339.
85. Tennen, R.,, B. Setlow,, K.L. Davis,, C.A. Loshon,, and P. Setlow. 2000. Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid. J. Appl. Microbiol. 89:330338.
86. Vreeland, R. H., W. D. Rosenzweig, and, D.W. Powers. 2000. Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897900.
87. Wang, S.,, B. Setlow,, E.M. Conlon,, J.L. Lyon,, D. Imamura,, T. Sato,, P. Setlow,, R. Losick,, and P. Eichenberger. 2006. The forespore line of gene expression in Bacillus subtilis. J. Mol. Biol. 358:1637.
88. Warth, A. D. 1980. Heat stability of Bacillus cereus enzymes within spores and in extracts. J. Bacteriol. 143:2734.
89. Weller, G. R.,, B. Kysela,, R. Roy,, L.M. Tonkin,, E. Scanlan,, M. Della,, S. K. Devine,, J.P. Day,, A. Wilkinson,, F. d’Adda de, Fagagna, K.M., Devine, R.P., Bowater, P.A., Jeggo, S., P. Jackson, and, A.J. Doherty. 2002. Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297:16861689.
90. Westphal, A. J.,, P.B. Price,, T.J. Leighton, and, K.E. Wheeler. 2003. Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity. Proc. Natl. Acad. Sci. USA 100:34613466.
91. Young, S. B., and, P. Setlow. 2003. Mechanisms of killing of Bacillus subtilis spores by hypochlorite and chlorine dioxide. J. Appl. Microbiol. 95:5467.

Tables

Generic image for table
Table 1.

Essential spore components that are targets for lethal damage

Citation: Setlow P. 2011. Resistance of Bacterial Spores, p 319-332. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch18
Generic image for table
Table 2.

Factors important in protecting essential spore components

Citation: Setlow P. 2011. Resistance of Bacterial Spores, p 319-332. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch18
Generic image for table
Table 3.

Resistance properties of spores and growing cells of strains

Citation: Setlow P. 2011. Resistance of Bacterial Spores, p 319-332. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch18
Generic image for table
Table 4.

DNA photoproducts from UV irradiated spores of various strains

Citation: Setlow P. 2011. Resistance of Bacterial Spores, p 319-332. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error