Chapter 27 : T Cell and Dendritic Cell Immune Responses to

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

T Cell and Dendritic Cell Immune Responses to , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap27-2.gif


This chapter reviews current knowledge regarding the role of dendritic cells (DCs) and T cells in the generation of protective immunity against infections. DCs function as sentinels in the innate immune system. They are the most effective antigenpresenting cells (APCs) for inducing cell-mediated immune responses and are uniquely capable of activating naive T cells. DCs phagocytose pathogens, endocytose foreign antigens, process and present antigens to T cells, and are key mediators in the initiation of adaptive immune responses. DCs are uniquely capable of decoding fungal-associated information and translating it into different adaptive Th-type immune responses. The protective immune responses correlated with accumulation of myeloid DCs in the draining lymph nodes, while nonprotective responses were associated with accumulation of lymphoid DCs. Peripheral blood mononuclear cells from HIV-infected donors have profoundly impaired proliferative and cytokine responses to cryptococcal antigens. Immunization of mice with heat-killed conferred protection against challenge in wild-type mice but did not induce protection in nude mice (lacking T cells), demonstrating the importance of T cells in protection in the central nervous system (CNS). The lungs and brain are the most common sites of infection for and . In pulmonary, systemic, and CNS infections, Th1-type cytokines are required for a protective cell-mediated immune response. The necessity of T cells for host defenses against cryptococcosis has prompted research into identifying immunoreactive cryptococcal antigens that could serve as vaccine candidates and as diagnostic reagents to measure T-cell responses in infected or at-risk patients.

Citation: Wozniak K, Levitz S. 2011. T Cell and Dendritic Cell Immune Responses to , p 387-396. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch27

Key Concept Ranking

Major Histocompatibility Complex
Immune Response
Tumor Necrosis Factor alpha
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Overview of the link between innate recognition by DCs and the development of adaptive CD4 T-cell immunity to . The immune response begins with DC phagocytosis of , followed by entry into the endolysosomal pathway. Antigen is then processed and presented to naive T cells in the presence of costimulatory molecules and polarizing cytokines. This leads to T-cell activation, Th skewing, and lymphoproliferation. Not shown in the figure are Treg cells, whose role in cryptococcal infections is poorly defined.

Citation: Wozniak K, Levitz S. 2011. T Cell and Dendritic Cell Immune Responses to , p 387-396. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Electron microscopy of phagocytosis by murine bonemarrowderived DCs. (A, B) Scanning electron microscopy of in the process of being phagocytosed by DCs. (C) Transmission electron microscopy of a DC that has completely phagocytosed one and has partially internalized a second yeast cell.

Citation: Wozniak K, Levitz S. 2011. T Cell and Dendritic Cell Immune Responses to , p 387-396. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Cryptococcal MP synergizes with TLR ligands to enhance DC cytokine production. Murine bonemarrowderived DCs were incubated for 24 h with 10 Jig/ml MP; 10 Jig/ml PamCSK (a synthetic bacterial lipoprotein), which activates TLR1/2; 10 Jig/ml polyinosinepolycytidylic acid (pI:C), which activates TLR3; 1 Jig/ml lipopolysaccharide (LPS), which activates TLR4; 10 Jig/ml imiquimod, which activates TLR7/8; and 10 Jig/ml CpG DNA, which activates TLR9. Supernatants were collected and analyzed for TNF-OC by enzymelinked immunosorbent assay. Data represent means ± standard error of four independent experiments, each of which was performed in singlicate. < 0.001 comparing any TLR ligand alone with the TLR ligand plus MP by the twotailed paired t-test. Figure adapted from Dan et al. ( ).

Citation: Wozniak K, Levitz S. 2011. T Cell and Dendritic Cell Immune Responses to , p 387-396. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ardavin,, C.,, G. M. del Hoyo,, P. Martin,, F. Anjuere,, C. F. Arias,, A. R. Marin,, S. Ruiz,, V. Parrillas, and, H. Hernandez. 2001. Origin and differentiation of dendritic cells. Trends Immunol. 22:691700.
2. Atkinson, A. J., Jr., and, J. E. Bennett. 1968. Experience with a new skin test antigen prepared from Cryptococcus neoformans. Am. Rev. Respir. Dis. 97:637643.
3. Banchereau,, J.,, F. Briere,, C. Caux,, J. Davoust,, S. Lebecque, Y. T. Liu,, B. Pulendran, and, K. Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767811.
4. Barluzzi,, R.,, A. Brozzetti,, G. Mariucci,, M. Tantucci,, R. G. Neglia,, F. Bistoni, and, E. Blasi. 2000. Establishment of protective immunity against cerebral cryptococcosis by means of an avirulent, non melanogenic Cryptococcus neoformans strain. J. Neuroimmunol. 109:7586.
5. Bauman, S. K.,, G. B. Huffnagle, and, J. W. Murphy. 2003. Effects of tumor necrosis factor alpha on dendritic cell accumulation in lymph nodes draining the immunization site and the impact on the anticryptococcal cell-mediated immune response. Infect. Immun. 71:6874.
6. Bauman, S. K.,, K. L. Nichols, and, J. W. Murphy. 2000. Dendritic cells in the induction of protective and nonprotec-tive anticryptococcal cell-mediated immune responses. J. Immunol. 165:158167.
7. Biondo,, C.,, C. Beninati,, D. Delfino,, M. Oggioni,, G. Mancuso,, A. Midiri,, M. Bombaci,, G. Tomaselli, and, G. Teti. 2002. Identification and cloning of a cryptococcal deacetylase that produces protective immune responses. Infect. Immun. 70:23832391.
8. Blackstock, R.,, K. L. Buchanan,, A. M. Adesina, and, J. W. Murphy. 1999. Differential regulation of immune responses by highly and weakly virulent Cryptococcus neoformans isolates. Infect. Immun. 67:36013609.
9. Blasi, E.,, R. Mazzolla,, R. Barluzzi,, P. Mosci, and, F. Bistoni. 1994. Anticryptococcal resistance in the mouse brain: beneficial effects of local administration of heatinactivated yeast cells. Infect. Immun. 62:31893196.
10. Bozza,, S.,, C. Montagnoli,, R. Gaziano,, G. Rossi,, G. Nkwanyuo,, S. Bellocchio, and, L. Romani. 2004. Dendritic cell-based vaccination against opportunistic fungi. Vaccine 22:857864.
11. Buchanan, K. L., and, H. A. Doyle. 2000. Requirement for CD4+ T lymphocytes in host resistance against Cryptococcus neoformans in the central nervous system of immunized mice. Infect. Immun 68:456462.
12. Buentke, E., and, A. Scheynius. 2003. Dendritic cells and fungi. APMIS 111:789796.
13. Chen,, G. H.,, R. A. McDonald,, J. C. Wells,, G. B. Huffnagle,, N. W. Lukacs, and, G. B. Toews. 2005. The gamma interferon receptor is required for the protective pulmonary inflammatory response to Cryptococcus neoformans. Infect. Immun. 73:17881796.
14. Chen,, G. H.,, D. A. McNamara,, Y. Hernandez, G. B. Huffnagle,, G. B. Toews, and, M. A. Olszewski. 2008. Inheritance of immune polarization patterns is linked to resistance versus susceptibility to Cryptococcus neoformans in a mouse model. Infect. Immun. 76:23792391.
15. Chuck, S. L., and, M. A. Sande. 1989. Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N. Engl. J. Med. 321:794799.
16. Colonna, M.,, B. Pulendran, and, A. Iwasaki. 2006. Dendritic cells at the host-pathogen interface. Nat. Immunol. 7:117120.
17. Corthay, A. 2006. A three-cell model for activation of naive T helper cells. Scand. J. Immunol. 64:9396.
18. Crowley, M.,, K. Inaba, and, R. M. Steinman. 1990. Dendritic cells are the principal cells in mouse spleen bearing immunogenic fragments of foreign proteins. J. Exp. Med. 172:383386.
19. Dan,, J. M.,, J. P. Wang,, C. K. Lee, and, S. M. Levitz. 2008. Cooperative stimulation of dendritic cells by Cryptococcus neoformans mannoproteins and CpG oligodeoxynu-cleotides. PLoS ONE 3:e2046.
20. Davis,, J.,, W. Y. Zheng,, A. Glatman-Freedman,, J. A. Ng,, M. R. Pagcatipunan,, H. Lessin,, A. Casadevall, and, D. L. Goldman. 2007. Serologic evidence for regional differences in pediatric cryptococcal infection. Pediatr. Infect. Dis. J. 26:549551.
21. Decken,, K.,, G. Kohler,, K. Palmer-Lehmann,, A. Wunderlin,, F. Mattner,, J. Magram,, M. K. Gately, and, G. Alber. 1998. Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect. Immun. 66:49945000.
22. d’Ostiani,, C. F.,, G. Del Sero,, A. Bacci,, C. Montagnoli,, A. Spreca,, A. Mencacci,, P. Ricciardi-Castagnoli, and, L. Romani. 2000. Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans: implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191:16611673.
23. Duncan,, R. A.,, C. F. von Reyn,, G. M. Alliegro,, Z. Toossi,, A. M. Sugar, and, S. M. Levitz. 1993. Idiopathic CD4+ T-lymphocytopenia: four patients with opportunistic infections and no evidence of HIV infection. N. Engl. J. Med. 328:393398.
24. Eigenheer,, R. A.,, Y. Jin Lee,, E. Blumwald,, B. S. Phinney, and, A. Gelli. 2007. Extracellular glycosylphosphati-dylinositol-anchored mannoproteins and proteases of Cryptococcus neoformans. FEMS Yeast Res. 7:499510.
25. Gemmill, T. R., and, R. B. Trimble. 1999. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta 1426:227237.
26. Goldman,, D. L.,, J. Davis,, F. Bommarito,, X. Shao, and, A. Casadevall. 2006. Enhanced allergic inflammation and airway responsiveness in rats with chronic Cryptococcus neoformans infection: potential role for fungal pulmonary infection in the pathogenesis of asthma. J. Infect. Dis. 193:11781186.
27. Graybill, J. R., and, R. H. Alford. 1974. Cell-mediated immunity in cryptococcosis. Cell. Immunol. 14:1221.
28. Guermonprez, P.,, J. Valladeau,, L. Zitvogel,, C. Thery, and, S. Amigorena. 2002. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20:621667.
29. Harrison, T. S., and, S. M. Levitz. 1996. Role of IL-12 in peripheral blood mononuclear cell responses to fungi in persons with and without HIV infection. J. Immunol. 156:44924497.
30. Herring,, A. C.,, J. Lee, R. A. McDonald,, G. B. Toews, and, G. B. Huffnagle. 2002. Induction of interleukin-12 and gamma interferon requires tumor necrosis factor alpha for protective T1-cell-mediated immunity to pulmonary Cryptococcus neoformans infection. Infect. Immun. 70:29592964.
31. Hill, J. O. 1992. CD4+ T cells cause multinucleated giant cells to form around Cryptococcus neoformans and confine the yeast within the primary site of infection in the respiratory tract. J. Exp. Med. 175:16851695.
32. Hill, J. O., and, K. M. Aguirre. 1994. CD4+ T cell-dependent acquired state of immunity that protects the brain against Cryptococcus neoformans. J. Immunol. 152:23442350.
33. Hill, J. O., and, A. G. Harmsen. 1991. Intrapulmonary growth and dissemination of an avirulent strain of Cryp-tococcus neoformans in mice depleted of CD4+ or CD8+T-cells. J. Exp. Med. 173:755758.
34. Hoy, J. F.,, D. E. Lewis, and, G. G. Miller. 1988. Functional versus phenotypic analysis of T cells in subjects seropositive for the human immunodeficiency virus: a prospective study of in vitro responses to Cryptococcus neoformans. J. Infect. Dis. 158:10711078.
35. Hoy, J. F.,, J. W. Murphy, and, G. G. Miller. 1989. T-cell response to soluble cryptococcal antigens after recovery from cryptococcal infection. J. Infect. Dis. 159:116119.
36. Huang,, C.,, S. H. Nong,, M. K. Mansour,, C. A. Specht, and, S. M. Levitz. 2002. Purification and characterization of a second immunoreactive mannoprotein from Cryptococcus neoformans that stimulates T-cell responses. Infect. Immun. 70:54855493.
37. Huffnagle,, G. B.,, M. F. Lipscomb,, J. A. Lovchik,, K. A. Hoag, and, N. E. Street. 1994. The role of CD4(+) and CD8(+) T-cells in the protective inflammatory response to a pulmonary cryptococcal infection. J. Leukoc. Biol. 55:3542.
38. Huffnagle,, G. B.,, G. B. Toews,, M. D. Burdick,, M. B. Boyd,, K. S. McAllister,, R. A. McDonald,, S. L. Kunkel, and, R. M. Strieter. 1996. Afferent phase production of TNF-alpha is required for the development of protective T cell immunity to Cryptococcus neoformans. J. Immunol. 157:45294536.
39. Huffnagle, G. B.,, J. L. Yates, and, M. F. Lipscomb. 1991. Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T-cells. J. Exp. Med. 173:793800.
40. Huffnagle, G. B.,, J. L. Yates, and, M. F. Lipscomb. 1991. T-cell-mediated immunity in the lung: a Cryptococcus neo-formans pulmonary infection model using SCID and athy-mic nude-mice. Infect. Immun. 59:14231433.
41. Kawakami, K.,, X. Qifeng,, M. Tohyama, M. H. Qureshi, and, A. Saito. 1996. Contribution of tumour necrosis factoralpha (TNF-alpha) in host defence mechanism against Cryp-tococcus neoformans. Clin. Exp. Immunol. 106:468474.
42. Kawakami, K.,, M. Tohyama,, X. Qifeng, and, A. Saito. 1997. Expression of cytokines and inducible nitric oxide synthase mRNA in the lungs of mice infected with Cryptococcus neoformans: effects of interleukin-12. Infect. Immun. 65:13071312.
43. Kawakami,, K.,, M. Tohyama,, K. Teruya,, N. Kudeken,, Q. F. Xie, and, A. Saito. 1996. Contribution of interferongamma in protecting mice during pulmonary and disseminated infection with Cryptococcus neoformans. FEMS Immunol. Med. Microbiol. 13:123130.
44. Kawakami, K.,, M. Tohyama,, Q. Xie, and, A. Saito. 1996. IL-12 protects mice against pulmonary and disseminated infection caused by Cryptococcus neoformans. Clin. Exp. Immunol. 104:208214.
45. Kelly,, R. M.,, J. M. Chen,, L. E. Yauch, and, S. M. Levitz. 2005. Opsonic requirements for dendritic cell-mediated responses to Cryptococcus neoformans. Infect. Immun. 73:592598.
46. Kleinschek,, M. A.,, U. Muller, S. J. Brodie,, W. Stenzel,, G. Kohler,, W. M. Blumenschein,, R. K. Straubinger,, T. McClanahan,, R. A. Kastelein, and, G. Alber. 2006. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J. Immunol. 176:10981106.
47. Koguchi, Y., and, K. Kawakami. 2002. Cryptococcal infection and Th1-Th2 cytokine balance. Int. Rev. Immunol. 21:423438.
48. Laurence, A., and, J. J. O’Shea. 2007. TH-17 differentiation: of mice and men. Nat. Immunol. 8:903905.
49. Levitz, S. M. 1991. The ecology of Cryptococcus neofor-mans and the epidemiology of cryptococcosis. Rev. Infect. Dis. 13:11631169.
50. Levitz,, S. M.,, S. Nong, M. K. Mansour,, C. Huang, and, C. A. Specht. 2001. Molecular characterization of a mannoprotein with homology to chitin deacetylases that stimulates T cell responses to Cryptococcus neoformans. Proc. Natl. Acad. Sci. USA 98:1042210427.
51. Levitz, S. M., and, E. A. North. 1997. Lymphoproliferation and cytokines profiles in human peripheral blood mononuclear cells stimulated by Cryptococcus neoformans. J. Med. Vet. Mycol. 35:229236.
52. Levitz, S. M., and, C. A. Specht. 2006. The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res. 6:513524.
53. Lortholary,, O.,, A. Fontanet,, N. Memain,, A. Martin,, K. Sitbon, and, F. Dromer. 2005. Incidence and risk factors of immune reconstitution inflammatory syndrome complicating HIV-associated cryptococcosis in France. AIDS 19:10431049.
54. Lortholary,, O.,, L. Improvisi,, N. Rayhane,, F. Gray,, C. Fitting, J. M. Cavaillon, and, F. Dromer. 1999. Cytokine profiles of AIDS patients are similar to those of mice with disseminated Cryptococcus neoformans infection. Infect. Immun. 67:63146320.
55. Mandel,, M. A.,, G. G. Grace,, K. I. Orsborn,, F. Schafer,, J. W. Murphy,, M. J. Orbach, and, J. N. Galgiani. 2000. The Cryptococcus neoformans gene DHA1 encodes an antigen that elicits a delayedtype hypersensitivity reaction in immune mice. Infect. Immun. 68:61966201.
56. Mangan,, P. R.,, L. E. Harrington,, D. B. O’Quinn,, W. S. Helms,, D. C. Bullard,, C. O. Elson,, R. D. Hatton,, S. M. Wahl,, T. R. Schoeb, and, C. T. Weaver. 2006. Transforming growth factor-[beta] induces development of the TH17 lineage. Nature 441:231234.
57. Mansour, M. K.,, E. Latz, and, S. M. Levitz. 2006. Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J. Immunol. 176:30533061.
58. Mansour, M. K.,, L. S. Schlesinger, and, S. M. Levitz. 2002. Optimal T cell responses to Cryptococcus neoformans mannoprotein are dependent on recognition of conjugated carbohydrates by mannose receptors. J. Immunol. 168:28722879.
59. Mansour,, M. K.,, L. E. Yauch,, J. B. Rottman, and, S. M. Levitz. 2004. Protective efficacy of antigenic fractions in mouse models of cryptococcosis. Infect. Immun. 72:17461754.
60. McFadden, D.,, O. Zaragoza, and, A. Casadevall. 2006. The capsular dynamics of Cryptococcus neoformans. Trends Microbiol. 14:497505.
61. Mitchell, T. G., and, J. R. Perfect. 1995. Cryptococcosis in the era of AIDS: 100 years after the discovery of Cryptococcus neoformans. Clin. Microbiol. Rev. 8:515548.
62. Mody,, C. H.,, G. H. Chen,, C. Jackson, J. L. Curtis, and, G. B. Toews. 1993. Depletion of murine CD8+ T cells in vivo decreases pulmonary clearance of a moderately virulent strain of Cryptococcus neoformans. J. Lab. Clin. Med. 121:765773.
63. Mody,, C. H.,, G. H. Chen,, C. Jackson, J. L. Curtis, and, G. B. Toews. 1994. In vivo depletion of murine CD8 positive T cells impairs survival during infection with a highly virulent strain of Cryptococcus neoformans. Mycopathologia 125:717.
64. Mody,, C. H.,, M. F. Lipscomb,, N. E. Street, and, G. B. Toews. 1990. Depletion of CD4+ (L3T4+) lymphocytes in vivo impairs murine host defense to Cryptococcus neoformans. J. Immunol. 144:14721477.
65. Monari, C.,, F. Bistoni, and, A. Vecchiarelli. 2006. Gluc-uronoxylomannan exhibits potent immunosuppressive properties. FEMS Yeast Res. 6:537542.
66. Muller,, U.,, W. Stenzel,, G. Kohler,, T. Polte,, M. Blessing,, A. Mann,, D. Piehler,, F. Brombacher, and, G. Alber. 2008. A genedosage effect for interleukin-4 receptor α-chain expression has an impact on Th2-mediated allergic inflammation during bronchopulmonary mycosis. J. Infect. Dis. 198:17141721.
67. Muller,, U.,, W. Stenzel,, G. Kohler,, C. Werner,, T. Polte,, G. Hansen,, N. Schutze,, R. K. Straubinger,, M. Blessing,, A. N. J. McKenzie,, F. Brombacher, and, G. Alber. 2007. IL-13 induces diseasepromoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans. J. Immunol. 179:53675377.
68. Murphy, J. W. 1988. Influence of cryptococcal antigens on cell-mediated immunity. Rev. Infect. Dis. 10:S432S435.
69. Murphy,, J. W.,, R. L. Mosley,, R. Cherniak, G. H. Reyes,, T. R. Kozel, and, E. Reiss. 1988. Serological, electrophoretic, and biological properties of Cryptococcus neoformans antigens. Infect. Immun. 56:424431.
70. Nakamura,, K.,, A. Miyazato,, G. Xiao,, M. Hatta,, K. Inden,, T. Aoyagi,, K. Shiratori,, K. Takeda,, S. Akira,, S. Saijo,, Y. Iwakura,, Y. Adachi,, N. Ohno,, K. Suzuki,, J. Fujita,, M. Kaku, and, K. Kawakami. 2008. Deoxynucleic acids from Cryptococcus neoformans activate myeloid dendritic cells via a TLR9-dependent pathway. J. Immunol. 180:40674074.
71. Orendi,, J. M.,, H. S. Nottet,, M. R. Visser,, A. F. Verheul,, H. Snippe, and, J. Verhoef. 1994. Enhancement of HIV-1 replication in peripheral blood mononuclear cells by Cryp-tococcus neoformans is monocytedependent but tumour necrosis factorindependent. AIDS 8:423429.
72. Osterholzer,, J. J.,, J. L. Curtis,, T. Polak,, T. Ames,, G.-H. Chen,, R. McDonald,, G. B. Huffnagle, and, G. B. Toews. 2008. CCR2 mediates conventional dendritic cell recruitment and the formation of bronchovascular mononuclear cell infiltrates in the lungs of mice infected with Cryptococcus neoformans. J. Immunol. 181:610620.
73. Perfect, J. R., and, A. Casadevall. 2002. Cryptococcosis. Infect. Dis. Clin. N. Am. 16:837874.
74. PettoelloMdependent activation of microglial-antovani,, M.,, A. Casadevall,, T. R. Koll-mann,, A. Rubinstein, and, H. Goldstein. 1992. Enhancement of HIV-1 infection by the capsular polysaccharide of Cryptococcus neoformans. Lancet 339:2123.
75. Pietrella, D.,, C. Corbucci,, S. Perito,, G. Bistoni, and, A. Vecchiarelli. 2005. Mannoproteins from Cryptococcus neoformans promote dendritic cell maturation and activation. Infect. Immun. 73:820827.
76. Romani,, L.,, C. Montagnoli,, S. Bozza,, K. Perruccio,, A. Spreca,, P. Allavena,, S. Verbeek,, R. A. Calderone,, F. Bistoni, and, P. Puccetti. 2004. The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int. Immunol. 16:149161.
77. Salkowski, C. A., and, E. Balish. 1990. Pathogenesis of Cryptococcus neoformans in congenitally immunodeficient beige athymic mice. Infect. Immun. 58:33003306.
78. Schimpff, S. C., and, J. E. Bennett. 1975. Abnormalities in cell-mediated immunity in patients with Cryptococcus neoformans infection. J. Allergy Clin. Immunol. 55:430441.
79. SchonHegrad,, M. A.,, J. Oliver, P. G. McMenamin,, and P. G. Holt. 1991. Studies on the density, distribution, and surface phenotype of intraepithelial class-II major histocompatibility complex antigen (Ia)-bearing dendritic cells (DC) in the conducting airways. J. Exp. Med. 173:13451356.
80. Shoham, S., and, S. M. Levitz. 2005. The immune response to fungal infections. Br. J. Haematol. 129:569582.
81. Siddiqui,, A. A.,, A. E. Brouwer,, V. Wuthiekanun,, S. Jaffar,, R. Shattock,, D. Irving,, J. Sheldon,, W. Chierakul,, S. Peacock,, N. Day,, N. J. White, and, T. S. Harrison. 2005. IFN-gamma at the site of infection determines rate of clearance of infection in cryptococcal meningitis. J. Immunol. 174:17461750.
82. Siegemund, S., and, G. Alber. 2008. Cryptococcus neoformans activates bone marrowderived conventional dendritic cells rather than plasmacytoid dendritic cells and downregulates macrophages. FEMS Immunol. Med. Microbiol. 52:417427.
83. Singh, N.,, F. Dromer,, J. R. Perfect, and, O. Lortholary. 2008. Cryptococcosis in solid organ transplant recipients: current state of the science. Clin. Infect. Dis. 47:13211327.
84. Singh, N.,, T. Gayowski,, M. M. Wagener, and, I. R. Marino. 1997. Clinical spectrum of invasive cryptococcosis in liver transplant recipients receiving tacrolimus. Clin. Transpl. 11:6670.
85. Snelgrove,, R. J.,, L. Edwards, A. E. Williams,, A. J. Rae, and, T. Hussell. 2006. In the absence of reactive oxygen species, T cells default to a Th1 phenotype and mediate protection against pulmonary Cryptococcus neoformans infection. J. Immunol. 177:55095516.
86. Sorrell, T. C. 2001. Cryptococcus neoformans variety gattii. Med. Mycol. 39:155168.
87. Specht,, C. A.,, S. Nong, J. M. Dan,, C. K. Lee, and, S. M. Levitz. 2007. Contribution of glycosylation to T cell responses stimulated by recombinant Cryptococcus neoformans mannoprotein. J. Infect. Dis. 196:796800.
88. Steinman, R. M., and, Z. A. Cohn. 1973. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 137:11421162.
89. Syme,, R. M.,, J. C. L. Spurrell,, E. K. Amankwah,, F. H. Y. Green, and, C. H. Mody. 2002. Primary dendritic cells phagocytose Cryptococcus neoformans via mannose receptors and Fc gamma receptor II for presentation to T lymphocytes. Infect. Immun. 70:59725981.
90. Tan,, D. B.,, Y. K. Yong,, H. Y. Tan,, A. Kamarulzaman,, L. H. Tan,, A. Lim,, I. James,, M. French, and, P. Price. 2008. Immunological profiles of immune restoration disease presenting as mycobacterial lymphadenitis and cryptococcal meningitis. HIV Med. 9:307316.
91. Traynor,, T. R.,, W. A. Kuziel,, G. B. Toews, and, G. B. Huffnagle. 2000. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J. Immunol. 164:20212027.
92. Trombetta, E. S., and, I. Mellman. 2005. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23:9751028.
93. Uicker, W. C.,, J. P. McCracken, and, K. L. Buchanan. 2006. Role of CD4+ T cells in a protective immune response against Cryptococcus neoformans in the central nervous system. Med. Mycol. 44:111.
94. Upham, J. W. 2003. The role of dendritic cells in immune regulation and allergic airway inflammation. Respirology 8:140148.
95. Weaver,, C. T.,, R. D. Hatton,, P. R. Mangan, and, L. E. Harrington. 2007. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25:821852.
96. Wormley,, F. L.,, Jr., J. R. Perfect,, C. Steele, and, G. M. Cox. 2007. Protection against cryptococcosis using a murine interferongamma producing Cryptococcus neoformans strain. Infect. Immun. 75:14531462.
97. Wozniak, K. L., and, S. M. Levitz. 2008. Cryptococcus neoformans enters the endolysosomal pathway of dendritic cells and is killed by lysosomal components. Infect. Immun. 76:47644771.
98. Wozniak, K. L.,, J. M. Vyas, and, S. M. Levitz. 2006. In vivo role of dendritic cells in a murine model of pulmonary cryptococcosis. Infect. Immun. 74:38173824.
99. Yauch,, L. E.,, M. K. Mansour,, S. Shoham, J. B. Rottman, and, S. M. Levitz. 2004. Involvement of CD14, tolllike receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect. Immun. 72:53735382.
100. Zhou, Q.,, R. A. Gault,, T. R. Kozel, and, W. J. Murphy. 2007. Protection from direct cerebral cryptococcus infection by interferon-{gamma}-dependent activation of microglial cells. J. Immunol. 178:57535761.


Generic image for table

Cytokines associated with protective and nonprotective responses to infection

Citation: Wozniak K, Levitz S. 2011. T Cell and Dendritic Cell Immune Responses to , p 387-396. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch27

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error