1887

Chapter 4 : Host Defense (Antimicrobial) Peptides and Proteins

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Host Defense (Antimicrobial) Peptides and Proteins, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap04-2.gif

Abstract:

Pathogen clearance is mediated by a complex set of strategies, ranging from the ingestion of microbes by phagocytes to the production of antimicrobial molecules, including reactive chemical species or lytic compounds. Another strategy is the production of cationic host defence proteins and peptides, compounds that play an important role in innate immunity, not only as antimicrobial agents, but also as immune regulators. Defensins members are categorized into three families based on their sizes and θ: the α-, β-, and θ-defensins. Defensins have generated a large amount of interest due to their modest in vitro antimicrobial activity against a wide range of microorganisms, including enveloped viruses, fungi, and bacteria. Host defense proteins include more than 700 structurally diverse members expressed extensively in both plants and animals. Lysozymes, also called muramidases, are small, abundant cationic enzymes that are widely distributed in plants and animals. Lactoferrin is an 80-kDa iron-binding plasma protein that belongs to the transferrin protein family, which includes serum transferrin, ovotransferrin, melanotransferrin, and the inhibitor of carbonic anhydrase. Chemokines are an extensive family of small chemotactic cytokine proteins of 7 to 10 kDa in size and include approximately 50 members in humans. Most chemokines are also cationic proteins and thus possess modest antibacterial properties in dilute medium. Host defense peptides and proteins are major components in the arsenal of our immune system.

Citation: Madera L, Ma S, Hancock R. 2011. Host Defense (Antimicrobial) Peptides and Proteins, p 57-67. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch4

Key Concept Ranking

Infection and Immunity
0.5948506
Immune Systems
0.5189572
Adaptive Immune System
0.4924938
Innate Immune System
0.48693636
Amino Acids
0.44689256
Immune Response
0.43854326
0.5948506
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The multiple roles of host defense peptides in the immune response.

Citation: Madera L, Ma S, Hancock R. 2011. Host Defense (Antimicrobial) Peptides and Proteins, p 57-67. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816872.ch04
1. Allen, S. J.,, S. E. Crown,, and T. M. Handel. 2007. Chemokine: receptor structure, interactions, and antagonism. Annu. Rev. Immunol. 25:787820.
2. Amid, C.,, L. M. Rehaume,, K. L. Brown,, J. G. Gilbert,, G. Dougan,, R. E. Hancock,, J. L. Harrow. 2009. Manual annotation and analysis of the defensin gene cluster in the C57BL/6J mouse reference genome. BMC Genomics 10:606.
3. Bowdish, D. M. E.,, D. J. Davidson, and, R. E. W. Hancock. 2005. A re-evaluation of the role of host defence peptides in mammalian immunity. Curr. Protein Pept. Sci. 6:3551.
4. Bowdish, D. M. E.,, D. J. Davidson, and, R. E. W. Hancock. 2006. Immunomodulatory properties of Defensins and Cathelicidins. Curr. Top. Microbiol. Immunol. 306:2766.
5. Brown, K. L., and, R. E. W. Hancock. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Microbiol. 18:2430.
6. Brown, K. L.,, N. Mookherjee, and, R. E. W. Hancock. 2007. Antimicrobial, host defence peptides, and proteins. In Encyclopedia of Life Sciences (ELS). John Wiley and Sons, Ltd., Chichester, UK. doi: 10.1002/9780470015902.a0001212.pub2
7. Canny, G., and, O. Levy. 2008. Bactericidal/permeability-increasing protein (BPI) and BPI homologs at mucosal sites. Trends Immunol. 29:541547.
8. Chen, X.,, Z. Xu,, L. Peng,, X. Fang,, X. Yin,, N. Xu, and, P. Cen. 2006. Recent advances in the research and development of human defensins. Peptides. 27:931940.
9. Dürr, U. H. N.,, U. S. Sudheendra, and, A. Ramamoorthy. 2006. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta 1758:14081425.
10. Froy, O. 2005. Regulation of mammalian defensin expression by Toll-like receptor-dependent and independent signalling pathways. Cell. Microbiol. 7:13871397.
11. González-Chávez, S. A.,, S. Arévalo-Gallegos, and, Q. Rascon-Cruz. 2009. Lactoferrin: structure, function and applications. Int. J. Antimicrob. Agents 33:301.e18.
12. Hall, S. H.,, K. G. Hamil, and, F. S. French. 2002. Host defense proteins of male reproductive tract. J. Androl. 23:585597.
13. Jeng, L.,, A. V. Yamshichkov,, S. E. Judd,, H. M. Blumber,, G. S. Martin,, T. R. Ziegler, and, V. Tangpricha. 2009. Alterations in vitamin D status and antimicrobial peptide levels in patients in the intensive care unit with sepsis. J. Transl. Med. 7:28.
14. Jenssen, H.,, P. Hamill, and, R. E. W. Hancock. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19:491511.
15. Jenssen, H., and, R. E. W. Hancock. 2009. Antimicrobial properties of lactoferrin. Biochimie 91:1929.
16. Klotman, M. E., and, T. L. Chang. 2006. Defensins in innate antiviral immunity. Nat. Rev. Immunol. 6:447456.
17. Lillard, J. W., Jr.,, N. Prosper,, O. Chertov,, J. J. Oppenheim, and, J. R. McGhee. 1999. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl. Acad. Sci. 96:651656.
18. Masschalck, B., and, C. W. Michiels. 2003. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit. Rev. Microbiol. 29:191214.
19. Menendez, A., and, B. Finlay. 2007. Defensins in the immunology of bacterial infections. Curr. Opin. Immunol. 19:385391.
20. Mookherjee, N.,, K. Brown,, D. M. E. Bowdish,, S. Doria,, R. Falsafi,, K. Hokamp,, F. M. Roche,, R. Mu,, G. H. Doho,, J. Pistolic,, J. P. Powers,, J. Bryan,, F. S. L. Brinkman, and, R. E. W. Hancock. 2006. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol. 176:24552464.
21. Mookherjee, N.,, P. Hamill,, J. Gardy,, D. Blimkie,, R. Falsafi,, A. Chikatamarla,, D. J. Arenillas,, S. Doria,, T. R. Kollmann, and, R. E. W. Hancock. 2009a. Systems biology evaluation of immune responses induced by human host defence peptide LL-37 in mononuclear cells. Mol. Biosystems 5:483496.
22. Mookherjee, N.,, D. N. Lippert,, P. Hamill,, R. Falsafi,, A. Nijnik,, J. Kindrachuk,, J. Pistolic,, J. Gardy,, P. Miri,, M. Naseer,, L. J. Foster, and, R. E. W. Hancock. 2009b. Intracellular receptor for human host defense peptide LL-37 in monocytes. J. Immunol. 183:26882696.
23. Moser, B.,, M. Wolf,, A. Walzl, and, P. Loetscher. 2004. Chemokines: multiple levels of leukocyte migration control. Trends Immunol. 25:7584.
24. Niyonsaba, F., and, H. Ogawa. 2005. Protective roles of the skin against infection: implication of naturally occurring human antimicrobial agents β-defensins, cathelicidin LL-37 and lysozyme. J. Dermatol. Sci. 40:157168.
25. Oppenheim, J. J., and, D. Yang. 2005. Alarmins: chemotactic activators of immune responses. Curr. Opin. Immunol. 17:359365.
26. Schultz, H. 2007. From infection to autoimmunity: a new model for induction of ANCA against the bactericidal/permeability increasing protein (BPI). Autoimmun. Rev. 6:223227.
27. Syeda, F.,, H. Y. Liu,, E. Tullis,, M. Liu,, A. S. Slutsky, and, H. Zhang. 2008. Differential signaling mechanisms of HNP-induced IL-8 production in human lung epithelial cells and monocytes. J. Cell. Physiol. 214:820827.
28. Uniprot Consortium. 2008. The Universal Protein Resource (UniProt). Nucleic Acids Res. 36:D190195.
29. Van Amersfoort, E. S.,, T. J. C. Van Berkel, and, J. Kuiper. 2003. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin. Microbiol. Rev. 16:379414.
30. Ward, S. G., and, F. M. Marelli-Berg. 2009. Mechanisms of chemokine and antigen-dependent T-lymphocyte navigation. Biochem. J. 418:1327.
31. Weiss, H. J. P. 2007. The bactericidal/permeability-increasing protein (BPI) in infection and inflammatory disease. Clin. Chim. Acta 384:1223.
32. Welling, M. M.,, P. S. Hiemstra,, M. T. van den Barselaar,, A. Paulusma-Annema,, P. H. Nibbering,, E. K. Pauwels, and, W. Calame. 1998. Antibacterial activity of human neutrophil defensins in experimental infections in mice is accompanied by increased leukocyte accumulation. J. Clin. Invest. 102:15831590.
33. Yamasaki, K., and, R. L. Gallo. 2008. Antimicrobial peptides in human skin disease. Eur. J. Dermatol. 18:1121.
34. Yang, D.,, O. Chertov, and, J. J. Oppenheim. 2001. Participation of mammalian defensins and cathelicidins in antimicrobial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol. 69:691697.
35. Yu, J.,, N. Mookherjee,, K. Wee,, D. M. E. Bowdish,, J. Pistolic,, Y. Li,, L. Rehaume, and, R. E. W. Hancock. 2007. Host defense peptide LL-37, in synergy with inflammatory mediator IL-1β, augments immune responses by multiple pathways. J. Immunol. 179:76847691.
36. Zanetti, M. 2004. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75:3948.

Tables

Generic image for table
TABLE 1

Human cationic host defense peptides and their regulation and functions in the immune response

Citation: Madera L, Ma S, Hancock R. 2011. Host Defense (Antimicrobial) Peptides and Proteins, p 57-67. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch4
Generic image for table
TABLE 2

Human host defense peptides and proteins

Citation: Madera L, Ma S, Hancock R. 2011. Host Defense (Antimicrobial) Peptides and Proteins, p 57-67. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error