1887

Chapter 19 : Protection against Foreign DNA

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Protection against Foreign DNA, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap19-2.gif

Abstract:

This chapter briefly addresses the well-characterized restriction-modification system (R-M), non-sugar-specific nucleases (SNSN), and histone-like nucleoid structuring (H-NS). It more specifically elaborates on clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR/CRISPR-associated (Cas), a recently described microbial system, provides acquired immunity against phages and plasmids by targeting nucleic acids in a sequence-specific manner. CRISPR features may be exploited for typing purposes, ecological and epidemiological studies, and also for enhancing phage resistance in bacteria. R-M systems commonly act as the first line of intracellular defense against foreign DNA. Some SNSN, such as Vvn from and EndoI from , are periplasmic and thus prevent the uptake of foreign DNA. The ubiquitous and predatory nature of phages may explain the overwhelming representation of phage sequences in CRISPR spacers, but a recent report showed that CRISPR can dramatically impact the ability of plasmids to transfer genetic material in . Also, this study experimentally confirmed that CRISPR targets DNA directly in . The CRISPR RNAs (crRNAs) seem to specifically guide the Cas defense apparatus toward foreign nucleic acid molecules that match the sequence of the spacers. This study also showed that Cas3, a predicted HD nuclease fused to a DEAD-box helicase, is required for the phage-resistance phenotype. The extent of the impact of CRISPR on phage genomes is perhaps best illustrated by extensive genome recombination events observed in environmental phage populations in response to CRISPR.

Citation: Horvath P, Barrangou R. 2011. Protection against Foreign DNA, p 333-348. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch19

Key Concept Ranking

Mobile Genetic Elements
0.7101409
Bacteria and Archaea
0.6115912
Genetic Elements
0.484222
Candidatus Accumulibacter phosphatis
0.46106187
DNA Restriction Enzymes
0.41119134
0.7101409
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

CRISPR/Cas systems in DGCC7710. In this strain, at least CRISPR1 and CRISPR3 loci are able to acquire novel spacers following phage challenge (Barrangou et al., ; Deveau et al., ; Horvath et al., ). Although CRISPR1 and CRISPR3 belong to the same “Nmeni” subtype (Haft et al., ), CRISPR3 Cas enzymes are unable to complement CRISPR1 knock-outs. CRISPR2 belongs to the “Mtube” subtype, whereas CRISPR4 belongs to the “Ecoli” subtype. CRISPR1 to CRISPR4 systems may also be classified into families Sthe1, Sthe2, Sthe3, and Ldbu1, respectively (Horvath et al., ). For each system, the overall genetic organization of the CRISPR/Cas locus is shown on the top line, where genes are filled with diagonal hatching and CRISPRs are depicted as black rectangles. Downstream of CRISPR4, stars represent non-sens mutations in a pseudogene of unknown function. Below, the content of each CRISPR repeat-spacer array is detailed with diamonds (repeats) and rectangles (spacers). Spacers showing significant similarity to known phage sequences are horizontally hatched (28 of 59 spacers); the spacer filled with dots is identical to a plasmid sequence. The white letter T indicates that the terminal repeat is degenerated at the 3” end. The consensus sequence of the repeat is also indicated for each system. Underlined letters correspond to degenerate bases within the terminal repeat. L1, L2, L3, L4: CRISPR leaders. R = A or G; H = C, T, or A.

Citation: Horvath P, Barrangou R. 2011. Protection against Foreign DNA, p 333-348. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Diversity of CRISPR repeat sequences found in lactic acid bacteria genomes. CRISPR repeat sequences of lactic acid bacteria, including some Actinobacteria, cluster into families, mostly corresponding to subtypes (Haft et al., ; Horvath et al., ). Left, dendrogram deduced from the multiple alignment of Cas1 protein sequences. Right, nine CRISPR families can be identified that share similar characteristics such as repeat sequence and repeat and spacer length.

Citation: Horvath P, Barrangou R. 2011. Protection against Foreign DNA, p 333-348. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

The acquisition of novel CRISPR spacers provides immunity against phages. Following phage challenge, certain strains acquired novel repeat-spacer units at CRISPR1 (and/or CRISPR3, data not shown here). Novel spacer sequences are derived from the genome of the phage(s) used in the challenge and provide a high reduction of the efficiency of plaquing when there is 100% identity between spacer and proto-spacer. The native structure of DGCC7710 CRISPR1 locus is shown at the top. In the middle, novel spacers (white rectangles) are acquired at the leader end of the locus (left), providing resistance against phage 858, or 2972, or both (right). On the bottom, the location of proto-spacers on the genome map of phages 858 and 2972 is shown; both phage DNA strands and all functional modules have been shown to be sources of spacers. Stars indicate differences between spacer and proto-spacer sequences: a single-base mutation allows the phage to escape from the CRISPR-based immunity.

Citation: Horvath P, Barrangou R. 2011. Protection against Foreign DNA, p 333-348. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Putative mechanism of the CRISPR/Cas immune system. (A) Immunization. Upon entry of invading (phage, plasmid) DNA into the bacterial cell, some gene products, by an unknown mechanism, catalyze the insertion of a short foreign sequence as a new spacer (downstream of a new repeat) at the leader end of the CRISPR locus. If the bacterium survives the invasion, this new genetic information, integrated within the chromosome, is transmitted to daughter cells. (B) Immunity. After transcription of the CRISPR locus as a full-length RNA, short CRISPR RNAs (crRNAs) are produced by endonucleolytic cleavage by Cas enzymes within the CRISPR repeat sequence. These short crRNAs, corresponding to spacer sequences flanked by partial repeat sequences, are sequestered and subsequently used by Cas proteins as guides that allow the recognition and cleavage of any invading DNA bearing an identical sequence (named proto-spacer) in the vicinity of the CRISPR motif. The absence of this proto-spacer-associated motif within the endogenous CRISPR array prevents autoimmunity.

Citation: Horvath P, Barrangou R. 2011. Protection against Foreign DNA, p 333-348. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816841.ch19
1. Agari, Y.,, S. Yokoyama,, S. Kuramitsu, and, A. Shinkai. 2008. X-ray crystal structure of a CRISPR-associated protein, Cse2, from Thermus thermophilus HB8. Proteins 73:10631067.
2. Andersson, A. F., and, J.F. Banfield. 2008. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:10471050.
3. Barrangou, R.,, C. Fremaux,, H. Deveau,, M. Richards,, P. Boyaval,, S. Moineau,, D. A. Romero,, and P. Horvath. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:17091712.
4. Beloglazova, N.,, G. Brown,, M.D. Zimmerman,, M. Proudfoot,, K. S. Makarova,, M. Kudritska,, S. Kochinyan,, S., Wang, M., Chruszcz, W., Minor, E. V., Koonin, A.M., Edwards, A., Savchenko, and A.F., Yakunin. 2008. A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. J. Biol. Chem. 283:2036120371.
5. Bickle, T. A., and, D.H. Krüger. 1993. Biology of DNA restriction. Microbiol. Rev. 57:434450.
6. Bland, C.,, T.L. Ramsey,, F. Sabree,, M. Lowe,, K. Brown,, N. C. Kyrpides,, and P. Hugenholtz. 2007. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics 8:209.
7. Blumenthal, R. M.,, and X. Cheng. 2002. Restriction-modification systems, P. 177225. In R. E. Yasbin,, and U. N. Streips (ed.), Modern Microbial Genetics, 2nd ed. John Wiley and Sons, New York, NY.
8. Bolotin, A.,, B. Quinquis,, A. Sorokin, and, S.D. Ehrlich. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:25512561.
9. Breitbart, M., and, F. Rohwer. 2005. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13:278284.
10. Brouns, S. J.,, M.M. Jore,, M. Lundgren,, E. R. Westra,, R. J. Slijkhuis,, A. P. Snijders,, M. J. Dickman,, K. S. Makarova,, E. V. Koonin,, and J. van der Oost. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960964.
11. Brudey, K.,, J.R. Driscoll,, L. Rigouts,, W. M. Prodinger,, A. Gori,, S. A. Al-Hajoj,, C. Allix,, L. Aristimuño,, J. Arora,, V. Baumanis,, L. Binder,, P. Cafrune,, A. Cataldi,, S. Cheong,, R. Diel,, C. Eller-meier,, J. T. Evans,, M. Fauville-Dufaux,, S. Ferdinand,, D. Garcia de Viedma,, C. Garzelli,, L. Gazzola,, H. M. Gomes,, M. C. Guttierez,, P. M. Hawkey,, P. D. van Helden,, G. V. Kadival,, B. N. Kreiswirth,, K. Kremer,, M. Kubin,, S. P. Kulkarni,, B. Liens,, T. Lillebaek,, M. L. Ho,, C. Martin,, C. Martin,, I. Mokrousov,, O. Narvskaïa,, Y. F. Ngeow,, L. Naumann,, S. Niemann,, I. Parwati,, Z. Rahim,, V. Rasolofo-Razanamparany,, T. Rasolonavalona,, M. L. Rossetti,, S. Rüsch-Gerdes,, A. Sajduda,, S. Samper,, I. G. Shemyakin,, U. B. Singh,, A. Somoskovi,, A. Skuce,, D. van Soolingen,, E. M. Streicher,, P. N. Suffys,, E. Tortoli,, T. Tracevska,, V. Vincent,, T. C. Victor,, R. M. Warren,, S. F. Yap,, K. Zaman,, F. Portaels,, N. Rastogi,, and C. Sola. 2006. Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol. 6:23.
12. Brüggemann, H., and, C. Chen. 2006. Comparative genomics of Thermus thermophilus: plasticity of the megaplasmid and its contribution to a thermophilic lifestyle. J. Biotechnol. 124:654661.
13. Carte, J., R., Wang, H., Li, R. M., Terns, and M., P. Terns. 2008. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22:34893496.
14. Chen, I.,, P.J. Christie, and, D. Dubnau. 2005. The ins and outs of DNA transfer in bacteria. Science 310:14561460.
15. Cui, Y.,, Y. Li,, O. Gorgé,, M. E. Platonov,, Y. Yan,, Z. Guo,, C. Pourcel,, S. V. Dentovskaya,, S. V. Balakhonov,, X. Wang,, Y. Song,, A. P. Anisimov,, G. Vergnaud,, and R. Yang. 2008. Insight into microevolution of Yersinia pestis by clustered regularly interspaced short palindromic repeats. PLoS ONE 3: e2652.
16. Deveau, H.,, R. Barrangou,, J.E. Garneau,, J. Labonté,, C. Fremaux,, P. Boyaval,, D. A. Romero,, P. Horvath,, and S. Moineau. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:13901400.
17. Dorman, C. J. 2004. H-NS: a universal regulator for a dynamic genome. Nat. Rev. Microbiol. 2:391400.
18. Dorman, C. J. 2007. H-NS, the genome sentinel. Nat. Rev. Microbiol. 5:157161.
19. Doronina, V. A., and, N.E. Murray. 2001. The proteolytic control of restriction activity in Escherichia coli K-12. Mol. Microbiol. 39:416428.
20. Dubnau, D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53:217244.
21. Durand, P.,, F. Mahé,, A.S. Valin, and, J. Nicolas. 2006. Browsing repeats in genomes: Pygram and an application to non-coding region analysis. BMC Bioinformatics 7:477.
22. Ebihara, A.,, M. Yao,, R. Masui,, I. Tanaka,, S. Yokoyama,, and S. Kuramitsu. 2006. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Sci. 15:14941499.
23. Edgar, R. C. 2007. PILER-CR: fast and accurate identification of CRISPR repeats. BMC Bioinformatics 8:18.
24. Fang, F. C., and, S. Rimsky. 2008. New insights into transcriptional regulation by H-NS. Curr. Opin. Microbiol. 11:113120.
25. Forde, A., and, G.F. Fitzgerald. 1999. Bacteriophage defence systems in lactic acid bacteria. Antonie van Leeuwenhoek 76:89113.
26. Godde, J. S., and, A. Bickerton. 2006. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. J. Mol. Evol. 62:718729.
27. Grissa, I., G. Vergnaud, and, C. Pourcel. 2007a. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35: W52–W57.
28. Grissa, I.,, G. Vergnaud, and, C. Pourcel. 2007b. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172.
29. Grissa, I.,, P. Bouchon,, C. Pourcel, and, G. Vergnaud. 2008a. Online resources for bacterial micro-evolution studies using MLVA or CRISPR typing. Biochimie 90:660668.
30. Grissa, I.,, G. Vergnaud, and, C. Pourcel. 2008b. CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 36: W145W148.
31. Groenen, P. M.,, A.E. Bunschoten,, D. van Soolingen, and, J.D. van Embden. 1993. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol. Microbiol. 10:10571065.
32. Haft, D. H.,, J. Selengut,, E. F. Mongodin, and, K.E. Nelson. 2005. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1: e60.
33. Hale, C.,, K. Kleppe,, R. M. Terns, and, M.P. Terns. 2008. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14:25722579.
34. Hale, C. R.,, P. Zhao,, S. Olson,, M.O. Duff,, B. R. Graveley,, L. Wells,, R. Terns, and, M.P. Terns. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945956.
35. Han, D., and, G. Krauss. 2009. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett. 583:771776.
36. Han, D., K. Lehmann, and, G. Krauss. 2009. SSO1450 - A CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA. FEBS Lett. 583:19281932.
37. Heidelberg, J. F.,, W.C. Nelson,, T. Schoenfeld,, and D. Bhaya. 2009. Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes. PLoS ONE 4: e4169.
38. Held, N. L., and, R.J. Whitaker. 2009. Viral biogeography revealed by signatures in Sulfolobus islandicus genomes. Environ. Microbiol. 11:457466.
39. Hermans, P. W.,, D. van Soolingen,, E. M. Bik,, P.E. de Haas,, J. W. Dale, and, J.D. van Embden. 1991. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect. Immun. 59:26952705.
40. Hoe, N.,, K. Nakashima,, D. Grigsby,, X. Pan,, S.J. Dou,, S. Naidich,, M. Garcia,, E. Kahn,, D. Bergmire-Sweat, and, J.M. Musser. 1999. Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg. Infect. Dis. 5:254263.
41. Horvath, P.,, D.A. Romero,, A.C. Coûté-Monvoisin,, M. Richards,, H. Deveau,, S. Moineau,, P. Boyaval,, C. Fremaux,, and R. Barrangou. 2008. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190:14011412.
42. Horvath, P.,, A.C. Coûté-Monvoisin,, D.A. Romero,, P. Boyaval,, C. Fremaux,, and R. Barrangou. 2009. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int. J. Food Microbiol. 131:6270.
43. Horvath, P., and, R. Barrangou. 2010. CRISPR/Cas, the immune system of Bacteria and Archaea. Science 327:167170.
44. Hoskisson, P. A., and, M.C. Smith. 2007. Hypervariation and phase variation in the bacteriophage ‘resistome.’ Curr. Opin. Microbiol. 10:396400.
45. Hsia, K. C., C. L. Li, and, H.S. Yuan. 2005. Structural and functional insight into sugar-nonspecific nucleases in host defense. Curr. Opin. Struct. Biol. 15:126134.
46. Ishino, Y., H. Shinagawa,, K. Makino,, M. Amemura,, and A. Nakata. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169:54295433.
47. Jansen, R.,, J. D. van, Embden, W., Gaastra, and L.M., Schouls. 2002a. Identification of a novel family of sequence repeats among prokaryotes. OMICS 6:2333.
48. Jansen, R.,, J. D. van Embden, W., Gaastra, and L.M., Schouls. 2002b. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43:15651575.
49. Jeltsch, A. 2003. Maintenance of species identity and controlling speciation of bacteria: a new function for restriction/modification systems? Gene 317:1316.
50. Kamerbeek, J.,, L. Schouls,, A. Kolk,, M. van Agterveld,, D. van Soolingen,, S. Kuijper,, A. Bunschoten,, H. Molhuizen,, R. Shaw,, M. Goyal,, and J. van Embden. 1997. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J. Clin. Microbiol. 35:907914.
51. Kobayashi, I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29:37423756.
52. Kunin, V., R. Sorek, and, P. Hugenholtz. 2007. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8: R61.
53. Kunin, V.,, S. He,, F. Warnecke,, S. B. Peterson,, H. Garcia Martin,, M. Haynes,, N. Ivanova,, L. L. Blackall,, M. Breitbart,, F. Rohwer,, K. D. McMahon,, and P. Hugenholtz. 2008. A bacterial metapopulation adapts locally to phage predation despite global dispersal. Genome Res. 18:293297.
54. Lillestøl, R. K.,, P. Redder,, R.A. Garrett, and, K. Brügger. 2006. A putative viral defence mechanism in archaeal cells. Archaea 2:5972.
55. Lillestøl, R. K.,, S.A. Shah,, K. Brügger,, P. Redder,, H. Phan,, J. Christiansen, and, R.A. Garrett. 2009. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol. Microbiol. 72:259272.
56. Lin, L. F.,, J. Posfai,, R.J. Roberts, and, H. Kong. 2001. Comparative genomics of the restriction-modification systems in Helicobacter pylori. Proc. Natl. Acad. Sci. USA 98:27402745.
57. Lorenz, M. G., and, W. Wackernagel. 1994. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563602.
58. Lucchini, S., G. Rowley,, M.D. Goldberg,, D. Hurd, M. Harrison, and, J.C. Hinton. 2006. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog. 2: e81.
59. Luria, S. E., and, M.L. Human. 1952. A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol. 64:557569.
60. Makarova, K. S.,, L. Aravind,, N. V. Grishin,, I.B. Rogozin, and, E.V. Koonin. 2002. A DNA repair system specific for thermophilic Archaea and bacteria predicted by genomic context analysis. Nucleic Acids Res. 30:482496.
61. Makarova, K. S.,, N.V. Grishin,, S.A. Shabalina,, Y. I. Wolf,, and E. V. Koonin. 2006 A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1:7.
62. Makovets, S.,, V. A. Doronina, and, N.E. Murray. 1999. Regulation of endonuclease activity by proteolysis prevents breakage of unmodified bacterial chromosomes by type I restriction enzymes. Proc. Natl. Acad. Sci. USA 96:97579762.
63. Marraffini, L. A., and, E.J. Sontheimer. 2008. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:18431845.
64. Masepohl, B., K. Görlitz, and, H. Böhme. 1996. Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta 1307:2630.
65. Matic, I., F. Taddei, and, M. Radman. 1996. Genetic barriers among bacteria. Trends Microbiol. 4:6972.
66. Mojica, F. J.,, C. Díez-Villaseñor,, E. Soria, and, G. Juez. 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36:244246.
67. Mojica, F. J.,, C. Díez-Villaseñor,, J. García-Martínez, and, C. Almendros. 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733740.
68. Mojica, F. J.,, C. Díez-Villaseñor,, J. García-Martínez, and, E. Soria. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60:174182.
69. Mojica, F. J.,, C. Ferrer,, G. Juez, and, F. Rodríguez-Valera. 1995. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17:8593.
70. Mokrousov, I.,, E. Limeschenko,, A. Vyazovaya, and, O. Narvskaya. 2007. Corynebacterium diphtheriae spoligotyping based on combined use of two CRISPR loci. Biotechnol. J. 2:901906.
71. Mrázek, J.,, S. Xie,, X. Guo, and, A. Srivastava. 2008. AIMIE: a web-based environment for detection and interpretation of significant sequence motifs in prokaryotic genomes. Bioinformatics 24:10411048.
72. Murray, N. E. 2002. Immigration control of DNA in bacteria: self versus non-self. Microbiology 148:320.
73. Naito, T., K. Kusano, and, I. Kobayashi. 1995. Selfish behavior of restriction-modification systems. Science 267:897899.
74. Nakata, A.,, M. Amemura, and, K. Makino. 1989. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 171:35533556.
75. Navarre, W. W.,, M. McClelland,, S. J. Libby, and, F.C. Fang. 2007. Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes Dev. 21:14561471.
76. Navarre, W. W.,, S. Porwollik,, Y. Wang,, M. McClelland, H., Rosen, S., J. Libby, and, F.C. Fang. 2006. Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313:236238.
77. Nechaev, S., and, K. Severinov. 2008. The elusive object of desire— interactions of bacteriophages and their hosts. Curr. Opin. Microbiol. 11:186193.
78. Nyengaard, N.,, F.K. Vogensen, and, J. Josephsen. 1995. Restrictionmodification systems in Lactococcus lactis. Gene 157:1318.
79. Ohtsubo, Y.,, W. Ikeda-Ohtsubo,, Y. Nagata, and, M. Tsuda. 2008. GenomeMatcher: a graphical user interface for DNA sequence comparison. BMC Bioinformatics 9:376.
80. Peng, X., K. Brügger,, B. Shen,, L. Chen,, Q. She, and, R.A. Garrett. 2003. Genus-specific protein binding to the large clusters of DNA repeats (short regularly spaced repeats) present in Sulfolobus genomes. J. Bacteriol. 185:24102417.
81. Pourcel, C., G. Salvignol, and, G. Vergnaud. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653663.
82. Rangarajan, E. S., and, V. Shankar. 2001. Sugar non-specific endonucleases. FEMS Microbiol. Rev. 25:583613.
83. Rasmussen, U., and, M.M. Svenning. 1998. Fingerprinting of cyanobacteria based on PCR with primers derived from short and long tandemly repeated repetitive sequences. Appl. Environ. Microbiol. 64:265272.
84. Roberts, R. J.,, T. Vincze,, J. Posfai, and, D. Macelis. 2007. REBASE—enzymes and genes for DNA restriction and modification. Nucleic Acids Res. 35: D269–D270.
85. Sakamoto, K., Y. Agari,, K. Agari,, S. Yokoyama,, S. Kuramitsu,, and A. Shinkai. 2009. X-ray crystal structure of a CRISPRassociated RAMP superfamily protein, Cmr5, from Thermus thermophilus HB8. Proteins 75:528532.
86. Semenova, E.,, M. Nagornykh,, M. Pyatnitskiy, I. I. Artamonova, and, K. Severinov. 2009. Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol. Lett. 296:110116.
87. Shah, S. A., N. R. Hansen, and, R.A. Garrett. 2009. Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochem. Soc. Trans. 37:2328.
88. She, Q.,, R.K. Singh,, F. Confalonieri,, Y. Zivanovic,, G. Allard,, M. J. Awayez,, C. C. Chan-Weiher,, I. G. Clausen,, B. A. Curtis,, A. De Moors,, G. Erauso,, C. Fletcher,, P. M. Gordon,, I. Heikamp-de Jong,, A. C. Jeffries,, C. J. Kozera,, N. Medina,, X. Peng,, H. P Thi-Ngoc,, P. Redder,, M. E. Schenk,, C. Theriault,, N. Tolstrup,, R. L. Charlebois,, W. F. Doolittle,, M. Duguet,, T. Gaasterland,, R. A. Garrett,, M. A. Ragan,, C. W. Sensen,, and J. Van der Oost. 2001. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc. Natl Acad. Sci. USA 98:78357840.
89. Sing, W. D., and, T.R. Klaenhammer. 1990. Plasmid-induced abortive infection in lactococci: a review. J. Dairy Sci. 73:22392251.
90. Sorek, R.,, V. Kunin, and, P. Hugenholtz. 2008. CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol. 6:181186.
91. Sturino, J. M.,, and T.R. Klaenhammer. 2004. Bacteriophage defense systems and strategies for lactic acid bacteria. P. 331378. In A. I. Laskin,, J.W. Bennett,, and G. M. Gadd (ed.), Advances in applied microbiology, Vol. 56. Academic Press, San Diego, CA.
92. Sturino, J. M., and, T.R. Klaenhammer. 2006. Engineered bacteriophage-defence systems in bioprocessing. Nat. Rev. Microbiol. 4:395404.
93. Tang, T. H.,, J.P. Bachellerie,, T. Rozhdestvensky,, M. L. Bortolin,, H. Huber,, M. Drungowski,, T. Elge,, J. Brosius,, and A. Hüttenhofer. 2002. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl Acad. Sci. USA 99:75367541.
94. Tang, T. H.,, N. Polacek,, M. Zywicki,, H. Huber,, K. Brugger,, R. Garrett,, J. P. Bachellerie,, and A. Hüttenhofer. 2005. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol. Microbiol. 55:469481.
95. Tao, T.,, J. C. Bourne, and, R.M. Blumenthal. 1991. A family of regulatory genes associated with type II restriction-modification systems. J. Bacteriol. 173:13671375.
96. Tendeng, C., and, P.N. Bertin. 2003. H-NS in Gram-negative bacteria: a family of multifaceted proteins. Trends Microbiol. 11:511518.
97. Tock, M. R., and, D.T. Dryden. 2005. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8:466472.
98. Tyson, G. W., and, J.F. Banfield. 2008. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol. 10:200207.
99. van der Oost, J.,, M.M. Jore,, E.R. Westra,, M. Lundgren, and, S.J.J. Brouns. 2009. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34:401407.
100. van der Ploeg, J. R. 2009. Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology 155:19661976.
101. van Embden, J. D.,, T. van Gorkom,, K. Kremer,, R. Jansen,, B. A. van Der Zeijst, and, L.M. Schouls. 2000. Genetic variation and evolutionary origin of the direct repeat locus of Mycobacterium tuberculosis complex bacteria. J. Bacteriol. 182:23932401.
102. van Melderen, L., and, M. Saavedra De Bast. 2009. Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genet. 5: e1000437.
103. Vergnaud, G.,, Y. Li,, O. Gorgé,, Y. Cui,, Y. Song,, D. Zhou,, I. Grissa,, S. V. Dentovskaya,, M. E. Platonov,, A. Rakin,, S. V. Balakhonov,, H. Neubauer,, C. Pourcel,, A. P. Anisimov,, and R. Yang. 2007. Analysis of the three Yersinia pestis CRISPR loci provides new tools for phylogenetic studies and possibly for the investigation of ancient DNA. Adv. Exp. Med. Biol. 603:327338.
104. Wiedenheft, B., K. Zhou,, M. Jinek, S. M. Coyle,, W. Ma, and, J.A. Doudna. 2009. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17:904912.
105. Wilmes, P.,, S. L. Simmons,, V. J. Denef, and, J.F. Banfield. 2009. The dynamic genetic repertoire of microbial communities. FEMS Microbiol. Rev. 33:109132.
106. Wilson, G. G., and, N.E. Murray. 1991. Restriction and modification systems. Annu. Rev. Genet. 25:585627.
107. Wu, S. I.,, S.K. Lo,, C.P. Shao, H. W. Tsai, and, L.I. Hor. 2001. Cloning and characterization of a periplasmic nuclease of Vibrio vulnificus and its role in preventing uptake of foreign DNA. Appl. Environ. Microbiol. 67:8288.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error