Chapter 23 : Bacterial Responses to the Host Cell

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Bacterial Responses to the Host Cell, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555816841/9781555816216_Chap23-2.gif


This chapter presents the stress conditions experienced by bacteria inside host organisms and the specific bacterial stress responses, with focus on the responses on a cellular level, especially for the subset of bacterial pathogens that have developed an intracellular lifestyle within host cells. It focuses on the integrated responses of extracellular bacteria or intracellular bacteria environments within the host. A section presents the specific conditions that are acting on bacteria during colonization of a host organism or the interaction with host cells. Cathelicidins possess an amino-terminal part called cathelin that contains an SRC, homology three-domain, required as signal for the peptide to be cleaved, activated, and secreted. The antibacterial activity resides in the carboxy-terminal part which binds to polyanionic surfaces such as lipopolysaccharides (LPS) and teichoic acids. Biofilms are multicellular microbial communities that can form in the external environment, on abiotic surfaces, as well as on host surfaces and within host cells. Different groups of molecules secreted by host cells have antibacterial functions and are responsible for activation of bacterial responses. After phagocytosis by, or adhesion to and invasion of, host cells, bacteria must adapt to the new environments inside the host cells.

Citation: Felipe-lópez A, Hensel M. 2011. Bacterial Responses to the Host Cell, p 385-398. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch23
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Model of host and environmental factors acting on extracellular bacteria within a host organism (a) and within a host cell (b).

Citation: Felipe-lópez A, Hensel M. 2011. Bacterial Responses to the Host Cell, p 385-398. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Regulatory circuits in responding to signals from the host. Two-component systems such as PhoPQ, PmrAB, or BarA/SirA are required to sense and integrate host-derived environmental signals. This results in the expression of specific virulence genes as well as in modification of bacterial envelope.

Citation: Felipe-lópez A, Hensel M. 2011. Bacterial Responses to the Host Cell, p 385-398. In Storz G, Hengge R (ed), Bacterial Stress Responses, Second Edition. ASM Press, Washington, DC. doi: 10.1128/9781555816841.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aktories, K., and, J.T. Barbieri. 2005. Bacterial cytotoxins: targeting eukaryotic switches. Nat. Rev. Microbiol. 3:397410.
2. Bader, M. W.,, S. Sanowar,, M. E. Daley,, A.R. Schneider,, U. Cho,, W. Xu,, R. E. Klevit,, H. Le Moual, and, S.I. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461472.
3. Bader, M. W.,, W.W. Navarre,, W. Shiau,, H. Nikaido,, J.G. Frye,, M. McClelland,, F. C. Fang, and, S.I. Miller. 2003. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol. Microbiol. 50:219230.
4. Bajaj, V.,, R. L. Lucas,, C. Hwang, and, C.A. Lee. 1996. Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22:703714.
5. Barchiesi, J.,, M. Espariz,, S. K. Checa, and, F.C. Soncini. 2009. Downregulation of RpoN-controlled genes protects Salmonella cells from killing by the cationic antimicrobial peptide polymyxin B. FEMS Microbiol. Lett. 291:7379.
6. Barker, H. C.,, N. Kinsella,, A. Jaspe,, T. Friedrich, and, C.D. O’Connor. 2000. Formate protects stationary-phase Escherichia coli and Salmonella cells from killing by a cationic antimicrobial peptide. Mol. Microbiol. 35:15181529.
7. Becker, D.,, M. Selbach,, C. Rollenhagen,, M. Ballmaier,, T.F. Meyer,, M. Mann,, and D. Bumann. 2006. Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440:303307.
8. Betts, H. J., K. Wolf, and, K.A. Fields. 2009. Effector protein modulation of host cells: examples in the Chlamydia spp. arsenal. Curr. Opin. Microbiol. 12:8187.
9. Beuzon, C. R.,, G. Banks,, J. Deiwick,, M. Hensel, and, D.W. Holden. 1999. pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium. Mol. Microbiol. 33:806816.
10. Bevins, C. L.,, E. Martin-Porter, and, T. Ganz. 1999. Defensins and innate host defence of the gastrointestinal tract. Gut 45:911915.
11. Bogdan, C., M. Rollinghoff, and, A. Diefenbach. 2000. The role of nitric oxide in innate immunity. Immunol. Rev. 173:1726.
12. Braun, P. R.,, H. Al-Younes,, J. Gussmann,, J. Klein,, E. Schneider, and, T.F. Meyer. 2008. Competitive inhibition of amino acid uptake suppresses chlamydial growth: involvement of the chlamydial amino acid transporter BrnQ. J. Bacteriol. 190:18221830.
13. Brawn, L. C.,, R.D. Hayward, and, V. Koronakis. 2007. Salmonella SPI1 effector SipA persists after entry and cooperates with a SPI2 effector to regulate phagosome maturation and intracellular replication. Cell Host Microbe 1:6375.
14. Brotz-Oesterhelt, H.,, D. Beyer,, H.P. Kroll,, R. Endermann,, C. Ladel,, W. Schroeder,, B. Hinzen,, S. Raddatz,, H. Paulsen,, K. Henninger,, J. E. Bandow,, H. G. Sahl,, and H. Labischinski. 2005. Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat. Med. 11:10821087.
15. Broughton, W. J.,, S. Jabbouri, and, X. Perret. 2000. Keys to symbiotic harmony. J. Bacteriol. 182:56415652.
16. Bryk, R., P. Griffin, and, C. Nathan. 2000. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407:211215.
17. Chakravortty, D., I. Hansen-Wester, and, M. Hensel. 2002. Salmonella pathogenicity island 2 mediates protection of intracellular Salmonella from reactive nitrogen intermediates. J. Exp. Med. 195:11551166.
18. Chakravortty, D., and, M. Hensel. 2003. Inducible nitric oxide synthase and control of intracellular bacterial pathogens. Microbes Infect. 5:621627.
19. Chan, D. I., E. J. Prenner, and, H.J. Vogel. 2006. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta 1758:11841202.
20. Crouch, M. L.,, L.A. Becker,, I.S. Bang,, H. Tanabe,, A. J. Ouellette, and, F.C. Fang. 2005. The alternative sigma factor sigma is required for resistance of Salmonella enterica serovar Typhimurium to anti-microbial peptides. Mol. Microbiol. 56:789799.
21. Darwin, K. H., and, V.L. Miller. 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 12:405428.
22. Dautry-Varsat, A.,, M.E. Balana, and, B. Wyplosz. 2004. Chlamydia-host cell interactions: recent advances on bacterial entry and intracellular development. Traffic 5:561570.
23. Deakin, W. J., and, W.J. Broughton. 2009. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat. Rev. Microbiol. 7:312320.
24. Deiwick, J.,, T. Nikolaus,, S. Erdogan, and, M. Hensel. 1999. Environmental regulation of Salmonella pathogenicity island 2 gene expression. Mol. Microbiol. 31:17591773.
25. Ensminger, A. W., and, R.R. Isberg. 2009. Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Curr. Opin. Microbiol. 12:6773.
26. Ernst, F. D.,, S. Bereswill,, B. Waidner,, J. Stoof,, U. Mader,, J. G. Kusters,, E. J. Kuipers,, M. Kist,, A. H. van Vliet,, and G. Homuth. 2005. Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression. Microbiology 151:533546.
27. Fields, K. A.,, D.J. Mead,, C.A. Dooley,, and T. Hackstadt. 2003. Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol. Microbiol. 48:671683.
28. Fields, K. A., and, T. Hackstadt. 2000. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol. Microbiol. 38:10481060.
29. Fields, K. A., and, T. Hackstadt. 2002. The chlamydial inclusion: escape from the endocytic pathway. Annu. Rev. Cell Dev. Biol. 18:221245.
30. Flannagan, R. S.,, G. Cosio, and, S. Grinstein. 2009. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7:355366.
31. Gage, D. J. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68:280300.
32. Ganz, T. 2003. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3:710720.
33. Garcia-del Portillo, F.,, J. W. Foster,, M. E. Maguire, and, B.B. Finlay. 1992. Characterization of the micro-environment of Salmonella typhimurium-containing vacuoles within MDCK epithelial cells. Mol. Microbiol. 6:32893297.
34. Gerlach, R. G.,, D. Jackel,, N. Geymeier, and, M. Hensel. 2007. Salmonella pathogenicity island 4–mediated adhesion is co-regulated with invasion genes in Salmonella enterica. Infect. Immun. 75:46974709.
35. Gerlach, R. G., and, M. Hensel. 2007. Protein secretion systems and adhesins: the molecular armory of gram-negative pathogens. Int. J. Med. Microbiol. 297:401415.
36. Goebel, W., and, R. Gross. 2001. Intracellular survival strategies of mutualistic and parasitic prokaryotes. Trends Microbiol. 9:267273.
37. Golec, M. 2007. Cathelicidin LL-37: LPS-neutralizing, pleiotropic peptide. Ann. Agric. Environ. Med. 14:14.
38. Gunn, J. S. 2008. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol. 16:284290.
39. Hammer, B. K., E. S. Tateda, and, M.S. Swanson. 2002. A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila. Mol. Microbiol. 44:107118.
40. Hamon, M., H. Bierne, and, P. Cossart. 2006. Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol. 4:423434.
41. Haraga, A.,, M. B. Ohlson, and, S.I. Miller. 2008. Salmonellae interplay with host cells. Nat. Rev. Microbiol. 6:5366.
42. Hayden, J. D., and, S.E. Ades. 2008. The extracytoplasmic stress factor, sigmaE, is required to maintain cell envelope integrity in Escherichia coli. PLoS ONE 3: e1573.
43. Hensel, M. 2000. Salmonella pathogenicity island 2. Mol. Microbiol. 36:10151023.
44. Hensel, M.,, J.E. Shea,, C. Gleeson, M. D. Jones,, E. Dalton, and, D.W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400403.
45. Hensel, M.,, J.E. Shea,, S.R. Waterman,, R. Mundy,, T. Nikolaus,, G. Banks,, A. Vazquez-Torres,, C. Gleeson,, F. C. Fang, and, D.W. Holden. 1998. Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol. Microbiol. 30:163174.
46. Herbst, K.,, M. Bujara,, A.K. Heroven,, W. Opitz,, M. Weichert,, A. Zimmermann,, and P. Dersch. 2009. Intrinsic thermal sensing controls proteolysis of Yersinia virulence regulator RovA. PLoS Pathog. 5: e1000435.
47. Hinnebusch, A. G. 2009. Active destruction of defective ribosomes by a ubiquitin ligase involved in DNA repair. Genes Dev. 23:891895.
48. Honer zu Bentrup, K., and, D.G. Russell. 2001. Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol. 9:597605.
49. Huang, J.,, C.F. Lesser, and, S. Lory. 2008a. The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nature 456:112115.
50. Huang, Y.,, M. Suyemoto,, C.D. Garner,, K.M. Cicconi,, and C. Altier. 2008b. Formate acts as a diffusible signal to induce Salmonella invasion. J. Bacteriol. 190:42334241.
51. Humphreys, S.,, A. Stevenson,, A. Bacon,, A. B. Weinhardt, and, M. Roberts. 1999. The alternative sigma factor, sigmaE, is critically important for the virulence of Salmonella typhimurium. Infect. Immun. 67:15601568.
52. Humphries, A. D.,, M. Raffatellu,, S. Winter,, E.H. Weening, R. A., Kingsley, R., Droleskey, S., Zhang, J., Figueiredo, S., Khare, J., Nunes, L. G., Adams, R., M. Tsolis, and, A.J. Bäumler. 2003. The use of flow cytometry to detect expression of subunits encoded by 11 Salmonella enterica serotype Typhimurium fimbrial operons. Mol. Microbiol. 48:13571376.
53. Ingmundson, A.,, A. Delprato,, D. G. Lambright, and, C.R. Roy. 2007. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450:365369.
54. Jenssen, H., P. Hamill, and, R.E. Hancock. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19:491511.
55. Johansson, J.,, P. Mandin,, A. Renzoni,, C. Chiaruttini,, M. Springer,, and P. Cossart. 2002. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551561.
56. Jules, M., and, C. Buchrieser. 2007. Legionella pneumophila adaptation to intracellular life and the host response: clues from genomics and transcriptomics. FEBS Lett. 581:28292838.
57. Knodler, L. A., and, O. Steele-Mortimer. 2003. Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic 4:587599.
58. Kobayashi, H.,, Y. Naciri-Graven,, W.J. Broughton, and, X. Perret. 2004. Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Mol. Microbiol. 51:335347.
59. Kuhle, V.,, G.L. Abrahams, and, M. Hensel. 2006. Intracellular Salmonella enterica redirect exocytic transport processes in a Salmonella pathogenicity island 2–dependent manner. Traffic 7:716730.
60. Kumar, R.,, R. Bhatia,, K. Kukreja,, R. K. Behl,, S.S. Dudeja,, and N. Narula. 2007. Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J. Basic Microbiol. 47:436439.
61. Kyei, G. B.,, I. Vergne,, J. Chua,, E. Roberts,, J. Harris,, J. R. Junutula,, and V. Deretic. 2006. Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO J. 25:52505259.
62. Li, M.,, Y. Lai,, A.E. Villaruz,, D.J. Cha,, D. E. Sturdevant,, and M. Otto. 2007. Gram-positive three-component antimicrobial peptide-sensing system. Proc. Natl. Acad. Sci. USA 104:94699474.
63. Lin, G.,, D. Li,, L.P. de Carvalho,, H. Deng,, H. Tao,, G. Vogt,, K. Wu,, J. Schneider,, T. Chidawanyika,, J. D. Warren,, H. Li,, and C. Nathan. 2009. Inhibitors selective for mycobacterial versus human proteasomes. Nature 461:621626.
64. McPhee, J. B., S. Lewenza, and, R.E. Hancock. 2003. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50:205217.
65. Miyashiro, T., and, M. Goulian. 2008. High stimulus unmasks positive feedback in an autoregulated bacterial signaling circuit. Proc. Natl. Acad. Sci. USA 105:1745717462.
66. Moskowitz, S. M., R. K. Ernst, and, S.I. Miller. 2004. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J. Bacteriol. 186:575579.
67. Muller, N.,, F. Sattelmacher,, R. Lugert, and, U. Gross. 2008. Characterization and intracellular localization of putative Chlamydia pneumoniae effector proteins. Med. Microbiol. Immunol. 197:387396.
68. Murata, T.,, A. Delprato,, A. Ingmundson, D. K. Toomre,, D.G. Lambright, and, C.R. Roy. 2006. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat. Cell Biol. 8:971977.
69. Pallen, M. J., and, B.W. Wren. 1997. The HtrA family of serine proteases. Mol. Microbiol. 26:209221.
70. Ragaz, C.,, H. Pietsch,, S. Urwyler,, A. Tiaden,, S.S. Weber,, and H. Hilbi. 2008. The Legionella pneumophila phosphatidylinositol- 4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell. Microbiol. 10:24162433.
71. Rappl, C., J. Deiwick, and, M. Hensel. 2003. Acidic pH is required for the functional assembly of the type III secretion system encoded by Salmonella pathogenicity island 2. FEMS Microbiol. Lett. 226:363372.
72. Rasis, M., and, G. Segal. 2009. The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, posttranscriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol. Microbiol. 72:9951010.
73. Rudrappa, T.,, K. J. Czymmek,, P. W. Pare, and, H.P. Bais. 2008. Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148:15471556.
74. Ryndak, M., S. Wang, and, I. Smith. 2008. PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol. 16:528534.
75. Schlumberger, M. C., and, W.D. Hardt. 2006. Salmonella type III secretion effectors: pulling the host cell’s strings. Curr. Opin. Microbiol. 9:4654.
76. Schmidt, H., and, M. Hensel. 2004. Pathogenicity islands in bacterial pathogenesis. Clin. Microbiol. Rev. 17:1456.
77. Schutte, B. C., and, P.B. McCray, Jr. 2002. β-defensins in lung host defense. Annu. Rev. Physiol. 64:709748.
78. Shea, J. E.,, M. Hensel,, C. Gleeson, and, D.W. Holden. 1996. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93:25932597.
79. Shin, S., and, C.R. Roy. 2008. Host cell processes that influence the intracellular survival of Legionella pneumophil a. Cell. Microbiol. 10:12091220.
80. Song, M.,, H.J. Kim,, E.Y. Kim,, M. Shin,, H. C. Lee,, Y. Hong,, J. H. Rhee,, H. Yoon,, S. Ryu,, S. Lim, and, H.E. Choy. 2004. ppGppdependent stationary phase induction of genes on Salmonella pathogenicity island 1. J. Biol. Chem. 279:3418334190.
81. Suerbaum, S., and, P. Michetti. 2002. Helicobacter pylori infection. N. Engl. J. Med. 347:11751186.
82. Tan, T.,, W.L. Lee,, D.C. Alexander,, S. Grinstein,, and J. Liu. 2006. The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cell. Microbiol. 8:14171429.
83. Tiaden, A.,, T. Spirig,, P. Carranza,, H. Bruggemann,, K. Riedel,, L. Eberl,, C. Buchrieser,, and H. Hilbi. 2008. Synergistic contribution of the Legionella pneumophila lqs genes to pathogen-host interactions. J. Bacteriol. 190:75327547.
84. Tiaden, A.,, T. Spirig,, S.S. Weber,, H. Bruggemann,, R. Bosshard,, C. Buchrieser,, and H. Hilbi. 2007. The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell. Microbiol. 9:29032920.
85. Vazquez-Torres, A., and, F.C. Fang. 2001a. Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol. 9:2933.
86. Vazquez-Torres, A., and, F.C. Fang. 2001b. Salmonella evasion of the NADPH phagocyte oxidase. Microbes Infect. 3:13131320.
87. Vergne, I.,, J. Chua,, H.H. Lee,, M. Lucas,, J. Belisle,, and V. Deretic. 2005. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 102:40334038.
88. Vergne, I.,, J. Chua,, S.B. Singh, and, V. Deretic. 2004. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol. 20:367394.
89. Williams, D. B. 2006. Beyond lectins: the calnexin/calreticulin chaperone system of the endoplasmic reticulum. J. Cell Sci. 119:615623.
90. Zhang, J.,, S. Subramanian,, G. Stacey, and, O. Yu. 2009. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J. 57:171183.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error