1887

Chapter 6 : Complement in Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Complement in Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap06-2.gif

Abstract:

The complement system provides a fundamental component of the body's immune response to invading microorganisms. This chapter highlights the various roles of the complement system in the orchestration of the immune response towards microbial infections, gives examples of microbial strategies to evade complement-mediated clearance, and discusses how acquired and inherited complement deficiencies may predispose an organism to infectious disease. Complement is activated by three pathways: the classical pathway, the alternative pathway, and the lectin pathway. The lectin pathway is activated by carbohydrate recognition molecules that bind to polysaccharide on the surface of a pathogen. Factor B, factor D, and properdin (factor P) are specific components of the alternative pathway of complement activation. The complement activation is tightly regulated by membrane-bound and fluid-phase regulatory components to avoid runaway activation of the enzymatic cascade that could lead to excess host tissue damage, inflammation, and depletion of complement components. A deficiency in any component of the classical pathway is associated with an increased risk of immunological disease and recurrent bacterial infections. Pneumolysin is a potent virulence factor produced by all serotypes of . Pneumolysin is released as a 52 kDa soluble monomer. It binds cholesterol-containing membranes and the monomeric subunits oligomerize to form a pore in the target cell membrane that leads to cell death. Pneumococcal surface protein C (PspC) is a major virulence factor of and contributes to many different biological functions.

Citation: Schwaeble W, Ali Y, Lynch N, Wallis R. 2011. Complement in Infections, p 85-95. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch6

Key Concept Ranking

Complement System
0.43036
Complement Receptor Type 1
0.42616796
Herpes simplex virus 1
0.4198343
0.43036
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A simplified diagram of the three complement activation pathways: the classical, the lectin pathway, and the alternative pathway. Both the classical and the lectin pathway share the identical C3 and C5 convertase complexes formed after cleavage of C4 by either activated C1s (classical pathway) or activated MASP-2 (lectin pathway) (see 1) and subsequent cleavage and activation of C4b-bound C2 through activated C1s or MASP-2 (see 2). Activation of the alternative pathway is tightly controlled by membrane associated complement regulatory components and the competition of the main fluid phase antagonists factor B and factor H for binding C3b or hydrolsed C3. The affinity of factor B to bind C3b is higher on “activating “surfaces, and the half-life of C3bB, C3Bb, and C3Bb(C3b)n complexes, significantly increased by the action of properdin, allows the alternative pathway amplification loop to be formed. The alternative pathway activation loop allows C3b to be used to (i) generate more alternative pathway C3 convertases and (ii) maximize complement opsonization of activating (microbial) surfaces, or (iii) switch substrate specificity of the C3 convertases to cleave C5 through deposition of multiple C3b molecules in close proximity. This flow diagram summarizes the synergisms between the three activation pathways and points out that the initial C3b required for the alternative pathway activation loop to form can either be provided via the classical or the lectin pathway, or via spontaneous hydrolysis of C3 (C3(HO), which, like C3b, can bind to factor B in the absence of activation of the latter two pathways.

Citation: Schwaeble W, Ali Y, Lynch N, Wallis R. 2011. Complement in Infections, p 85-95. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Structure of the classical and lectin pathway recognition components. The basic subunits are trimers, with N-terminal collagen-like and C-terminal globular domains. In C1q, the subunit is a heterotrimer of C1qA-, B-, and C-chains and the globular heads are antibody Fc binding domains. For MBL and the ficolins, the subunits are homotrimers and the globular domains are C-type lectin and fibrinogen-like domains, respectively. Subunits assemble, via their collagenous domains into higher order oligomers, typically trimers and tetramers for MBL and the ficolins, and hexamers for C1q.

Citation: Schwaeble W, Ali Y, Lynch N, Wallis R. 2011. Complement in Infections, p 85-95. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816872.ch06
1. Arlaud, G. J.,, C. Gaboriaud,, N. M. Thielens,, M. Budayova-Spano, V. Rossi, and, J. C. Fontecilla-Camps. 2002. Structural biology of the C1 complex of complement unveils the mechanisms of its activation and proteolytic activity. Mol. Immunol. 39:383394.
2. Atkinson, A. P.,, M. Cedzynski,, J. Szemraj,, A. St. Swierzko, L. Bak-Romaniszyn, M. Banasik, K. Zeman, M. Matsushita, M. L. Turner, and, D. C. Kilpatrick. 2004. L-ficolin in children with recurrent respiratory infections. Clin. Exp. Immunol. 138:517520.
3. Bergmann, S., and, S. Hammerschmidt. 2006. Versatility of pneumococcal surface proteins. Microbiology 152:295303.
4. Bohlson, S. S.,, J. A. Strasser,, J. J. Bower, and, J. S. Schorey. 2001. Role of complement in Mycobacterium avium pathogenesis: in vivo and in vitro analyses of the host response to infection in the absence of complement component C3. Infect. Immun. 69:77297735.
5. Brown, J. S.,, T. Hussell,, S. M. Gilliland,, D. W. Holden,, J. C. Paton,, M. R. Ehrenstein,, M. J. Walport, and, M. Botto. 2002. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc. Natl. Acad. Sci. USA. 99:1696916974.
6. Carroll, M. C. 2004. A protective role for innate immunity in systemic lupus erythematosus. Nat. Rev. Immunol. 4:825831.
7. Celik, I.,, C. Stover,, M. Botto,, S. Thiel,, S. Tzima,, D. Kunkel,, M. Walport,, W. Lorenz, and, W. Schwaeble. 2001. Role of the classical pathway of complement activation in experimentally induced polymicrobial peritonitis. Infect. Immun. 69:73047309.
8. Chen, C. B., and, R. Wallis. 2001. Stoichiometry of complexes between mannose-binding protein and its associated serine proteases. Defining functional units for complement activation. J. Biol. Chem. 276:2589425902.
9. Chen, C. H.,, C. F. Lam, and, R. J. Boackle. 1998. C1 inhibitor removes the entire C1qr2s2 complex from anti-C1Q monoclonal antibodies with low binding affinities. Immunology 95:648654.
10. Csordas, F. C.,, C. T. Perciani,, M. Darrieux,, V. M. Goncalves,, J. Cabrera-Crespo,, M. Takagi,, M. E. Sbrogio-Almeida,, L. C. Leite, and, M. M. Tanizaki. 2008. Protection induced by pneumococcal surface protein A (PspA) is enhanced by conjugation to a Streptococcus pneumoniae capsular polysaccharide. Vaccine 26:29252929.
11. Dahl, M.,, A. Tybjaerg-Hansen,, P. Schnohr, and, B. G. Nordestgaard. 2004. A population-based study of morbidity and mortality in mannose-binding lectin deficiency. J. Exp. Med. 199:13911399.
12. Dahl, M. R.,, S. Thiel,, M. Matsushita,, T. Fujita,, A. C. Willis,, T. Christensen,, T. Vorup-Jensen, and, J. C. Jensenius. 2001. MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway. Immunity 15:127135.
13. Endo, Y.,, N. Nakazawa,, Y. Liu,, D. Iwaki,, M. Takahashi,, T. Fujita,, M. Nakata, and, M. Matsushita. 2005. Carbohydrate-binding specificities of mouse ficolin A, a splicing variant of ficolin A and ficolin B and their complex formation with MASP-2 and sMAP. Immunogenetics 57:837844.
14. Flierl, M. A.,, D. Rittirsch,, B. A. Nadeau,, D. E. Day,, F. S. Zetoune,, J. V. Sarma,, M. S. Huber-Lang, and, P. A. Ward. 2008. Functions of the complement components C3 and C5 during sepsis. FASEB J. 22:34833490.
15. Friedman, H. M.,, L. Wang,, M. K. Pangburn,, J. D. Lambris, and, J. Lubinski. 2000. Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. J. Immunol. 165:45284536.
16. Iannelli, F.,, D. Chiavolini,, S. Ricci,, M. R. Oggioni, and, G. Pozzi. 2004. Pneumococcal surface protein C contributes to sepsis caused by Streptococcus pneumoniae in mice. Infect. Immun. 72:30773080.
17. Iwaki, D.,, K. Kanno,, M. Takahashi,, Y. Endo,, N. J. Lynch,, W. J. Schwaeble,, M. Matsushita,, M. Okabe, and, T. Fujita. 2006. Small mannose-binding lectin-associated protein plays a regulatory role in the lectin complement pathway. J. Immunol. 177:86268632.
18. Jack, D. L., N. J. Klein, and, M. W. Turner. 2001. Mannose-binding lectin: targeting the microbial world for complement attack and opsonophagocytosis. Immunol. Rev. 180:8699.
19. Jacobson, A. C., and, J. H. Weis. 2008. Comparative functional evolution of human and mouse CR1 and CR2. J. Immunol. 181:29532959.
20. Jarva, H.,, R. Janulczyk,, J. Hellwage,, P. F. Zipfel,, L. Bjorck, and, S. Meri. 2002. Streptococcus pneumoniae evades complement attack and opsonophagocytosis by expressing the pspC locus-encoded Hic protein that binds to short consensus repeats 8-11 of factor H. J. Immunol. 168:18861894.
21. Jönsson, G.,, L. Truedsson,, G. Sturfelt,, V. A. Oxelius,, J. H. Braconier, and, A. G. Sjoholm. 2005. Hereditary C2 deficiency in Sweden: frequent occurrence of invasive infection, atherosclerosis, and rheumatic disease. Medicine 84:2334.
22. Jounblat, R.,, A. Kadioglu,, T. J. Mitchell, and, P. W. Andrew. 2003. Pneumococcal behavior and host responses during bronchopneumonia are affected differently by the cytolytic and complement-activating activities of pneumolysin. Infect. Immun. 71:18131819.
23. Kadioglu, A.,, W. Coward,, M. J. Colston,, C. R. Hewitt, and, P. W. Andrew. 2004. CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect. Immun. 72:26892697.
24. Kadioglu, A.,, N. A. Gingles,, K. Grattan,, A. Kerr,, T. J. Mitchell, and, P. W. Andrew. 2000. Host cellular immune response to pneumococcal lung infection in mice. Infect. Immun. 68:492501.
25. Kadioglu, A.,, J. N. Weiser,, J. C. Paton, and, P. W. Andrew. 2008. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat. Rev. Microbiol. 6:288301.
26. Kaplan, M. H., and, J. E. Volanakis. 1974. Interaction of C-reactive protein complexes with the complement system. I. Consumption of human complement associated with the reaction of C-reactive protein with pneumococcal C-polysaccharide and with the choline phosphatides, lecithin and sphingomyelin. J. Immunol. 112:21352147.
27. Kelly, T.,, J. P. Dillard, and, J. Yother. 1994. Effect of genetic switching of capsular type on virulence of Streptococcus pneumoniae. Infect. Immun. 62:18131819.
28. Kemper, C., and, D. E. Hourcade. 2008. Properdin: New roles in pattern recognition and target clearance. Mol. Immunol. 45:40484056.
29. Kirschfink, M., and, T. E. Mollnes. 2003. Modern complement analysis. Clin. Diagn. Lab. Immunol. 10:982989.
30. Kuronuma, K.,, H. Sano,, K. Kato,, K. Kudo,, N. Hyakushima,, S. Yokota,, H. Takahashi,, N. Fujii,, H. Suzuki,, T. Kodama,, S. Abe, and, Y. Kuroki. 2004. Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J. Biol. Chem. 279:2142121430.
31. Kyaw, M. H.,, P. Christie,, S. C. Clarke,, J. D. Mooney,, S. Ahmed,, I. G. Jones, and, H. Campbell. 2003. Invasive pneumococcal disease in Scotland, 1999-2001: use of record linkage to explore associations between patients and disease in relation to future vaccination policy. Clin. Infect. Dis. 37:12831291.
32. Lamblin, G., and, P. Roussel. 1993. Airway mucins and their role in defence against micro-organisms. Respir. Med. 87:421426.
33. Laudes, I. J.,, J. C. Chu,, M. Huber-Lang,, R. F. Guo,, N. C. Riedemann,, J. V. Sarma,, F. Mahdi,, H. S. Murphy,, C. Speyer,, K. T. Lu,, J. D. Lambris,, F. S. Zetoune, and, P. A. Ward. 2002. Expression and function of C5a receptor in mouse microvascular endothelial cells. J. Immunol. 169:59625970.
34. Li, J.,, D. T. Glover,, A. J. Szalai,, S. K. Hollingshead, and, D. E. Briles. 2007. PspA and PspC minimize immune adherence and transfer of pneumococci from erythrocytes to macrophages through their effects on complement activation. Infect. Immun. 75:58775885.
35. Liu, Y.,, Y. Endo,, D. Iwaki,, M. Nakata,, M. Matsushita,, I. Wada,, K. Inoue,, M. Munakata, and, T. Fujita. 2005. Human M-ficolin is a secretory protein that activates the lectin complement pathway. J. Immunol. 175:31503156.
36. Maisner, A.,, J. Schneider-Schaulies,, M. K. Liszewski,, J. P. Atkinson, and, G. Herrler. 1994. Binding of measles virus to membrane cofactor protein (CD46): importance of disulfide bonds and N-glycans for the receptor function. J. Virol. 68:62996304.
37. Marchisio, P.,, L. Claut,, A. Rognoni,, S. Esposito,, D. Passali,, L. Bellussi,, L. Drago,, G. Pozzi,, S. Mannelli,, G. Schito, and, N. Principi. 2003. Differences in nasopharyngeal bacterial flora in children with nonsevere recurrent acute otitis media and chronic otitis media with effusion: implications for management. Pediatr. Infect. Dis. J. 22:262268.
38. Matsushita, M., and, T. Fujita. 1992. Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J. Exp. Med. 176:14971502.
39. Mevorach, D.,, J. O. Mascarenhas,, D. Gershov, and, K. B. Elkon. 1998. Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp. Med. 188:23132320.
40. Oliver, M. A.,, J. M. Rojo,, S. Rodriguez de Cordoba, and, S. Alberti. 2008. Binding of complement regulatory proteins to group A Streptococcus. Vaccine 8:175178.
41. Podack, E. R.,, H. J. Muller-Eberhard,, H. Horst, and, W. Hoppe. 1982. Membrane attach complex of complement (MAC): three-dimensional analysis of MAC-phospholipid vesicle recombinants. J. Immunol. 128:23532357.
42. Poltermann, S.,, A. Kunert,, M. von der Heide, R. Eck,, A. Hartmann, and, P. F. Zipfel. 2007. Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J. Biol. Chem. 282:3753737544.
43. Riedemann, N. C.,, R. F. Guo, and, P. A. Ward. 2003. Novel strategies for the treatment of sepsis. Nat. Med. 9:517524.
44. Roche, H.,, B. Ren,, L. S. McDaniel,, A. Hakansson, and, D. E. Briles. 2003. Relative roles of genetic background and variation in PspA in the ability of antibodies to PspA to protect against capsular type 3 and 4 strains of Streptococcus pneumoniae. Infect. Immun. 71:44984505.
45. Rossi, V.,, S. Cseh,, I. Bally,, N. M. Thielens,, J. C. Jensenius, and, G. J. Arlaud. 2001. Substrate specificities of recombinant mannan-binding lectin-associated serine protease-1 and -2. J. Biol. Chem. 276:4088040887.
46. Schindler, R.,, J. A. Gelfand, and, C. A. Dinarello. 1990. Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: translational signal provided by lipopolysaccharide or IL-1 itself. Blood 76:16311638.
47. Schwaeble, W.,, M. R. Dahl,, S. Thiel,, C. Stover, and, J. C. Jensenius. 2002. The mannan-binding lectin-associated serine proteases (MASPs) and MAp19: four components of the lectin pathway activation complex encoded by two genes. Immunobiology 205:455466.
48. Schwaeble, W.,, J. Zwirner,, T. F. Schulz,, R. P. Linke,, M. P. Dierich, and, E. H. Weiss. 1987. Human complement factor H: expression of an additional truncated gene product of 43 kDa in human liver. Eur. J. Immunol. 17:14851489.
49. Schwaeble, W. J., and, K. B. Reid. 1999. Does properdin crosslink the cellular and the humoral immune response? Immunol. Today 20:1721.
50. Siegel, C,, J. Schreiber,, K. Haupt,, C. Skerka,, V. Brade,, M. M. Simon,, B. Stevenson,, R. Wallich,, P. F. Zipfel, and, P. Kraiczy. 2008. Deciphering the ligand-binding sites in the Borrelia burgdorferi complement regulator-acquiring surface protein 2 required for interactions with the human immune regulators factor H and factor H-like protein 1. J. Biol. Chem. 283:3485534863.
51. Stoiber, H.,, A. Soederholm,, D. Wilflingseder,, S. Gusenbauer,, A. Hildgartner, and, M. P. Dierich. 2008. Complement and antibodies: a dangerous liaison in HIV infection? Vaccine 8:179185.
52. Stover, C. M.,, J. C. Luckett,, B. Echtenacher,, A. Dupont,, S. E. Figgitt,, J. Brown,, D. N. Mannel, and, W. J. Schwaeble. 2008. Properdin plays a protective role in polymicrobial septic peritonitis. J. Immunol. 180:33133318.
53. Stover, C. M.,, S. Thiel,, M. Thelen,, N. J. Lynch,, T. Vorup-Jensen,, J. C. Jensenius, and, W. J. Schwaeble. 1999. Two constituents of the initiation complex of the mannan-binding lectin activation pathway of complement are encoded by a single structural gene. J. Immunol. 162:34813490.
54. Suresh, M. V.,, S. K. Singh,, D. A. Ferguson Jr, and, A. Agrawal. 2006. Role of the property of C-reactive protein to activate the classical pathway of complement in protecting mice from pneumococcal infection. J. Immunol. 176:43694374.
55. Szalai, A. J.,, D. E. Briles, and, J. E. Volanakis. 1995. Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in transgenic mice. J. Immunol. 155:25572563.
56. Takahashi, M.,, D. Iwaki,, K. Kanno,, Y. Ishida,, J. Xiong,, M. Matsushita,, Y. Endo,, S. Miura,, N. Ishii,, K. Sugamura, and, T. Fujita. 2008. Mannose-binding lectin (MBL)-associated serine protease (MASP)-1 contributes to activation of the lectin complement pathway. J. Immunol. 180:61326138.
57. Taylor, P. R.,, A. Carugati,, V. A. Fadok,, H. T. Cook,, M. Andrews,, M. C. Carroll,, J. S. Savill,, P. M. Henson,, M. Botto, and, M. J. Walport. 2000. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J. Exp. Med. 192:359366.
58. Teillet, F.,, B. Dublet,, J. P. Andrieu,, C. Gaboriaud,, G. J. Arlaud, and, N. M. Thielens. 2005. The two major oligomeric forms of human mannan-binding lectin: chemical characterization, carbohydrate-binding properties, and interaction with MBL-associated serine proteases. J. Immunol. 174:28702877.
59. Thiel, S.,, T. Vorup-Jensen,, C. M. Stover,, W. Schwaeble,, S. B. Laursen,, K. Poulsen,, A. C. Willis,, P. Eggleton,, S. Hansen,, U. Holmskov,, K. B. Reid, and, J. C. Jensenius. 1997. A second serine protease associated with mannan-binding lectin that activates complement. Nature 386:506510.
60. Turner, M. W. 2003. The role of mannose-binding lectin in health and disease. Mol. Immunol. 40:423429.
61. Wada, K.,, M. C. Montalto, and, G. L. Stahl. 2001. Inhibition of complement C5 reduces local and remote organ injury after intestinal ischemia/reperfusion in the rat. Gastroenterology 120:126133.
62. Wallis, R., and, J. Y. Cheng. 1999. Molecular defects in variant forms of mannose-binding protein associated with immunodeficiency. J. Immunol. 163:49534959.
63. Wallis, R.,, N. J. Lynch,, S. Roscher,, K. B. Reid, and, W. J. Schwaeble. 2005. Decoupling of carbohydrate binding and MASP-2 autoactivation in variant mannose-binding lectins associated with immunodeficiency. J. Immunol. 175:68466851.
64. Wallis, R.,, J. M. Shaw,, J. Uitdehaag,, C. B. Chen,, D. Torgersen, and, K. Drickamer. 2004. Localization of the serine protease-binding sites in the collagen-like domain of mannose-binding protein: indirect effects of naturally occurring mutations on protease binding and activation. J. Biol. Chem. 279:1406514073.
65. Whaley, K., and, W. Schwaeble. 1997. Complement and complement deficiencies. Semin. Liver Dis. 17:297310.
66. Yuste, J.,, M. Botto,, S. E. Bottoms, and, J. S. Brown. 2007. Serum amyloid P aids complement-mediated immunity to Streptococcus pneumoniae. PLoS Pathog. 3:12081219.
67. Yuste, J.,, M. Botto,, J. C. Paton,, D. W. Holden, and, J. S. Brown. 2005. Additive inhibition of complement deposition by pneumolysin and PspA facilitates Streptococcus pneumoniae septicemia. J. Immunol. 175:18131819.

Tables

Generic image for table
TABLE 1

Regulatory components of complement activation and their known interaction with pathogens

Citation: Schwaeble W, Ali Y, Lynch N, Wallis R. 2011. Complement in Infections, p 85-95. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error