1887

Chapter 19 : : Nonvertebrate Hosts and the Emergence of Virulence

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

: Nonvertebrate Hosts and the Emergence of Virulence, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap19-2.gif

Abstract:

Several nonvertebrate hosts has been used to investigate virulence traits and therapies for several bacterial and fungal pathogens. This chapter details the use of heterologous hosts for the study of . A striking finding was the correlation between known mammalian virulence factors such as the capsule, melanin, and phospholipase and their necessity for survival in amoebae. Many of the assays used when working with macrophages can be modified for use with , including killing assays, trypan blue staining, and phagocytosis assays. Although many virulence traits have shown some concordance in their requirement for both mammalian and protozoan virulence, there are some discrepancies. Two assays have been developed using as a host to study . The first assay, termed the ‘’killing assay’’, was initially utilized to identify mutants reduced in virulence. Another assay has been developed based on the observation of smaller nematode brood size when infected with pathogenic . Mutants of Pka1 or Gpa1 (the α subunit) are reduced in virulence in , similar to the observed virulence in mice studies. Acapsular mutants also displayed attenuated virulence in and infection assays, although they remain virulent in infection assays. Since the genus includes a large set of organisms, all of which are also presumably under ameboid predator selection in soils and are able to survive in their environments, the avirulence of most species represents the absence of a complete trait set for animal hosts.

Citation: Coleman J, Chrisman C, Casadevall A, Mylonakis E. 2011. : Nonvertebrate Hosts and the Emergence of Virulence, p 261-267. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch19

Key Concept Ranking

Major Facilitator Superfamily
0.5217391
Immune Systems
0.40402845
0.5217391
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Interaction of and in liquid culture. The two organisms are shown after 2 h of incubation in phosphate-buffered saline. The () strain 24067 ingested by the () is indicated by the arrow. Image was taken at 40×.

Citation: Coleman J, Chrisman C, Casadevall A, Mylonakis E. 2011. : Nonvertebrate Hosts and the Emergence of Virulence, p 261-267. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Accumulation of in the gastrointestional tract of . Intact yeast cells are visible in the gastrointestional tract (black arrows) after feeding for 36 h on strain KN99α. The white arrows indicate the pharyngeal grinder of the digestive tract of . Photos reprinted from reference .

Citation: Coleman J, Chrisman C, Casadevall A, Mylonakis E. 2011. : Nonvertebrate Hosts and the Emergence of Virulence, p 261-267. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816858.ch19
1. Apidianakis,, Y.,, L. G. Rahme,, J. Heitman, F. M. Ausubel,, S. B. Calderwood, and, E. Mylonakis. 2004. Challenge of Drosophila melanogaster with Cryptococcus neoformans and role of the innate immune response. Eukaryot. Cell 3:413419.
2. Bergin, D.,, E. P. Reeves,, J. Renwick, F. B. Wientjes, and, K. Kavanagh. 2005. Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect. Immun. 73:41614170.
3. Casadevall, A. 2007. The cards of virulence and the global virulome. Microbe 1:359364.
4. Casadevall, A., and, L. A. Pirofski. 2007. Accidental virulence, cryptic pathogenesis, martians, lost hosts, and the pathogenicity of environmental microbes. Eukaryot. Cell 6:21692174.
5. Casadevall, A.,, J. N. Steenbergen, and, J. D. Nosanchuk. 2003. “Ready made” virulence and “dual use” virulence factors in pathogenic environmental fungi:- the Cryptococcus neoformans paradigm. Curr. Opin. Microbiol. 6:332337.
6. Castellani, A. 1931. An amoeba growing in cultures of a yeast. J. Trop. Med. Hyg. 33:188191.
7. Castellani, A. 1955. Phagocytic and destructive action of Hartmanella castellanii (Amoeba castellanii) on pathogenic encapsulated yeast-like fungus Torulopsis neoformans (Cryptococcus neoformans). Ann. Inst. Pasteur 89:17.
8. Chayakulkeeree,, M.,, T. C. Sorrell,, A. R. Siafakas,, C. F. Wilson,, N. Pantarat,, K. J. Gerik,, R. Boadle, and, J. T. Djordjevic. 2008. Role and mechanism of phosphatidylino-sitolspecific phospholipase C in survival and virulence of Cryptococcus neoformans. Mol. Microbiol. 69:809826.
9. Chrisman, C. J., and, A. Casadevall. 2005. The interaction of Cryptococcus neoformans with Acanthamoeba castellanii results in capsular enlargement, abstr. F-085. Abstr. 105th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
10. Couillault,, C.,, N. Pujol,, J. Reboul,, L. Sabatier,, J. F. Guichou,, Y. Kohara, and, J. J. Ewbank. 2004. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5:488494.
11. Fan, W.,, A. Idnurm,, J. Breger,, E. Mylonakis, and, J. Heitman. 2007. Eca1, a sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, is involved in stress tolerance and virulence in Cryptococcus neoformans. Infect. Immun. 75:33943405.
12. Feldmesser, M.,, Y. Kress,, P. Novikoff, and, A. Casadevall. 2000. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68:42254237.
13. Frases, S.,, S. Chaskes,, E. Dadachova, and, A. Casadevall. 2006. Induction by Klebsiella aerogenes of a melanin-like pigment in Cryptococcus neoformans. Appl. Environ. Microbiol. 72:15421550.
14. Fries,, B. C.,, D. L. Goldman,, R. Cherniak,, R. Ju, and, A. Casadevall. 1999. Phenotypic switching in Cryptococcus neoformans results in changes in cellular morphology and gluc-uronoxylomannan structure. Infect. Immun. 67:60766083.
15. Jong,, A.,, C.-H. Wu,, H.-M. Chen,, F. Luo,, K. J. Kwon-Chung,, Y. C. Chang,, C. W. LaMunyon,, A. Plaas, and, S.-H. Huang. 2007. Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection. Eu-karyot. Cell 6:14861496.
16. Kavanagh, K., and, E. P. Reeves. 2004. Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol. Rev. 28:101112.
17. Lemaitre, B., and, J. Hoffmann. 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25:697743.
18. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J.-M. Reichhart, and, J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent anti-fungal response in Drosophila adults. Cell 86:973983.
19. Malliaris, S. D.,, J. N. Steenbergen, and, A. Casadevall. 2004. Cryptococcus neoformans var. gattii can exploit Acanthamoeba castellanii for growth. Med. Mycol. 42:149158.
20. Means,, T. K.,, E. Mylonakis,, E. Tampakakis,, L. Puckett,, C. R. Stewart,, R. Pukkila-Worley,, S. E. Hickman,, K. J. Moore,, S. B. Calderwood,, N. Hacohen,, A. D. Luster, and, J. El-Khoury. 2009. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J. Exp. Med. 206:637653.
21. Mylonakis,, E.,, F. M. Ausubel,, J. R. Perfect,, J. Heitman, and, S. B. Calderwood. 2002. Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proc. Natl. Acad. Sci. USA 99:1567515680.
22. Mylonakis, E.,, A. Casadevall, and, F. M. Ausubel. 2007. Exploiting amoeboid and non-vertebrate animal model systems to study the virulence of human pathogenic fungi PLoS Pathog. 3:e101.
23. Mylonakis,, E.,, A. Idnurm,, R. Moreno, J. El Khoury,, J. B. Rottman,, F. M. Ausubel,, J. Heitman, and, S. B. Calderwood. 2004. Cryptococcus neoformans Kin1 protein kinase homologue, identified through a Caenorhabditis elegans screen, promotes virulence in mammals. Mol. Micro-biol. 54:407419.
24. Mylonakis,, E.,, R. Moreno,, J. B. El Khoury,, A. Idnurm,, J. Heitman,, S. B. Calderwood,, F. M. Ausubel, and, A. Diener. 2005. Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect. Immun. 73:38423850.
25. Neilson, J. B.,, M. H. Ivey, and, G. S. Bulmer. 1978. Cryptococcus neoformans: pseudohyphal forms surviving culture with Acanthamoeba polyphaga. Infect. Immun. 20:262266.
26. Nielsen,, K.,, G. M. Cox,, A. P. Litvintseva,, E. Mylonakis, S. D. Malliaris,, D. K. Benjamin, Jr.,, S. S. Giles,, T. G. Mitchell,, A. Casadevall,, J. R. Perfect, and, J. Heitman. 2005. Cryptococcus neoformansα strains preferentially disseminate to the central nervous system during coinfection. Infect. Immun. 73:49224933.
27. Petter, R.,, B. S. Kang,, T. Boekhout,, B. J. Davis, and, K. J. Kwon-Chung. 2001. A survey of heterobasidiomycetous yeasts for the presence of the genes homologous to virulence factors of Filobasidiella neoformans, CNLAC1 and CAP59. Microbiology 147:20292036.
28. Petzold,, E. W.,, U. Himmelreich,, E. Mylonakis,, T. Rude,, D. Toffaletti,, G. M. Cox,, J. L. Miller, and, J. R. Perfect. 2006. Characterization and regulation of the trehalose synthesis pathway and its importance in the pathogenicity of Cryptococcus neoformans. Infect. Immun. 74:58775887.
29. Pujol,, N.,, E. M. Link,, L. X. Liu,, C. L. Kurz,, G. Alloing,, M. W. Tan,, K. P. Ray,, R. Solari,, C. D. Johnson, and, J. J. Ewbank. 2001. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11:809821.
30. Pujol,, N.,, O. Zugasti,, D. Wong,, C. Couillault,, C. L. Kurz,, H. Schulenburg, and, J. J. Ewbank. 2008. Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLoS Pathog. 4:e1000105.
31. Robinson, B. S.,, S. S. Bamforth, and, P. J. Dobson. 2002. Density and diversity of protozoa in some arid Australian soils. J. Eukaryot. Microbiol. 49:449453.
32. Rodriguez-Zaragoza,, S.,, F. Rivera,, P. Bonilla,, E. Ramirez,, E. Gallegos,, A. Calderon,, R. Ortiz, and, D. Hernandez. 1993. Amoebological study of the atmosphere of San Luis Potosi, SLP, Mexico. J. Expo. Anal. Environ. Epidemiol. 3(Suppl. 1):229241.
33. Ruiz, A.,, R. A. Fromtling, and, G. S. Bulmer. 1981. Distribution of Cryptococcus neoformans in a natural site. Infect. Immun. 31:560563.
34. Ruiz, A.,, J. B. Neilson, and, G. S. Bulmer. 1982. Control of Cryptococcus neoformans in nature by biotic factors. Sabouraudia 20:2129.
35. Sheehan,, K. B.,, J. A. Fagg,, M. J. Ferris, and, J. M. Henson. 2003. PCR detection and analysis of the free-living amoeba Naegleria in hot springs in Yellowstone and Grand Teton National Parks. Appl. Environ. Microbiol. 69:59145918.
36. Steenbergen, J. N. 2003. The evolution of fungal virulence, Ph.D. thesis. Albert Einstein College of Medicine, Bronx, NY.
37. Steenbergen, J. N., and, A. Casadevall. 2003. The origin and maintenance of virulence for the human pathogenic fungus Cryptococcus neoformans. Microbes Infect. 5:667675.
38. Steenbergen,, J. N.,, J. D. Nosanchuk,, S. D. Malliaris, and, A. Casadevall. 2003. Cryptococcus neoformans virulence is enhanced after growth in the genetically malleable host Dictyostelium discoideum. Infect. Immun. 71:48624872.
39. Steenbergen, J. N.,, H. A. Shuman, and, A. Casadevall. 2001. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc. Natl. Acad. Sci. USA 98:1524515250.
40. Tang,, R. J.,, J. Breger,, A. Idnurm,, K. J. Gerik,, J. K. Lodge,, J. Heitman,, S. B. Calderwood, and, E. Mylonakis. 2005. Cryptococcus neoformans gene involved in mammalian pathogenesis identified by a Caenorhabditis elegans progeny-based approach. Infect. Immun. 73:82198225.
41. van den Berg,, M. C. W.,, J. Z. Woerlee,, H. Ma, and, R. C. May. 2006. Sex-dependent resistance to the pathogenic fungus Cryptococcus neoformans. Genetics 173:677683.
42. Zaragoza,, O.,, C. J. Chrisman,, M. V. Castelli,, S. Frases, M. Cuenca-Estrella, J. L. Rodríguez-Tudela, and, A. Casadevall. 2008. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell. Microbiol. 10:20432057.

Tables

Generic image for table
TABLE 1

Comparison of heterologous model hosts for

Citation: Coleman J, Chrisman C, Casadevall A, Mylonakis E. 2011. : Nonvertebrate Hosts and the Emergence of Virulence, p 261-267. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch19
Generic image for table
TABLE 2

virulence factors involved in pathogenesis on heterologous model hosts

Citation: Coleman J, Chrisman C, Casadevall A, Mylonakis E. 2011. : Nonvertebrate Hosts and the Emergence of Virulence, p 261-267. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error