Chapter 17 : Signaling Cascades and Enzymes as Virulence Factors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Signaling Cascades and Enzymes as Virulence Factors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap17-2.gif


Signal transduction cascades are utilized by all organisms to convey signals perceived at the cell surface to effectors within the cell. These enzymatic signaling cascades are important in the pathogenesis of many infections, including cryptococcosis. This chapter summarizes the significance and functional interactions involved in the cell wall integrity, phospholipase, and calcineurin signaling pathways for the establishment of virulence. The fungal Plc enzymes referred to in this review preferentially hydrolyze phosphatidylinositol (PI)-based substrates within the cryptococcal cell and affect multiple cellular functions, including the secretion of (phospholipase B ) Plb1. It was found that the Plb1 MW could be as high as 125 kDa due to extensive asparagine N-linked glycosylation, which is responsible for at least 30% of the MW of Plb1 and essential for its activity. It was recently demonstrated that PI-PLC1 (Plc1) regulates cryptococcal virulence, acting in part through interactions with the Pkc/Mpk1 cell wall integrity pathway. In contrast to Plcs from higher eukaryotes, Plcs from the parasite preferentially hydrolyze the glycosylphosphatidylinositol (GPI) anchor of variant surface glycoprotein or GPI biosynthetic intermediates, in addition to PI, but not the phosphorylated intermediates, despite their localization to the peripheral cytoplasmic face of intracellular vesicles. Metabolic labeling studies performed in implicated a Plc enzyme and a secondary-acting protease in hydrolysis of the GPI anchor of certain proteins in the plasma membrane, resulting in their subsequent localization in the cell wall. ScPlc1, the only Plc1 in , like CnPlc1, lacks a secretory signal leader peptide.

Citation: Fox D, Djordjevic J, Sorrell T. 2011. Signaling Cascades and Enzymes as Virulence Factors, p 217-234. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch17

Key Concept Ranking

Cell Wall Proteins
Cellular Processes
Cell Wall
Cell Wall Biosynthesis
Phospholipase D
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Site of attack of phospholipases on a phospholipid. R1 and R2 are fatty acid chains; X is a head group. Phospholipase A hydrolyzes the fatty acyl ester bond at the position of the phospholipid to form a 2-acyl phospholipid (lysophospholipid) and a free fatty acid. Phospholipase A cleaves the fatty acyl ester bond at the position of this molecule, resulting in the formation of a lysophospholipid. Phospholipase B (PLB) catalyzes the simultaneous hydrolysis of fatty acids from both the and position of the phospholipid. Phospholipase C cleaves the phosphodiester bond in the phospholipid backbone to form 1,2-diacylglycerol and a phosphorylated head group. Phospholipase D removes the head group from the phospholipid, forming phosphatidic acid. Plb1 has the strongest preference for PC, where the head group (X) is choline, and shows weaker preference for PI, phosphatidylethanolamine, and phosphatidylserine, where the head groups are inositol, ethanolamine, and serine, respectively. Adapted from reference .

Citation: Fox D, Djordjevic J, Sorrell T. 2011. Signaling Cascades and Enzymes as Virulence Factors, p 217-234. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Possible surface release mechanisms for GPI-anchored proteins. (A) Model of a GPI-anchored protein showing potential sites of GPI anchor hydrolysis at the membrane. E, ethanolamine; P, phosphate; M, mannose; G, glucosamine; I, inositol. Arrows indicate potential cleavage sites (protein release mechanisms). Mannose residues from top to bottom are α-1,2-, 1,6-, and 1,4-linked. The PI moiety is attached to a diacyl group embedded in the membrane. The site of YW3548 inhibition of GPI anchor biosynthesis (prior to GPI anchor addition to the protein) is also shown. (B) Organization of the fungal cell wall. Potential sites of β-1,3-glucanase cleavage, releasing GPI-anchored proteins linked to β-1,6-glucan polymer, are indicated (in this case the GPI-anchored protein was released from the membrane by α-mannosidase). Modified from reference , with permission from Landes Bioscience.

Citation: Fox D, Djordjevic J, Sorrell T. 2011. Signaling Cascades and Enzymes as Virulence Factors, p 217-234. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Comparison of the predicted Plc/PI-PLC protein motifs. (A) Plc1 proteins in all three yeast species and in the human PLC-δ4 isoform contain an X and Y catalytic domain and a C2 “calcium-binding” domain. is the only yeast species with an EFhand domain. (B) Plc2 proteins from and , the Plc3 protein from , and Plcs from and all contain only an X catalytic domain. Published with permission from Blackwell Publishing Ltd. ( ).

Citation: Fox D, Djordjevic J, Sorrell T. 2011. Signaling Cascades and Enzymes as Virulence Factors, p 217-234. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Model depicting the functional linkages of the Pkc1/Mpk1, phospholipase, and calcineurin signaling pathways in the regulation of cell wall integrity in . Phospholipase C (Plc1) signaling mediates cell wall integrity and high-temperature growth through activation of the Pkc1/Mpk1 and calcineurin pathways. The phospholipid-binding protein Cts1 may direct communication between Plc1 and calcineurin signaling pathways. The calcineurin regulator and effector Rcn1 may facilitate some aspects of calcineurin activity by modulation of calcineurin substrate specificity, while Kre6 may serve as a possible calcineurin substrate and regulator of β-glucan synthesis. The putative cell wall/membrane sensor of cell wall integrity is depicted as WSC. PI, phosphatidylinositol; DAG, 1,2-diacylglycerol; IP, inositol 1,4,5-triphosphate. Adapted from references .

Citation: Fox D, Djordjevic J, Sorrell T. 2011. Signaling Cascades and Enzymes as Virulence Factors, p 217-234. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

Calcineurin catalytic subunit Cna1 interacts with the predicted cytosolic domain of Kre6. (A) Isogenic two-hybrid reporter strains expressing calcineurin B (Y190) or lacking calcineurin B (SMY7-7) were cotransformed with plasmids expressing the Gal4 DNA-binding domain alone or fused to calcineurin A: full length (CNA1) or the C-terminal tail (CNA1-CT) and the Gal4 activation domain alone or fused to the Kre6 cytoplasmic domain (KRE6-pS) (alleles listed on axis). Interaction values are shown in Miller units. (B) Two-hybrid analysis to map the Kre6 binding region within calcineurin A. Open reading frame (ORF) length is shown in amino acid residues. The shaded boxes indicate the catalytic, calcineurin B-binding (B), calmodulin-binding (Cm), and autoinhibitory (AID) domains of calcineurin A.

Citation: Fox D, Djordjevic J, Sorrell T. 2011. Signaling Cascades and Enzymes as Virulence Factors, p 217-234. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alspaugh, J. A.,, J.R. Perfect, and, J. Heitman. 1997. Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev. 11:32063217.
2. Ansari, K.,, S. Martin,, M. Farkasovsky, I. M. Ehbrecht,, and H. Kuntzel. 1999. Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae. J. Biol. Chem. 274:3005230058.
3. Arellano, M., A. Duran, and, P. Perez. 1996. Rho 1 GT-Pase activates the (1–3)beta-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. EMBO J. 15:45844591.
4. Bahn, Y. S.,, C. Xue, A. Idnurm,, J. C. Rutherford, J. Heitman,, and M. E. Cardenas. 2007. Sensing the environment: lessons from fungi. Nat. Rev. Microbiol. 5:5769.
5. Balashov, S. V., S. Park, and, D. S. Perlin. 2006. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob. Agents Chemother. 50:20582063.
6. Beauvais, A.,, J.M. Bruneau,, P.C. Mol,, M. J. Buitrago, R. Legrand,, and J. P. Latge. 2001. Glucan synthase complex of Aspergillus fumigatus. J. Bacteriol. 183:22732279.
7. Berridge, M. J. 1993. Cell signalling. A tale of two messengers. Nature 365:388389.
8. Berridge, M. J. 1993. Inositol trisphosphate and calcium signalling. Nature 361:315325.
9. Birch, M.,, G. Robson,, D. Law, and, D. W. Denning. 1996. Evidence of multiple extracellular phospholipase activities of Aspergillus fumigatus. Infect. Immun. 64:751755.
10. Bowen, S., and, A. E. Wheals. 2004. Incorporation of Sed1p into the cell wall of Saccharomyces cerevisiae involves KRE6. FEMS Yeast Res. 4:731735.
11. Burda, P.,, S. M Padilla,, S. Sarkar, and, S. D. Emr. 2002. Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J. Cell Sci. 115:38893900.
12. Butikofer, P.,, M. Boschung,, U. Brodbeck, and, A. K. Menon. 1996. Phosphatidylinositol hydrolysis by Trypanosoma brucei glycosylphosphatidylinositol phospholipase C. J. Biol. Chem. 271:1553315541.
13. Cabello, M. A.,, G. Platas, J. Collado,, M.T. Diez,, I. Martin,, F. Vicente,, M. Meinz,, J. C Onishi,, C. Douglas,, J. Thompson,, M. B Kurtz,, R. E. Schwartz,, G. F Bills,, R. A. Giacobbe,, G. K Abruzzo,, A. M. Flattery,, L. Kong,, and F. Pelaez. 2001. Arundifungin, a novel antifungal compound produced by fungi: biological activity and taxonomy of the producing organisms. Int. Microbiol. 4:93102.
14. Cabib, E.,, T. Drgon,, J. Drgonova, R. A. Ford,, and R. Kollar. 1997. The yeast cell wall, a dynamic structure engaged in growth and morphogenesis. Biochem. Soc. Trans. 25:200204.
15. Cardoso De Almeida, M. L.,, M. Geuskens, and, E. Pays. 1999. Cell lysis induces redistribution of the GPI-anchored variant surface glycoprotein on both faces of the plasma membrane of Trypanosoma brucei. J. Cell Sci. 112 (Pt 23):44614473.
16. Casadevall, A.,, J. D Nosanchuk,, P. Williamson, and, M. L. Rodrigues. 2009. Vesicular transport across the fungal cell wall. Trends Microbiol. 17:158162.
17. Casadevall, A., and, J. R. Perfect. 1998. Cryptococcus neoformans. ASM Press, Washington, DC.
18. Chaffin, W. L.,, J. L. Lopez-Ribot,, M. Casanova, D. Gozalbo,, and J. P. Martinez. 1998. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol. Mol. Biol. Rev. 62:130180.
19. Chaffin, W. L., and, D. M. Stocco. 1983. Cell wall proteins of Candida albicans. Can. J. Microbiol. 29:14381444.
20. Charlier, C.,, K. Nielsen,, S. Daou, M. Brigitte,, F. Chretien,, and F. Dromer. 2009. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect. Immun. 77:120127.
21. Chayakulkeeree, M.,, T.C. Sorrell,, A.R. Siafakas,, C.F. Wilson,, N. Pantarat,, K. J Gerik,, R. Boadle,, and J. T. Djordjevic. 2008. Role and mechanism of phosphatidylinositol-specific phospholipase C in survival and virulence of Cryptococcus neoformans. Mol. Microbiol. 69:809826.
22. Chayakulkeeree, M.,, C. Wilson,, T. Sorrell,, and J. Djordjevic. 2008. Delineating phospholipase C1 (PLC1)-related signalling pathways in Cryptococcus neoformans. Abstract ID 1002, 77th International Conference on Cryptococcus and Cryptococcosis, Nagasaki, Japan.
23. Chen, R. E., and, J. Thorner. 2007. Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1773:13111340.
24. Chen, S. C.,, M. Muller, J. Z. Zhou,, L.C. Wright,, and T. C. Sorrell. 1997. Phospholipase activity in Cryptococcus neoformans: a new virulence factor? J. Infect. Dis. 175:414420.
25. Chen, S. C.,, L.C. Wright,, J.C. Golding,, and T. C. Sorrell. 2000. purification and characterization of secretory phospholipase B, lysophospholipase and lysophospholipase/transacylase from a virulent strain of the pathogenic fungus Cryptococcus neoformans. Biochem. J. 347:431439.
26. Chen, S. C.,, L.C. Wright,, R.T. Santangelo,, M. Muller,, V. R Moran,, P. W. Kuchel,, and T. C. Sorrell. 1997. Identification of extracellular phospholipase B, lysophospholipase, and acyltransferase produced by Cryptococcus neoformans. Infect. Immun. 65:405411.
27. Coe, J. G.,, C.F. Wilson,, T. C. Sorrell, N. G. Latouche,, and L. C. Wright. 2003. Cloning of CnLYSO1, a novel extracellular lysophospholipase of the pathogenic fungus Cryptococcus neoformans. Gene 316:6778.
28. Cohen-Kupiec, R.,, K. E. Broglie,, D. Friesem, R. M. Broglie,, and I. Chet. 1999. Molecular characterization of a novel beta-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. Gene 226:147154.
29. Corbucci, C.,, E. Cenci,, F. Skrzypek, E. Gabrielli,, P. Mosci,, J. F Ernst,, F. Bistoni,, and A. Vecchiarelli. 2007. Immune response to Candida albicans is preserved despite defect in O-mannosylation of secretory proteins. Med. Mycol. 45:709719.
30. Cox, G. M.,, H.C. McDade,, S.C. Chen,, S. C Tucker,, M. Gottfredsson,, L. C Wright,, T. C. Sorrell,, S. D Leidich,, A. Casadevall,, M. A. Ghannoum,, and J. R. Perfect. 2001. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol. Microbiol. 39:166175.
31. Croft, S. L., and, J. Engel. 2006. Miltefosine: discovery of the antileishmanial activity of phospholipid derivatives. Trans. R. Soc. Trop. Med. Hyg. 100 (Suppl 1): S4–S8.
32. Cruz, M. C.,, D.S. Fox, and, J. Heitman. 2001. Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans. EMBO J. 20:10201032.
33. de Almeida, M. L., and, N. Heise. 1993. Proteins anchored via glycosylphosphatidylinositol and solubilizing phospholipases in Trypanosoma cruzi. Biol. Res. 26:285312.
34. Del Poeta, M.,, M.C. Cruz,, M.E. Cardenas,, J.R. Perfect,, and J. Heitman. 2000. Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob. Agents Chemother. 44:739746.
35. Demczuk, A.,, N. Guha,, P.H. Nguyen,, P. Desai,, J. Chang,, K. Guzinska,, J. Rollins,, C. C Ghosh,, L. Goodwin,, and A. Vancura. 2008. Saccharomyces cerevisiae phospholipase C regulates transcription of Msn2p-dependent stressresponsive genes. Eukaryot. Cell 7:967979.
36. Dessen, A. 2000. Phospholipase A(2) enzymes: structural diversity in lipid messenger metabolism. Structure 8: R15–R22.
37. Dijkgraaf, G. J.,, M. Abe,, Y. Ohya,, and H. Bussey. 2002. Mutations in Fks1p affect the cell wall content of beta-1,3- and beta-1,6-glucan in Saccharomyces cerevisiae. Yeast 19:671690.
38. Djordjevic, J. T.,, M. Del Poeta, T. C. Sorrell,, K.M. Turner,, and L. C. Wright. 2005. Secretion of cryptococcal phospholipase B1 (PLB1) is regulated by a glycosylphosphatidylinositol (GPI) anchor. Biochem. J. 389:803812.
39. Doering, T. L., and, R. Schekman. 1996. GPI anchor attachment is required for Gas1p transport from the endoplasmic reticulum in COP II vesicles. EMBO J. 15:182191.
40. Douglas, C. M.,, J. A. D’Ippolito,, G.J. Shei,, M. Meinz,, J. Onishi,, J. A Marrinan,, W. Li,, G. K Abruzzo,, A. Flattery,, K. Bartizal,, A. Mitchell,, and M. B. Kurtz. 1997. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 41:24712479.
41. Douglas, C. M.,, F. Foor,, J. A Marrinan,, N. Morin,, J. B Nielsen,, A. M. Dahl,, P. Mazur,, W. Baginsky,, W. Li,, M. el-Sherbeini, et al. 1994. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc. Natl. Acad. Sci. USA 91:1290712911.
42. Douglas, C. M.,, J.A. Marrinan,, W. Li,, and M. B. Kurtz. 1994. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-beta-D-glucan synthase. J. Bacteriol. 176:56865696.
43. Dubois, M.,, K.A. Gilles,, J.K. Hamilton,, P.A. Rebers,, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350356.
44. Eisenman, H. C.,, J.D. Nosanchuk,, J.B. Webber,, R. J Emerson,, T. A. Camesano,, and A. Casadevall. 2005. Microstructure of cell wall-associated melanin in the human pathogenic fungus Cryptococcus neoformans. Biochemistry 44:36833693.
45. el-Sherbeini, M., and, J. A. Clemas. 1995. Cloning and characterization of GNS1: a Saccharomyces cerevisiae gene involved in synthesis of 1,3-beta-glucan in vitro. J. Bacteriol. 177:32273234.
46. Fan, W.,, A. Idnurm,, J. Breger, E. Mylonakis,, and J. Heitman. 2007. Eca1, a sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, is involved in stress tolerance and virulence in Cryptococcus neoformans. Infect. Immun. 75:33943405.
47. Feldmesser, M.,, Y. Kress,, A. Mednick,, and A. Casadevall. 2000. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J. Infect. Dis. 182:17911795.
48. Feldmesser, M.,, Y. Kress,, P. Novikoff,, and A. Casadevall. 2000. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68:42254237.
49. Flick, J. S., and, J. Thorner. 1998. An essential function of a phosphoinositide-specific phospholipase C is relieved by inhibition of a cyclin-dependent protein kinase in the yeast Saccharomyces cerevisiae. Genetics 148:3347.
50. Flick, J. S., and, J. Thorner. 1993. Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:58615876.
51. Fox, D. S.,, G.M. Cox, and, J. Heitman. 2003. Phospholipidbinding protein Cts1 controls septation and functions coordinately with calcineurin in Cryptococcus neoformans. Eukaryot. Cell 2:10251035.
52. Fox, D. S.,, M.C. Cruz,, R.A. Sia,, H. Ke,, G. M Cox,, M. E. Cardenas,, and J. Heitman. 2001. Calcineurin regulatory subunit is essential for virulence and mediates interactions with FKBP12-FK506 in Cryptococcus neoformans. Mol. Microbiol. 39:835849.
53. Fox, D. S., and, J. Heitman. 2005. Calcineurin-binding protein Cbp1 directs the specificity of calcineurin-dependent hyphal elongation during mating in Cryptococcus neoformans. Eukaryot. Cell 4:15261538.
54. Fox, D. S., and, J. Heitman. 2002. Good fungi gone bad: the corruption of calcineurin. Bioessays 24:894903.
55. Frost, D.,, K. Brandt,, C. Estill,, and R. Goldman. 1997. Partial purification of (1,3)-beta-glucan synthase from Candida albicans. FEMS Microbiol. Lett. 146:255261.
56. Fujii, T., H. Shimoi, and, Y. Iimura. 1999. Structure of the glucan-binding sugar chain of Tip1p, a cell wall protein of Saccharomyces cerevisiae. Biochim. Biophys. Acta 1427:133144.
57. Gacser, A.,, D. Trofa,, W. Schafer, and, J. D. Nosanchuk. 2007. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J. Clin. Invest. 117:30493058.
58. Ganendren, R.,, E. Carter,, T. Sorrell, F. Widmer,, and L. Wright. 2006. Phospholipase B activity enhances adhesion of Cryptococcus neoformans to a human lung epithelial cell line. Microbes Infect. 8:10061015.
59. Ganendren, R.,, F. Widmer,, V. Singhal, C. Wilson,, T. Sorrell,, and L. Wright. 2004. In vitro antifungal activities of inhibitors of phospholipases from the fungal pathogen Cryptococcus neoformans. Antimicrob. Agents Chemother. 48:15611569.
60. Gerik, K. J.,, M.J. Donlin,, C.E. Soto,, A. M Banks,, I. R. Banks,, M. A Maligie,, C. P. Selitrennikoff,, and J. K. Lodge. 2005. Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neoformans. Mol. Microbiol. 58:393408.
61. Ghannoum, M. A. 2000. Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 13:122143.
62. Gorlach, J.,, D.S. Fox,, N.S. Cutler,, G. M. Cox, J. R. Perfect,, and J. Heitman. 2000. Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans. EMBO J. 19:36183629.
63. Groll, A. H., and, T. J. Walsh. 2001. Caspofungin: pharmacology, safety and therapeutic potential in superficial and invasive fungal infections. Expert Opin. Investig. Drugs 10:15451558.
64. Gualtieri, T.,, E. Ragni,, L. Mizzi, U. Fascio,, and L. Popolo. 2004. The cell wall sensor Wsc1p is involved in reorganization of actin cytoskeleton in response to hypoosmotic shock in Saccharomyces cerevisiae. Yeast 21:11071120.
65. Hartland, R. P.,, C.A. Vermeulen,, F. M. Klis, J. H. Sietsma,, and J. G. Wessels. 1994. The linkage of (1–3)-beta-glucan to chitin during cell wall assembly in Saccharomyces cerevisiae. Yeast 10:15911599.
66. Heinz, D. W., L. O. Essen, and, R. L. Williams. 1998. Structural and mechanistic comparison of prokaryotic and eukaryotic phosphoinositide-specific phospholipases C. J. Mol. Biol. 275:635650.
67. Herman, P. K., and, S. D. Emr. 1990. Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:67426754.
68. Heung, L. J.,, A.E. Kaiser,, C. Luberto,, and M. Del Poeta. 2005. The role and mechanism of diacylglycerolprotein kinase C1 signaling in melanogenesis by Cryptococcus neoformans. J. Biol. Chem. 280:2854728555.
69. Heung, L. J.,, C. Luberto, A. Plowden,, Y.A. Hannun,, and M. Del Poeta. 2004. The sphingolipid pathway regulates Pkc1 through the formation of diacylglycerol in Cryptococcus neoformans. J. Biol. Chem. 279:2114421153.
70. Himmelreich, U.,, C. Allen,, S. Dowd, R. Malik,, B. P. Shehan, C. Mountford,, and T. C. Sorrell. 2003. Identification of metabolites of importance in the pathogenesis of pulmonary cryptococcoma using nuclear magnetic resonance spectroscopy. Microbes Infect. 5:285290.
71. Himmelreich, U.,, T.E. Dzendrowskyj,, C. Allen, S. Dowd,, R. Malik,, B. P Shehan,, P. Russell,, C. E. Mountford,, and T. C. Sorrell. 2001. Cryptococcomas distinguished from gliomas with MR spectroscopy: an experimental rat and cell culture study. Radiology 220:122128.
72. Ho, Y.,, A. Gruhler,, A. Heilbut, G. D. Bader,, L. Moore,, S. L Adams,, A. Millar,, P. Taylor,, K. Bennett,, K. Boutilier,, L. Yang,, C. Wolting,, I. Donaldson,, S. Schandorff,, J. Shewnarane,, M. Vo,, J. Taggart,, M. Goudreault,, B. Muskat,, C. Alfarano,, D. Dewar,, Z. Lin,, K. Michalickova,, A. R Willems,, H. Sassi,, P. A Nielsen,, K. J. Rasmussen,, J. R Andersen,, L. E. Johansen,, L. H Hansen,, H. Jespersen,, A. Podtelejnikov,, E. Nielsen,, J. Crawford,, V. Poulsen,, B. D Sorensen,, J. Matthiesen,, R. C Hendrickson,, F. Gleeson,, T. Pawson,, M. F Moran,, D. Durocher,, M. Mann,, C. W Hogue,, D. Figeys,, and M. Tyers. 2002. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180183.
73. Hoang, A. 2001. Caspofungin acetate: an antifungal agent. Am. J. Health Syst. Pharm. 58:12061214.
74. Hu, G.,, M. Hacham,, S.R. Waterman,, J. Panepinto,, S. Shin,, X. Liu,, J. Gibbons,, T. Valyi-Nagy,, K. Obara,, H. A Jaffe,, Y. Ohsumi,, and P. R. Williamson. 2008. PI3K signaling of autophagy is required for starvation tolerance and virulence of Cryptococcus neoformans. J. Clin. Invest. 118:11861197.
75. Hu, G.,, B.R. Steen,, T. Lian, A. P. Sham,, N. Tam, K. L. Tangen,, and J. W. Kronstad. 2007. Transcriptional regulation by protein kinase A in Cryptococcus neoformans. PLoS Pathog. 3: e42.
76. Hube, B.,, F. Stehr,, M. Bossenz, A. Mazur,, M. Kretschmar,, and W. Schafer. 2000. Secreted lipases of Candida albicans: cloning, characterisation and expression analysis of a new gene family with at least ten members. Arch. Microbiol. 174:362374.
77. Idnurm, A.,, Y.S. Bahn,, K. Nielsen, X. Lin,, J.A. Fraser,, and J. Heitman. 2005. Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat. Rev. Microbiol. 3:753764.
78. Idnurm, A.,, F. J. Walton,, A. Floyd, J. L. Reedy,, and J. Heitman. 2009. Identification of ENA1 as a virulence gene of the human pathogenic fungus Cryptococcus neoformans through signaturetagged insertional mutagenesis. Eukaryot. Cell 8:315326.
79. Ikeda, R.,, T. Sugita,, E.S. Jacobson,, and T. Shinoda. 2003. Effects of melanin upon susceptibility of Cryptococcus to antifungals. Microbiol. Immunol. 47:271277.
80. Inoue, S. B.,, N. Takewaki,, T. Takasuka,, T. Mio,, M. Adachi,, Y. Fujii,, C. Miyamoto,, M. Arisawa,, Y. Furuichi,, and T. Watanabe. 1995. Characterization and gene cloning of 1,3-beta-D-glucan synthase from Saccharomyces cerevisiae. Eur. J. Biochem. 231:845854.
81. James, P. G.,, R. Cherniak, R. G. Jones,, C.A. Stortz,, and E. Reiss. 1990. Cell-wall glucans of Cryptococcus neoformans Cap 67. Carbohydr. Res. 198:2338.
82. Jones, P. M.,, K.M. Turner,, J.T. Djordjevic,, T. C Sorrell,, L. C. Wright,, and A. M. George. 2007. Role of conserved active site residues in catalysis by phospholipase B1 from Cryptococcus neoformans. Biochemistry 46:1002410032.
83. Kahn, J. N.,, M.J. Hsu,, F. Racine, R. Giacobbe,, and M. Motyl. 2006. Caspofungin susceptibility in aspergillus and non-aspergillus molds: inhibition of glucan synthase and reduction of beta-D-1,3 glucan levels in culture. Antimicrob. Agents Chemother. 50:22142216.
84. Kametaka, S.,, T. Okano,, M. Ohsumi,, and Y. Ohsumi. 1998. Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae. J. Biol. Chem. 273:2228422291.
85. Kapteyn, J. C.,, R.C. Montijn,, G.J. Dijkgraaf,, and F. M. Klis. 1994. Identification of beta-1,6-glucosylated cell wall proteins in yeast and hyphal forms of Candida albicans. Eur. J. Cell. Biol. 65:402407.
86. Katan, M. 1998. Families of phosphoinositide-specific phospholipase C: structure and function. Biochim. Biophys. Acta. 1436:517.
87. Kelly, R.,, E. Register,, M.J. Hsu,, M. Kurtz,, and J. Nielsen. 1996. Isolation of a gene involved in 1,3-beta-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein. J. Bacteriol. 178:43814391.
88. Kesson, A. M.,, M.C. Bellemore,, T. J. O’Mara, D. H. Ellis,, and T. C. Sorrell. 2009. Scedosporium prolificans osteomyelitis in an immunocompetent child treated with a novel agent, hexadecylphospocholine (miltefosine), in combination with terbinafine and voriconazole: a case report. Clin. Infect. Dis. 48:12571261.
89. Kim, H. N., and, H. S. Chung. 2008. Caveolin-1 inhibits membrane-type 1 matrix metalloproteinase activity. BMB Rep. 41:858862.
90. Kitagaki, H.,, H. Wu,, H. Shimoi,, and K. Ito. 2002. Two homologous genes, DCW1 (YKL046c) and DFG5, are essential for cell growth and encode glycosylphosphatidylinositol (GPI)-anchored membrane proteins required for cell wall biogenesis in Saccharomyces cerevisiae. Mol. Microbiol. 46:10111022.
91. Klis, F.,, P. Mol,, K. Hellingwerf,, and S. Brul. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26:239.
92. Klis, F. M.,, P. de Groot, and, K. Hellingwerf. 2001. Molecular organization of the cell wall of Candida albicans. Med. Mycol. 39:18.
93. Kollar, R.,, E. Petrakova,, G. Ashwell, P. W. Robbins,, and E. Cabib. 1995. Architecture of the yeast cell wall. The linkage between chitin and beta(1–>3)-glucan. J. Biol. Chem. 270:11701178.
94. Kollar, R.,, B.B. Reinhold,, E. Petrakova, H. J. Yeh,, G. Ashwell,, J. Drgonova,, J. C Kapteyn,, F. M. Klis,, and E. Cabib. 1997. Architecture of the yeast cell wall. Beta(1– >6)-glucan interconnects mannoprotein, beta(1–>)3-glucan, and chitin. J. Biol. Chem. 272:1776217775.
95. Kozubowski, L.,, S.C. Lee, and, J. Heitman. 2009. Signalling pathways in the pathogenesis of Cryptococcus. Cell. Microbiol. 11:370380.
96. Kraus, P. R.,, D.S. Fox,, G.M. Cox,, and J. Heitman. 2003. The Cryptococcus neoformans MAP kinase Mpk1 regulates cell integrity in response to antifungal drugs and loss of calcineurin function. Mol. Microbiol. 48:13771387.
97. Kristiansen, S., and, E. A. Richter. 2002. GLUT4-con-taining vesicles are released from membranes by phospholipase D cleavage of a GPI anchor. Am. J. Physiol. Endocrinol. Metab. 283: E374–E382.
98. Kunze, D.,, I. Melzer,, D. Bennett, D. Sanglard,, D. MacCallum,, J. Norskau,, D. C Coleman,, F. C. Odds,, W. Schafer,, and B. Hube. 2005. Functional analysis of the phospholipase C gene CaPLC1 and two unusual phospholipase C genes, CaPLC2 and CaPLC3, of Candida albicans. Microbiology 151:33813394.
99. Leidich, S. D.,, A.S. Ibrahim,, Y. Fu,, A. Koul,, C. Jessup,, J. Vitullo,, W. Fonzi,, F. Mirbod,, S. Nakashima,, Y. Nozawa,, and M. A. Ghannoum. 1998. Cloning and disruption of caPLB1, a phospholipase B gene involved in the pathogenicity of Candida albicans. J. Biol. Chem. 273:2607826086.
100. Lesage, G., and, H. Bussey. 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 70:317343.
101. Lesage, G.,, A.M. Sdicu,, P. Menard, J. Shapiro,, S. Hussein,, and H. Bussey. 2004. Analysis of beta-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167:3549.
102. Levitz, S. M., and, C. A. Specht. 2006. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res. 6:513524.
103. Li, H., N. Page, and, H. Bussey. 2002. Actin patch assembly proteins Las17p and Sla1p restrict cell wall growth to daughter cells and interact with cis-Golgi protein Kre6p. Yeast 19:10971112.
104. Liu, J.,, J.D. Farmer,, W.S. Lane,, J. Friedman, I. Weissman,, and S. L. Schreiber. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66:807815.
105. Liu, M.,, P. Du,, G. Heinrich, G. M. Cox,, and A. Gelli. 2006. Cch1 mediates calcium entry in Cryptococcus neoformans and is essential in low-calcium environments. Eukaryot. Cell 5:17881796.
106. Loftus, B. J.,, E. Fung,, P. Roncaglia,, D. Rowley,, P. Amedeo,, D. Bruno,, J. Vamathevan,, M. Miranda,, I. J Anderson,, J. A. Fraser,, J. E Allen,, I. E. Bosdet,, M. R Brent,, R. Chiu,, T. L Doering,, M. J. Donlin,, C. A. D’Souza,, D. S Fox,, V. Grinberg,, J. Fu,, M. Fukushima,, B. J Haas,, J. C. Huang,, G. Janbon,, S. J Jones,, H. L. Koo,, M. I Krzywinski,, J. K. KwonChung,, K. B Lengeler,, R. Maiti,, M. A Marra,, R. E. Marra,, C. A Mathewson,, T. G. Mitchell,, M. Pertea,, F. R Riggs,, S. L. Salzberg,, J. E Schein,, A. Shvartsbeyn,, H. Shin,, M. Shumway,, C. A Specht,, B. B. Suh,, A. Tenney,, T. R Utterback,, B. L. Wickes,, J. R Wortman,, N. H. Wye,, J. W Kronstad,, J. K. Lodge,, J. Heitman,, R. W. Davis,, C. M. Fraser,, and R. W. Hyman. 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307:13211324.
107. Lopez-Ribot, J. L.,, D.A. Cortlandt,, D. C. Straus, K. J. Morrow,, and W. L. Chaffin. 1995. Complex interaction between different proteinaceous components within the cell-wall structure of Candida albicans. Mycopathologia 132:8793.
108. Ma, H.,, J. E Croudace,, D. A. Lammas, and, R. C. May. 2006. Expulsion of live pathogenic yeast by macrophages. Curr. Biol. 16:21562160.
109. Maligie, M. A., and, C. P. Selitrennikoff. 2005. Cryptococcus neoformans resistance to echinocandins: (1,3)betaglucan synthase activity is sensitive to echinocandins. Antimicrob. Agents Chemother. 49:28512856.
110. Markovich, S.,, A. Yekutiel,, I. Shalit, Y. Shadkchan,, and N. Osherov. 2004. Genomic approach to identification of mutations affecting caspofungin susceptibility in Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 48:3871876.
111. Mazur, P., and, W. Baginsky. 1996. In vitro activity of 1,3-beta-D-glucan synthase requires the GTP-binding protein Rho1. J. Biol. Chem. 271:1460414609.
112. Mazur, P.,, N. Morin,, W. Baginsky, M. el-Sherbeini,, J. A. Clemas, J. B. Nielsen,, and F. Foor. 1995. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol. Cell. Biol. 15:56715681.
113. Mio, T., T. Yamada-Okabe,, T. Yabe, T. Nakajima,, M. Arisawa,, and H. Yamada-Okabe. 1997. Isolation of the Candida albicans homologs of Saccharomyces cerevisiae KRE6 and SKN1: expression and physiological function. J. Bacteriol. 179:23632372.
114. Montijn, R. C.,, E. Vink, W. H. Muller,, A. J. Verkleij, H. Van Den Ende, B. Henrissat,, and F. M. Klis. 1999. Localization of synthesis of beta1,6-glucan in Saccharomyces cerevisiae. J. Bacteriol. 181:74147420.
115. Mukherjee, P. K.,, K.R. Seshan,, S.D. Leidich,, J. Chandra,, G. T. Cole,, and M. A. Ghannoum. 2001. Reintroduction of the PLB1 gene into Candida albicans restores virulence in vivo. Microbiology 147:25852597.
116. Muller, G.,, E. Gross,, S. Wied,, and W. Bandlow. 1996. Glucose-induced sequential processing of a glycosylphosphatidylinositol-anchored ectoprotein in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:442456.
117. Muniz, M., and, H. Riezman. 2000. Intracellular transport of GPI-anchored proteins. EMBO J. 19:1015.
118. Nakashima, S.,, Y. Banno,, T. Watanabe,, Y. Nakamura,, T. Mizutani,, H. Sakai,, Y. Zhao,, Y. Sugimoto,, and Y. Nozawa. 1995. Deletion and site-directed mutagenesis of EF-hand domain of phospholipase C-delta 1: effects on its activity. Biochem. Biophys. Res. Commun. 211:365369.
119. Ng, C. K.,, D. Obando, F. Widmer,, L. C. Wright, T. C. Sorrell,, and K. A. Jolliffe. 2006. Correlation of antifungal activity with fungal phospholipase inhibition using a series of bisquaternary ammonium salts. J. Med. Chem. 49:811816.
120. Nishizuka, Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607614.
121. Noh, D. Y., S. H. Shin, and, S. G. Rhee. 1995. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim. Biophys. Acta 1242:99113.
122. Noverr, M. C.,, G.M. Cox,, J.R. Perfect,, and G. B. Huffnagle. 2003. Role of PLB1 in pulmonary inflammation and cryptococcal eicosanoid production. Infect. Immun. 71:15381547.
123. Noverr, M. C.,, G. B. Toews, and, G. B. Huffnagle. 2002. Production of prostaglandins and leukotrienes by pathogenic fungi. Infect. Immun. 70:400402.
124. Ochocka, A. M., and, T. Pawelczyk. 2003. Isozymes delta of phosphoinositide-specific phospholipase C and their role in signal transduction in the cell. Acta. Biochim. Pol. 50:10971110.
125. Odom, A.,, S. Muir,, E. Lim, D. L. Toffaletti,, J. Perfect,, and J. Heitman. 1997. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J. 16:25762589.
126. Osherov, N.,, G. S May,, N. D. Albert, and, D. P. Kontoyiannis. 2002. Overexpression of Sbe2p, a Golgi protein, results in resistance to caspofungin in Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 46:24622469.
127. Paderu, P., S. Park, and, D. S. Perlin. 2004. Caspofungin uptake is mediated by a high-affinity transporter in Candida albicans. Antimicrob. Agents Chemother. 48:38453849.
128. Panepinto, J.,, K. Komperda,, S. Frases, Y. D. Park,, J. T. Djordjevic, A. Casadevall,, and P. R. Williamson. 2009. Sec6-dependent sorting of fungal extracellular exosomes and laccase of Cryptococcus neoformans. Mol. Microbiol. 71:11651176.
129. Parkin, E. T.,, N.T. Watt,, A.J. Turner,, and N. M. Hooper. 2004. Dual mechanisms for shedding of the cellular prion protein. J. Biol. Chem. 279:1117011178.
130. Paterson, H. F.,, J.W. Savopoulos,, O. Perisic,, R. Cheung,, M. V Ellis,, R. L. Williams,, and M. Katan. 1995. Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem. J. 312 (Pt 3):661666.
131. Pickard, R. T.,, X.G. Chiou,, B. A. Strifler,, M. R. DeFelippis,, P. A Hyslop,, A. L. Tebbe,, Y. K Yee,, L. J. Reynolds,, E. A Dennis,, R. M. Kramer,, and J. D. Sharp. 1996. Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and arginine. J. Biol. Chem. 271:1922519231.
132. Ponting, C. P.,, K. Hofmann, and, P. Bork. 1999. A latrophilin/CL-1-like GPS domain in polycystin-1. Curr. Biol. 9: R585R588.
133. Prakobphol, A.,, H. Leffler,, C. I. Hoover, and, S. J. Fisher. 1997. Palmitoyl carnitine, a lysophospholipasetransacylase inhibitor, prevents Candida adherence in vitro. FEMS Microbiol. Lett. 151:8994.
134. Pukkila-Worley, R.,, Q.D. Gerrald,, P.R. Kraus,, M.J. Boily,, M. J Davis,, S. S. Giles,, G. M Cox,, J. Heitman,, and J. A. Alspaugh. 2005. Transcriptional network of multiple capsule and melanin genes governed by the Cryptococcus neoformans cyclic AMP cascade. Eukaryot. Cell 4:190201.
135. Radding, J. A., S. A. Heidler, and, W. W. Turner. 1998. Photoaffinity analog of the semisynthetic echinocandin LY303366: identification of echinocandin targets in Candida albicans. Antimicrob. Agents Chemother. 42:11871194.
136. Reese, A. J., and, T. L. Doering. 2003. Cell wall alpha-1,3-glucan is required to anchor the Cryptococcus neoformans capsule. Mol. Microbiol. 50:14011409.
137. Rhee, S. G. 2001. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70:281312.
138. Rodrigues, M. L.,, E. S. Nakayasu,, D. L. Oliveira,, L. Nimrichter,, J. D. Nosanchuk,, I. C. Almeida,, and A. Casadevall. 2008. Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot. Cell 7:5867.
139. Rodrigues, M. L.,, L. Nimrichter,, D. L. Oliveira,, S. Frases,, K. Miranda,, O. Zaragoza,, M. Alvarez,, A. Nakouzi,, M. Feldmesser,, and A. Casadevall. 2007. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot. Cell 6:4859.
140. Roemer, T., and, H. Bussey. 1991. Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc. Natl. Acad. Sci. USA 88:1129511299.
141. Roemer, T., S. Delaney, and, H. Bussey. 1993. SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis. Mol. Cell. Biol. 13:40394048.
142. Roemer, T.,, G. Paravicini,, M.A. Payton,, and H. Bussey. 1994. Characterization of the yeast (1–>6)-beta-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. J Cell. Biol. 127:567579.
143. Roh, D. H.,, B. Bowers,, H. Riezman,, and E. Cabib. 2002. Rho1p mutations specific for regulation of beta(1– >3)glucan synthesis and the order of assembly of the yeast cell wall. Mol. Microbiol. 44:11671183.
144. Roman, E.,, D. M. Arana,, C. Nombela, R. AlonsoMonge,, and J. Pla. 2007. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 15:181190.
145. Sankaran, K., and, H. B. Herscowitz. 1995. Phenotypic and functional heterogeneity of the murine alveolar macrophage-derived cell line MH-S. J. Leukoc. Biol. 57:562568.
146. Santangelo, R.,, H. Zoellner,, T. Sorrell,, C. Wilson,, C. Donald,, J. Djordjevic, Y., Shounan,, and L. Wright. 2004. Role of extracellular phospholipases and mononu-clear phagocytes in dissemination of cryptococcosis in a murine model. Infect. Immun. 72:22292239.
147. Santangelo, R. T.,, S.C. Chen,, T.C. Sorrell,, and L. C. Wright. 2005. Detection of antibodies to phospholipase B in patients infected with Cryptococcus neoformans by enzyme-linked immunosorbent assay (ELISA). Med. Mycol. 43:335341.
148. Santangelo, R. T.,, M. H. Nouri-Sorkhabi,, T. C. Sor-rell,, M. Cagney,, S. C Chen,, P. W. Kuchel,, and L. C. Wright. 1999. Biochemical and functional characterisation of secreted phospholipase activities from Cryptococcus neoformans in their naturally occurring state. J. Med. Microbiol. 48:731740.
149. Schimoler-O’Rourke, R.,, S. Renault,, W. Mo, and, C. P. Selitrennikoff. 2003. Neurospora crassa FKS protein binds to the (1,3)beta-glucan synthase substrate, UDP-glucose. Curr. Microbiol. 46:408412.
150. Sekiya-Kawasaki, M.,, M. Abe,, A. Saka,, D. Watanabe,, K. Kono,, M. Minemura-Asakawa,, S. Ishihara,, T. Watanabe,, and Y. Ohya. 2002. Dissection of upstream regulatory components of the Rho1p effector, 1,3-beta-glucan syn-thase, in Saccharomyces cerevisiae. Genetics 162:663676.
151. Shahinian, S., and, H. Bussey. 2000. beta-1,6-Glucan synthesis in Saccharomyces cerevisiae. Mol. Microbiol. 35:477489.
152. Sharp, J. D.,, D. L. White,, X. G. Chiou,, T. Goodson,, G. C. Gamboa,, D. McClure,, S. Burgett,, J. Hoskins,, P. L. Skatrud,, J. R. Sportsman, et al. 1991. Molecular cloning and expression of human Ca(2+)-sensitive cytosolic phospholipase A2. J. Biol. Chem. 266:1485014853.
153. Shen, D. K.,, A.D. Noodeh,, A. Kazemi,, R. Grillot,, G. Robson,, and J. F. Brugere. 2004. Characterisation and expression of phospholipases B from the opportunistic fungus Aspergillus fumigatus. FEMS Microbiol. Lett. 239:8793.
154. Siafakas, A. R.,, T.C. Sorrell,, L.C. Wright,, C. Wilson,, M. Larsen,, R. Boadle,, P. R. Williamson,, and J. T. Djordjevic. 2007. Cell wall-linked cryptococcal phospholipase B1 is a source of secreted enzyme and a determinant of cell wall integrity. J. Biol. Chem. 282:3750837514.
155. Siafakas, A. R.,, L.C. Wright,, T.C. Sorrell,, and J. T. Djordjevic. 2006. Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. Eukaryot. Cell 5:488498.
156. Singer, W. D., H. A. Brown, and, P. C. Sternweis. 1997. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu. Rev. Biochem. 66:475509.
157. Slessareva, J. E.,, S.M. Routt,, B. Temple, V. A. Bankaitis,, and H. G. Dohlman. 2006. Activation of the phosphatidylinositol 3-kinase Vps34 by a G protein alpha subunit at the endosome. Cell 126:191203.
158. Smits, G. J.,, J.C. Kapteyn,, H. van den Ende,, and F. M. Klis. 1999. Cell wall dynamics in yeast. Curr. Opin. Microbiol. 2:348352.
159. Sorrell, T., and, S. C. Chen. 2009. Fungal-derived immune modulating molecules. Adv. Exp. Med. Biol. 666:108120.
160. Stack, J. H.,, P.K. Herman,, P.V. Schu,, and S. D. Emr. 1993. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 12:21952204.
161. Steinbach, W. J.,, R. A. Cramer,, B.Z. Perfect,, C. Henn,, K. Nielsen,, J. Heitman,, and J. R. Perfect. 2007. Calcineurin inhibition or mutation enhances cell wall inhibitors against Aspergillus fumigatus. Antimicrob. Agents Chemother. 5:418430.
162. Steinbach, W. J.,, J. L. Reedy,, R. A. Cramer, Jr.,, J. R. Perfect,, and J. Heitman. 2007. Harnessing calcineurin as a novel antiinfective agent against invasive fungal infections. Nat. Rev. Microbiol. 5:418430.
163. Steinbach, W. J.,, W.A. Schell,, J.R. Blankenship,, C. Onyewu,, J. Heitman,, and J. R. Perfect. 2004. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob. Agents Chemother. 48:16641669.
164. Stevens, D. A.,, M. Espiritu, and, R. Parmar. 2004. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob. Agents Chemother. 48:34073411.
165. Stie, J., and, D. Fox. 2008. Calcineurin regulation in fungi and beyond. Eukaryot. Cell 7:177186.
166. Stulnig, T. M.,, M. Berger,, T. Sigmund,, H. Stockinger,, V. Horejsi,, and W. Waldhausl. 1997. Signal transduction via glycosyl phosphatidylinositol-anchored proteins in T cells is inhibited by lowering cellular cholesterol. J. Biol. Chem. 272:1924219247.
167. Sutterlin, C.,, T. L. Doering,, F. Schimmoller, S. Schroder,, and H. Riezman. 1997. specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast. J. Cell. Sci. 110 (Pt 21):27032714.
168. Theiss, S.,, G. Ishdorj,, A. Brenot, M. Kretschmar,, C.Y. Lan,, T. Nichterlein,, J. Hacker,, S. Nigam,, N. Agabian,, and G. A. Kohler. 2006. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence. Int. J. Med. Microbiol. 296:405420.
169. Thompson, J. R.,, C. M. Douglas,, W. Li,, C. K. Jue,, B. Pramanik,, X. Yuan,, T. H. Rude,, D. L. Toffaletti,, J. R. Perfect,, and M. Kurtz. 1999. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function. J. Bacteriol. 181:444453.
170. Tisi, R.,, S. Baldassa,, F. Belotti,, and E. Martegani. 2002. Phospholipase C is required for glucose-induced calcium influx in budding yeast. FEBS Lett. 520:133138.
171. Tucker, S. C., and, A. Casadevall. 2002. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc. Natl. Acad. Sci. USA 99:31653170.
172. Turner, K. M. 2006. Identification of residues critical for the function of the fungal virulence factor phospholipase B1 from Cryptococcus neoformans. Doctoral thesis.
173. Turner, K. M.,, L.C. Wright,, T.C. Sorrell,, and J. T. Djordjevic. 2006. N-linked glycosylation sites affect secretion of cryptococcal phospholipase B1, irrespective of glycosylphosphatidylinositol anchoring. Biochim. Biophys. Acta 1760:15691579.
174. van den Bosch, J. S.,, A.G. Smals,, I.M. Valk,, and P. W. Kloppenborg. 1982. Lack of difference in growth stimulating effect between weekly single and multiple human chorionic gonadotrophin administration in boys with delayed puberty. Clin. Endocrinol. 16:19.
175. van Duin, D., A. Casadevall, and, J. D. Nosanchuk. 2002. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin. Antimicrob. Agents Chemother. 46:33943400.
176. Verna, J.,, A. Lodder,, K. Lee, A. Vagts,, and R. Ballester. 1997. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:1380413809.
177. Vidotto, V.,, A. Sinicco,, D. Di Fraia,, S. Cardaropoli,, S. Aoki,, and S. Ito-Kuwa. 1996. Phospholipase activity in Cryptococcus neoformans. Mycopathologia 136:119123.
178. Wang, Y., P. Aisen, and, A. Casadevall. 1995. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect. Immun. 63:31313136.
179. Widmer, F.,, L.C. Wright,, D. Obando, R. Handke,, R. Ganendren, D. H. Ellis,, and T. C. Sorrell. 2006. Hexadecylphosphocholine (miltefosine) has broadspectrum fungicidal activity and is efficacious in a mouse model of cryptococcosis. Antimicrob. Agents Chemother. 50:414421.
180. Wiederhold, N. P.,, D.P. Kontoyiannis,, R.A. Prince,, and R. E. Lewis. 2005. Attenuation of the activity of caspofungin at high concentrations against candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrob. Agents Chemother. 49:51465148.
181. Wright, L. C.,, J. Payne, R. T. Santangelo,, M.F. Simpanya,, S. C Chen,, F. Widmer,, and T. C. Sorrell. 2004. Cryptococcal phospholipases: a novel lysophospholipase discovered in the pathogenic fungus Cryptococcus gattii. Biochem. J. 384:377384.
182. Wright, L. C.,, R.M. Santangelo,, R. Ganendren,, J. Payne,, J. T. Djordjevic,, and T. C. Sorrell. 2007. Cryptococcal lipid metabolism: phospholipase B1 is implicated in transcellular metabolism of macrophagederived lipids. Eukaryot. Cell 6:3747.
183. Yoko-o, T.,, Y. Matsui,, H. Yagisawa,, H. Nojima,, I. Uno,, and A. Toh-e. 1993. The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth. Proc. Natl. Acad. Sci. USA 90:18041808.
184. Yoneda, A., and, T. L. Doering. 2006. A eukaryotic capsular polysaccharide is synthesized intracellularly and secreted via exocytosis. Mol. Biol. Cell. 17:51315140.
185. York, J. D.,, S. Guo, A. R. Odom,, B.D. Spiegelberg,, and L. E. Stolz. 2001. An expanded view of inositol signaling. Adv. Enzyme Regul. 41:5771.
186. Zhao, C.,, U. S. Jung,, P. Garrett-Engele,, T. Roe,, M. S. Cyert,, and D. E. Levin. 1998. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol. Biol. Cell 18:10131022.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error