1887

Chapter 32 : Intracellular Replication and Exit Strategies

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Intracellular Replication and Exit Strategies, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap32-1.gif /docserver/preview/fulltext/10.1128/9781555816858/9781555815011_Chap32-2.gif

Abstract:

This chapter discusses the ability of the pathogenic cryptococci to proliferate intracellularly and examines the different strategies cryptococci use to exit host cells. The intracellular location provides a dual benefit to , both in avoiding extracellular host immune mechanisms, such as complement, and in reducing exposure to antifungal agents. The establishment of different in vitro systems that utilize cell lines and the application of techniques such as live cell imaging have contributed to rapid advances in one's understanding of the molecular mechanisms influencing ability to proliferate intracellularly. Intracellular parasitism is associated with a continuous struggle between the pathogen and its host cell. Within host cells, encounters a harsh environment of reactive oxygen and nitrogen species; oxygen, nutrient, and metal ion deprivation; and low pH and high temperatures. Therefore, the yeast expresses multiple virulence factors including a capsule, melanin, and a variety of secreted enzymes that can modify the host’s defense mechanisms to achieve intracellular replication. The melanized strain 145 is more resistant to cell death caused by lymphocytes than the less melanized strain 52. Resistance to cryptococcal infection is associated with a Th1 response and the consequent phagocyte activation, whereas Th2-polarized host responses lead to inhibition of phagocyte activity and enhanced susceptibility to . Whole-genome microarray analysis has identified a large number of candidate genes that may influence proliferative capacity and revealed an unexpected role for mitochondrial genes in regulating cryptococcal hypervirulence in the Vancouver Island strains.

Citation: Voelz K, Johnston S, May R. 2011. Intracellular Replication and Exit Strategies, p 441-450. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch32

Key Concept Ranking

Tumor Necrosis Factor alpha
0.44693983
0.44693983
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Intracellular proliferation of within a J774 murine macrophage. The intracellular yeast cell starts budding after 50 min and continues replication until the macrophage is filled with yeast cells after 19 h. Times are shown in hours:minutes:seconds.

Citation: Voelz K, Johnston S, May R. 2011. Intracellular Replication and Exit Strategies, p 441-450. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

has three strategies for escaping macrophages: (a) lysis, (b) expulsion, and (c) lateral transfer. Time lapse microscopy of J774 cells (a, b) and human primary macrophages (c). Arrows indicate intracellular cryptococci. Times are shown in hours:minutes:seconds.

Citation: Voelz K, Johnston S, May R. 2011. Intracellular Replication and Exit Strategies, p 441-450. In Heitman J, Kozel T, Kwon-Chung K, Perfect J, Casadevall A (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555816858.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816858.ch32
1. Akhter,, S.,, H. C. McDade,, J. M. Gorlach,, G. Heinrich, G. M. Cox, and, J. R. Perfect. 2003. Role of alternative oxidase gene in pathogenesis of Cryptococcus neoformans. Infect. Immun. 71:57945802.
2. Alspaugh,, J. A.,, L. M. Cavallo,, J. R. Perfect, and, J. Heitman. 2000. RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Mol. Microbiol. 36:352365.
3. Alspaugh, J. A., and, D. L. Granger. 1991. Inhibition of Cryptococcus neoformans replication by nitrogen oxides supports the role of these molecules as effectors of macrophage-mediated cytostasis. Infect. Immun. 59:22912296.
4. Alvarez, M., and, A. Casadevall. 2007. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages. BMC Immunol. 8:16.
5. Alvarez, M., and, A. Casadevall. 2006. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16:21612165.
6. Alvarez, M.,, C. Saylor, and, A. Casadevall. 2008. Antibody action after phagocytosis promotes Cryptococcus neoforman s and Cryptococcus gattii macrophage exocytosis with biofilmlike microcolony formation. Cell. Microbiol. 10:16221633.
7. Amer, A. O., and, M. S. Swanson. 2005. Autophagy is an immediate macrophage response to Legionella pneumophila. Cell. Microbiol. 7:765778.
8. Arora,, S.,, Y. Hernandez,, J. R. Erb-Downward,, R. A. Mc-Donald,, G. B. Toews, and, G. B. Huffnagle. 2005. Role of IFN-gamma in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. J. Immunol. 174:63466356.
9. Bartlett, K. H.,, S. E. Kidd, and, J. W. Kronstad. 2008. The emergence of Cryptococcus gattii in British Columbia and the Pacific Northwest. Curr. Infect. Dis. Rep. 10:5865.
10. Barton, C. H.,, S. H. Whitehead, and, J. M. Blackwell. 1995. Nramp transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on oxidative burst and nitric oxide pathways. Mol. Med. 1:267279.
11. Bernardini,, M. L.,, J. Mounier, H. d’Hauteville,, M. Coquis-Rondon, and, P. J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with Factin. Proc. Natl. Acad. Sci. USA 86:38673871.
12. Blasi,, E.,, B. Colombari,, A. Mucci,, A. Cossarizza,, D. Radzioch, J. R. Boelaert, and, R. Neglia. 2001. Nramp1 gene affects selective early steps in macrophage-mediated anticryptococcal defense. Med. Microbiol. Immunol. 189:209216.
13. Brain, J. D. 1980. Macrophage damage in relation to the pathogenesis of lung diseases. Environ. Health Perspect. 35:2128.
14. Brazill,, D. T.,, D. R. Caprette,, H. A. Myler,, R. D. Hatton,, R. R. Ammann,, D. F. Lindsey,, D. A. Brock, and, R. H. Gomer. 2000. A protein containing a serine-rich domain with vesicle fusing properties mediates cell cycle-dependent cytosolic pH regulation. J. Biol. Chem. 275:1923119240.
15. Champion, J. A., and, S. Mitragotri. 2006. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 103:49304934.
16. Charlier,, C.,, K. Nielsen,, S. Daou,, M. Brigitte,, F. Chretien, and, F. Dromer. 2009. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect. Immun. 77:120127.
17. Clarke,, M.,, J. Kohler,, Q. Arana,, T. Liu,, J. Heuser, and, G. Gerisch. 2002. Dynamics of the vacuolar H(+)-ATPase in the contractile vacuole complex and the endosomal pathway of Dictyostelium cells. J. Cell Sci. 115:28932905.
18. Coenjaerts,, F. E.,, A. I. Hoepelman,, J. Scharringa,, M. Aarts,, P. M. Ellerbroek,, L. Bevaart,, J. A. Van Strijp, and, G. Janbon. 2006. The Skn7 response regulator of Cryptococcus neoformans is involved in oxidative stress signalling and augments intracellular survival in endothelium. FEMS Yeast Res. 6:652661.
19. Cox,, G. M.,, T. S. Harrison,, H. C. McDade,, C. P. Taborda,, G. Heinrich,, A. Casadevall, and, J. R. Perfect. 2003. Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect. Immun. 71:173180.
20. Cox,, G. M.,, H. C. McDade,, S. C. Chen,, S. C. Tucker,, M. Gottfredsson,, L. C. Wright,, T. C. Sorrell,, S. D. Leidich,, A. Casadevall,, M. A. Ghannoum, and, J. R. Perfect. 2001. Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol. Microbiol. 39:166175.
21. Cox,, G. M.,, J. Mukherjee, G. T. Cole,, A. Casadevall, and, J. R. Perfect. 2000. Urease as a virulence factor in experimental cryptococcosis. Infect. Immun. 68:443448.
22. Dabiri,, G. A.,, J. M. Sanger,, D. A. Portnoy, and, F. S. Southwick. 1990. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc. Natl. Acad. Sci. USA 87:60686072.
23. de Jesus-Berrios,, M.,, L. Liu,, J. C. Nussbaum,, G. M. Cox,, J. S. Stamler, and, J. Heitman. 2003. Enzymes that counteract nitrosative stress promote fungal virulence. Curr. Biol. 13:19631968.
24. Diamond, R. D., and, J. E. Bennett. 1973. Growth of Cryptococcus neoformans within human macrophages in vitro. Infect. Immun. 7:231236.
25. Diamond, R. D.,, R. K. Root, and, J. E. Bennett. 1972. Factors influencing killing of Cryptococcus neoformans by human leukocytes in vitro. J. Infect. Dis. 125:367376.
26. Drose, S., and, K. Altendorf. 1997. Bafilomycins and concanamycins as inhibitors of V-ATPases and P-ATPases. J. Exp. Biol. 200:18.
27. Feldmesser, M.,, Y. Kress, and, A. Casadevall. 2001. Dynamic changes in the morphology of Cryptococcus neoformans during murine pulmonary infection. Microbiology 147:23552365.
28. Feldmesser, M.,, Y. Kress,, P. Novikoff, and, A. Casadevall. 2000. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect. Immun. 68:42254237.
29. Feldmesser, M.,, A. Mednick, and, A. Casadevall. 2002. Antibody-mediated protection in murine Cryptococcus neoformans infection is associated with pleotrophic effects on cytokine and leukocyte responses. Infect. Immun. 70:15711580.
30. Feldmesser, M.,, S. Tucker, and, A. Casadevall. 2001. Intracellular parasitism of macrophages by Cryptococcus neoformans. Trends Microbiol. 9:273278.
31. Ferreira, T.,, A. B. Mason, and, C. W. Slayman. 2001. The yeast Pma1 proton pump: a model for understanding the biogenesis of plasma membrane proteins. J. Biol. Chem. 276:2961329616.
32. Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Annu. Rev. Biochem. 64:97112.
33. Fries,, B. C.,, C. P. Taborda,, E. Serfass, and, A. Casadevall. 2001. Phenotypic switching of Cryptococcus neoformans occurs in vivo and influences the outcome of infection. J. Clin. Invest. 108:16391648.
34. Gaigg, B.,, B. Timischl,, L. Corbino, and, R. Schneiter. 2005. Synthesis of sphingolipids with very long chain fatty acids but not ergosterol is required for routing of newly synthesized plasma membrane ATPase to the cell surface of yeast. J. Biol. Chem. 280:2251522522.
35. Ghannoum, M. A. 2000. Potential role of phospholipases in virulence and fungal pathogenesis. Clin. Microbiol. Rev. 13:122143.
36. Goldman,, D. L.,, S. C. Lee,, A. J. Mednick,, L. Montella, and, A. Casadevall. 2000. Persistent Cryptococcus neoformans pulmonary infection in the rat is associated with intracellular parasitism, decreased inducible nitric oxide synthase expression, and altered antibody responsiveness to cryptococcal polysaccharide. Infect. Immun. 68:832838.
37. Granier, F.,, J. Kanitakis,, C. Hermier, Y. Y. Zhu, and, J. Thivolet. 1987. Localized cutaneous cryptococcosis successfully treated with ketoconazole. J. Am. Acad. Dermatol. 16:243249.
38. Grant, C. M.,, F. H. MacIver, and, I. W. Dawes. 1997. Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Lett. 410:219222.
39. Gutierrez,, M. G.,, S. S. Master,, S. B. Singh,, G. A. Taylor,, M. I. Colombo, and, V. Deretic. 2004. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753766.
40. Harrison, T. S.,, J. Chen,, E. Simons, and, S. M. Levitz. 2002. Determination of the pH of the Cryptococcus neoformans vacuole. Med. Mycol. 40:329332.
41. Heung,, L. J.,, C. Luberto,, A. Plowden,, Y. A. Hannun, and, M. Del Poeta. 2004. The sphingolipid pathway regulates Pkc1 through the formation of diacylglycerol in Cryptococcus neoformans. J. Biol. Chem. 279:2114421153.
42. Hibbs, J. B.,, Jr., R. R. Taintor, and, Z. Vavrin. 1987. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science 235:473476.
43. Hoang,, L. M.,, J. A. Maguire,, P. Doyle,, M. Fyfe, and, D. L. Roscoe. 2004. Cryptococcus neoformans infections at Vancouver Hospital and Health Sciences Centre (1997– 2002): epidemiology, microbiology and histopathology. J. Med. Microbiol. 53:935940.
44. Holyoak,, C. D.,, M. Stratford,, Z. McMullin,, M. B. Cole,, K. Crimmins,, A. J. Brown, and, P. J. Coote. 1996. Activity of the plasma membrane H(+)-ATPase and optimal glycolytic flux are required for rapid adaptation and growth of Saccharomyces cerevisiae in the presence of the weakacid preservative sorbic acid. Appl. Environ. Microbiol. 62:31583164.
45. Horwitz, M. A. 1983. The Legionnaires’ disease bacterium (Legionella pneumophila) inhibits phagosome-lysosome fusion in human monocytes. J. Exp. Med. 158:21082126.
46. Hu,, G.,, M. Hacham,, S. R. Waterman,, J. Panepinto,, S. Shin,, X. Liu,, J. Gibbons,, T. Valyi-Nagy,, K. Obara,, H. A. Jaffe,, Y. Ohsumi, and, P. R. Williamson. 2008. PI3K signaling of autophagy is required for starvation tolerance and virulence of Cryptococcus neoformans. J. Clin. Invest. 118:11861197.
47. Huffnagle, G. B. 1996. Role of cytokines in T cell immunity to a pulmonary Cryptococcus neoformans infection. Biol. Signals 5:215222.
48. Huffnagle,, G. B.,, G. H. Chen,, J. L. Curtis,, R. A. McDonald,, R. M. Strieter, and, G. B. Toews. 1995. Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J. Immunol. 155:35073516.
49. Huynh,, K. K.,, J. G. Kay,, J. L. Stow, and, S. Grinstein. 2007. Fusion, fission, and secretion during phagocytosis. Physiology 22:366372.
50. Hybiske, K., and, R. S. Stephens. 2007. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl. Acad. Sci. USA 104:1143011435.
51. Ingavale,, S. S.,, Y. C. Chang,, H. Lee, C. M. McClelland,, M. L. Leong, and, K. J. Kwon-Chung. 2008. Importance of mitochondria in survival of Cryptococcus neoformans under low oxygen conditions and tolerance to cobalt chloride. PLoS Pathog. 4:e1000155.
52. Jain,, N.,, L. Li,, D. C. McFadden,, U. Banarjee,, X. Wang,, E. Cook, and, B. C. Fries. 2006. Phenotypic switching in a Cryptococcus neoformans variety gattii strain is associated with changes in virulence and promotes dissemination to the central nervous system. Infect. Immun. 74:896903.
53. Kechichian, T. B.,, J. Shea, and, M. Del Poeta. 2007. Depletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice. Infect. Immun. 75:47924798.
54. Kidd,, S. E.,, F. Hagen, R. L. Tscharke,, M. Huynh, K. H. Bartlett,, M. Fyfe,, L. MacDougall,, T. Boekhout,, K. J. Kwon-Chung, and, W. Meyer. 2004. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. Natl. Acad. Sci. USA 101:1725817263.
55. Kihara, A.,, T. Noda,, N. Ishihara, and, Y. Ohsumi. 2001. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J. Cell Biol. 152:519530.
56. Koch,, G.,, K. Tanaka,, T. Masuda,, W. Yamochi,, H. Nonaka, and, Y. Takai. 1997. Association of the Rho family small GTP-binding proteins with Rho GDP dissociation inhibitor (Rho GDI) in Saccharomyces cerevisiae. Oncogene 15:417422.
57. Koguchi, Y., and, K. Kawakami. 2002. Cryptococcal infection and Th1-Th2 cytokine balance. Int. Rev. Immunol. 21:423438.
58. Lee,, S. C.,, Y. Kress, M. L. Zhao,, D. W. Dickson, and, A. Casadevall. 1995. Cryptococcus neoformans survive and replicate in human microglia. Lab. Invest. 73:871879.
59. Levitz, S. M., and, T. P. Farrell. 1990. Growth inhibition of Cryptococcus neoformans by cultured human monocytes: role of the capsule, opsonins, the culture surface, and cytokines. Infect. Immun. 58:12011209.
60. Levitz,, S. M.,, T. S. Harrison,, A. Tabuni, and, X. Liu. 1997. Chloroquine induces human mononuclear phagocytes to inhibit and kill Cryptococcus neoformans by a mechanism independent of iron deprivation. J. Clin. Invest. 100:16401646.
61. Levitz,, S. M.,, S. H. Nong,, K. F. Seetoo,, T. S. Harrison,, R. A. Speizer, and, E. R. Simons. 1999. Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect. Immun. 67:885890.
62. Liu, L.,, R. P. Tewari, and, P. R. Williamson. 1999. Laccase protects Cryptococcus neoformans from antifungal activity of alveolar macrophages. Infect. Immun. 67:60346039.
63. Liu, X.,, G. Hu,, J. Panepinto, and, P. R. Williamson. 2006. Role of a VPS41 homologue in starvation response, intracellular survival and virulence of Cryptococcus neoformans. Mol. Microbiol. 61:11321146.
64. Lovchik, J. A.,, C. R. Lyons, and, M. F. Lipscomb. 1995. A role for gamma interferoninduced nitric oxide in pulmonary clearance of Cryptococcus neoformans. Am. J. Respir. Cell. Mol. Biol. 13:116124.
65. Luberto,, C.,, B. Martinez-Marino,, D. Taraskiewicz,, B. Bolanos,, P. Chitano, D. L. Toffaletti,, G. M. Cox,, J. R. Perfect,, Y. A. Hannun,, E. Balish, and, M. Del Poeta. 2003. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J. Clin. Invest. 112:10801094.
66. Luberto,, C.,, D. L. Toffaletti,, E. A. Wills,, S. C. Tucker,, A. Casadevall,, J. R. Perfect,, Y. A. Hannun, and, M. Del Poeta. 2001. Roles for inositol-phosphoryl ceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev. 15:201212.
67. Ma, H.,, J. E. Croudace,, D. A. Lammas, and, R. C. May. 2007. Direct cell-to-cell spread of a pathogenic yeast. BMC Immunol. 8:15.
68. Ma, H.,, J. E. Croudace,, D. A. Lammas, and, R. C. May. 2006. Expulsion of live pathogenic yeast by macrophages. Curr. Biol. 16:21562160.
69. Ma, H.,, F. Hagen,, D. J. Stekel,, S. A. Johnston,, E. Sionov,, R. Falk,, I. Polachek,, T. Boekhout, and, R. C. May. 2009. The fatal fungal outbreak on Vancouver Island is characterized by enhanced intracellular parasitism driven by mitochondrial regulation. Proc. Natl. Acad. Sci. USA 106:1298012985.
70. MacDougall,, L.,, S. E. Kidd,, E. Galanis,, S. Mak,, M. J. Leslie,, P. R. Cieslak,, J. W. Kronstad,, M. G. Morshed, and, K. H. Bartlett. 2007. Spread of Cryptococcus gattii in British Columbia, Canada, and detection in the Pacific Northwest, USA. Emerg. Infect. Dis. 13:4250.
71. May,, R. C.,, M. E. Hall,, H. N. Higgs,, T. D. Pollard,, T. Chakraborty,, J. Wehland,, L. M. Machesky, and, A. S. Sechi. 1999. The Arp2/3 complex is essential for the actin-based motility of Listeria monocytogenes. Curr. Biol. 9:759762.
72. Missall, T. A.,, M. E. Pusateri, and, J. K. Lodge. 2004. Thiol peroxidase is critical for virulence and resistance to nitric oxide and peroxide in the fungal pathogen, Cryptococcus neoformans. Mol. Microbiol. 51:14471458.
73. Mitchell, T. G., and, L. Friedman. 1972. In vitro phagocytosis and intracellular fate of variously encapsulated strains of Cryptococcus neoformans. Infect. Immun. 5:491498.
74. Monari,, C.,, C. Retini,, A. Casadevall,, D. Netski,, F. Bistoni, T. R. Kozel, and, A. Vecchiarelli. 2003. Differences in outcome of the interaction between Cryptococcus neoformans glucuronoxylomannan and human monocytes and neutrophils. Eur. J. Immunol. 33:10411051.
75. Mukherjee, J.,, L. S. Zuckier,, M. D. Scharff, and, A. Casadevall. 1994. Therapeutic efficacy of monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan alone and in combination with amphotericin B. Antimicrob. Agents Chemother. 38:580587.
76. Murray, H. W., and, D. M. Cartelli. 1983. Killing of intracellular Leishmania donovani by human mononuclear phagocytes. Evidence for oxygen-dependent and -independent leishmanicidal activity. J. Clin. Invest. 72:3244.
77. Nakano, K.,, T. Mutoh,, R. Arai, and, I. Mabuchi. 2003. The small GTPase Rho4 is involved in controlling cell morphology and septation in fission yeast. Genes Cells 8:357370.
78. Nichols, C. B.,, Z. H. Perfect, and, J. A. Alspaugh. 2007. A Ras1-Cdc24 signal transduction pathway mediates thermotolerance in the fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 63:11181130.
79. Noverr,, M. C.,, G. M. Cox,, J. R. Perfect, and, G. B. Huffnagle. 2003. Role of PLB1 in pulmonary inflammation and cryptococcal eicosanoid production. Infect. Immun. 71:15381547.
80. Noverr,, M. C.,, S. M. Phare,, G. B. Toews,, M. J. Coffey, and, G. B. Huffnagle. 2001. Pathogenic yeasts Cryptococcus neoformans and Candida albicans produce immunomodulatory prostaglandins. Infect. Immun. 69:29572963.
81. Oh-hama, T. 1997. Evolutionary consideration on 5-amino-levulinate synthase in nature. Orig. Life Evol. Biosph. 27:405412.
82. Portnoy, D. A.,, V. Auerbuch, and, I. J. Glomski. 2002. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 158:409414.
83. Price, M. S.,, C. B. Nichols, and, J. A. Alspaugh. 2008. The Cryptococcus neoformans Rho-GDP dissociation inhibitor mediates intracellular survival and virulence. Infect. Immun. 76:57295737.
84. Radisky,, D. C.,, W. B. Snyder,, S. D. Emr, and, J. Kaplan. 1997. Characterization of VPS41, a gene required for vacuolar trafficking and high-affinity iron transport in yeast. Proc. Natl. Acad. Sci. USA 94:56625666.
85. Reardon,, C. C.,, S. J. Kim,, R. P. Wagner, and, H. Kornfeld. 1996. Interferon-gamma reduces the capacity of human alveolar macrophages to inhibit growth of Cryptococcus neoformans in vitro. Am. J. Respir. Cell. Mol. Biol. 15:711715.
86. Robbins,, J. R.,, A. I. Barth,, H. Marquis, E. L. de Hostos,, W. J. Nelson, and, J. A. Theriot. 1999. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell. Biol. 146:13331350.
87. Rossier, M. F. 2006. T channels and steroid biosynthesis: in search of a link with mitochondria. Cell Calcium 40:155164.
88. Schaechter, M.,, F. M. Bozeman, and, J. E. Smadel. 1957. Study on the growth of Rickettsiae. II. Morphologic observations of living Rickettsiae in tissue culture cells. Virology 3:160172.
89. Schmiel, D. H., and, V. L. Miller. 1999. Bacterial phospholipases and pathogenesis. Microbes Infect. 1:11031112.
90. Shea,, J. M.,, T. B. Kechichian,, C. Luberto, and, M. Del Poeta. 2006. The cryptococcal enzyme inositol phosphosphingolipid-phospholipase C confers resistance to the antifungal effects of macrophages and promotes fungal dissemination to the central nervous system. Infect. Immun. 74:59775988.
91. Shoham, S., and, S. M. Levitz. 2005. The immune response to fungal infections. Br. J. Haematol. 129:569582.
92. Sigler, K., and, M. Hofer. 1991. Activation of the plasma membrane H(+)-ATPase of Saccharomyces cerevisiae by addition of hydrogen peroxide. Biochem. Int. 23:861873.
93. Soteropoulos,, P.,, T. Vaz,, R. Santangelo,, P. Paderu,, D. Y. Huang,, M. J. Tamas, and, D. S. Perlin. 2000. Molecular characterization of the plasma membrane H(+)-ATPase, an antifungal target in Cryptococcus neoformans. Antimicrob. Agents Chemother. 44:23492355.
94. Southwick, F. S., and, D. L. Purich. 1996. Intracellular pathogenesis of listeriosis. N. Engl. J. Med. 334:770776.
95. Stadler, N.,, M. Hofer, and, K. Sigler. 2001. Mechanisms of Saccharomyces cerevisiae PMA1 H+-ATPase inactivation by Fe2+, H2O2 and Fenton reagents. Free Radic. Res. 35:643653.
96. Steenbergen,, J. N.,, J. D. Nosanchuk,, S. D. Malliaris, and, A. Casadevall. 2003. Cryptococcus neoformans virulence is enhanced after growth in the genetically malleable host Dictyostelium discoideum. Infect. Immun. 71:48624872.
97. Steenbergen, J. N.,, H. A. Shuman, and, A. Casadevall. 2001. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc. Natl. Acad. Sci. USA 98:1524515250.
98. Stephen, C.,, S. Lester,, W. Black,, M. Fyfe, and, S. Raverty. 2002. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can. Vet. J. 43:792794.
99. Stevens, J. M.,, E. E. Galyov, and, M. P. Stevens. 2006. Actin-dependent movement of bacterial pathogens. Nat. Rev. Microbiol. 4:91101.
100. Strasser,, J. E.,, S. L. Newman,, G. M. Ciraolo,, R. E. Morris,, M. L. Howell, and, G. E. Dean. 1999. Regulation of the macrophage vacuolar ATPase and phagosome-lysosome fusion by Histoplasma capsulatum. J. Immunol. 162:61486154.
101. Sturgill-Koszycki,, S.,, P. H. Schlesinger,, P. Chakraborty, P. L. Haddix,, H. L. Collins,, A. K. Fok,, R. D. Allen,, S. L. Gluck,, J. Heuser, and, D. G. Russell. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678681.
102. Sullivan,, D.,, K. Haynes,, G. Moran,, D. Shanley,, and D. Coleman. 1996. Persistence, replacement, and microevolution of Cryptococcus neoformans strains in recurrent meningitis in AIDS patients. J. Clin. Microbiol. 34:17391744.
103. Supek, F.,, L. Supekova,, H. Nelson, and, N. Nelson. 1996. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc. Natl. Acad. Sci. USA 93:51055110.
104. Tacker, J. R.,, F. Farhi, and, G. S. Bulmer. 1972. Intracellular fate of Cryptococcus neoformans. Infect. Immun. 6:162167.
105. Toffaletti,, D. L.,, K. Nielsen,, F. Dietrich,, J. Heitman, and, J. R. Perfect. 2004. Cryptococcus neoformans mitochondrial genomes from serotype A and D strains do not influence virulence. Curr. Genet. 46:193204.
106. Tucker, S. C., and, A. Casadevall. 2002. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc. Natl. Acad. Sci. USA 99:31653170.
107. Tuxworth,, R. I.,, I. Weber,, D. Wessels,, G. C. Addicks,, D. R. Soll,, G. Gerisch, and, M. A. Titus. 2001. A role for myosin VII in dynamic cell adhesion. Curr. Biol. 11:318329.
108. Vallim,, M. A.,, C. B. Nichols,, L. Fernandes, K. L. Cramer, and, J. A. Alspaugh. 2005. A Rac homolog functions downstream of Ras1 to control hyphal differentiation and high-temperature growth in the pathogenic fungus Cryptococcus neoformans. Eukaryot. Cell 4:10661078.
109. Voelz, K.,, D. A. Lammas, and, R. C. May. 2009. Cytokine signaling regulates the outcome of intracellular macrophage parasitism by Cryptococcus neoformans. Infect. Immun. 77:34503457.
110. Walker, L., and, D. B. Lowrie. 1981. Killing of Mycobacterium microti by immunologically activated macrophages. Nature 293:6971.
111. Wang, Y.,, P. Aisen, and, A. Casadevall. 1995. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect. Immun. 63:31313136.
112. Wang, Y., and, A. Casadevall. 1994. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect. Immun. 62:30043007.
113. Waugh,, M. S.,, M. A. Vallim,, J. Heitman, and, J. A. Alspaugh. 2003. Ras1 controls pheromone expression and response during mating in Cryptococcus neoformans. Fungal Genet. Biol. 38:110121.
114. Williamson, P. R. 1997. Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front Biosci. 2:e99e107.
115. Wood,, S. A.,, R. R. Ammann,, D. A. Brock,, L. Li,, T. Spann, and, R. H. Gomer. 1996. RtoA links initial cell type choice to the cell cycle in Dictyostelium. Development 122:36773685.
116. Wright,, L. C.,, R. M. Santangelo,, R. Ganendren,, J. Payne,, J. T. Djordjevic, and, T. C. Sorrell. 2007. Cryptococcal lipid metabolism: phospholipase B1 is implicated in transcellular metabolism of macrophagederived lipids. Eukaryot. Cell 6:3747.
117. Zaragoza,, O.,, C. J. Chrisman,, M. V. Castelli,, S. Frases,, M. Cuenca-Estrella,, J. L. Rodriguez-Tudela, and, A. Casadevall. 2008. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell. Microbiol. 10:20432057.
118. Zhao,, L.,, F. Zhang,, J. Guo,, Y. Yang,, B. Li, and, L. Zhang. 2004. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol. 134:849857.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error