1887

Chapter 12 : Overview of Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Overview of Bacterial Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap12-2.gif

Abstract:

Pathogenic bacteria are capable of inflicting damage to the infected host, thereby causing disease. Importantly, the different body habitats have distinct physical-chemical properties as to pH and abundance of molecular oxygen and water, which allow the presence and growth of specific types of bacteria. subspecies , the bacterium which causes syphilis and (Group A streptococci), which is associated with suppurative skin and mucosal infections, necrotizing fascitis, scarlet fever, and sequelae such as glomerulonephritis and rheumatic fever, are examples of extracellular obligate human pathogens. Most virulence factors only act locally at the site of infection, whilst others, are also transported to distal parts of the body, where they subvert host cell functions. Importantly, bacteria growing in biofilms are able to partially evade the immune response and are resistant to antibiotic treatment. The causes and mechanisms of genetic variation account for the evolution of both commensal and pathogenic bacteria. The difference lies in the fact that in pathogens virulence factors are acquired. However, sometimes it is not easy to distinguish a true virulence factor from a feature that just increases the bacterial fitness without really harming the host.

Citation: Sansonetti P, Puhar A. 2011. Overview of Bacterial Pathogens, p 155-164. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch12

Key Concept Ranking

Bacterial Proteins
0.61518425
Antibacterial Agents
0.5533811
Rocky Mountain Spotted Fever
0.41396314
0.61518425
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The gram-negative cell wall. In gram-negative microorganisms the cell wall is composed of two lipid membranes, the inner (IM) and the outer membrane (OM). The two membranes are separated by a peptidoglycan (PG) layer, the periplasm. The exterior leaflet of the outer membrane contains lipopolysaccharide (LPS) and porins, which mediate the passage of solutes (e.g., ions and sugars), from the extracellular milieu to the periplasm. Membrane and membrane-associated proteins are present in both the inner and the outer membrane. In pathogenic gram-negative bacteria, virulence determinants such as secretion systems are associated with the cell wall, as exemplified by the Type 3 secretion system (T3SS). The basis of the T3SS spans the entire cell wall, whereas the needle protrudes into the extracellular milieu and is able to form a connection with the host cell plasma membrane. This architecture allows the translocation of effectors across the cell wall from the bacterial cytoplasm to the host cell.

Citation: Sansonetti P, Puhar A. 2011. Overview of Bacterial Pathogens, p 155-164. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The gram-positive cell wall. In gram-positive microorganisms, the cell wall is composed of a lipid membrane that is surrounded by a thick peptidoglycan (PG) layer. The peptidoglycan layer is interwoven with teichoic and lipoteichoic acid, which is bound to the lipid membrane. Proteins are both associated with the lipid membrane and with the peptidoglycan layer. In pathogenic gram-positive bacteria, virulence factors such as adhesins are found in the cell wall, as exemplified by the presence of a pilus. Pili are covalently linked to peptidoglycan and extend into the extracellular milieu.

Citation: Sansonetti P, Puhar A. 2011. Overview of Bacterial Pathogens, p 155-164. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816872.ch12
1. Aas, J. A.,, B. J. Paster,, L. N. Stokes,, I. Olsen, and, F. E. Dewhirst. 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43:57215732.
2. Backhed, R, and, M. Hornef. 2003. Toll-like receptor 4-mediated signaling by epithelial surfaces: necessity or threat? Microbes Infect. 5:951959.
3. Bernardini, M. L.,, J. Mounier,, H. d’Hauteville,, M. Coquis-Rondon, and, P. J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with Factin. Proc. Natl. Acad. Sci. USA 86:38673871.
4. Bielecki, J.,, P. Youngman,, P. Connelly, and, D. A. Portnoy. 1990. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature 345:175176.
5. Bik, E. M.,, P. B. Eckburg,, S. R. Gill,, K. E. Nelson,, E. A. Purdom,, F. Francois,, G. Perez-Perez,, M. J. Blaser, and, D. A. Relman. 2006. Molecular analysis of the bacterial microbiota in the human stomach. Proc. Natl Acad. Sci. USA 103:732737.
6. Borriello, S. P., and, K. Aktories. 2005. Clostridium perfringens, Clostridium difficile, and other Clostridium species, p. 1089-1136. In S. P. Borriello,, P. R. Murray and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
7. Bours, M. J.,, E. L. Swennen,, F. Di Virgilio,, B. N. Cronstein, and, P. C. Dagnelie. 2006. Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 112:358404.
8. Breitschwerdt, E. B., and, D. L. Kordick. 2000. Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin. Microbiol. Rev. 13:428438.
9. Cheasty, T., and, H. R. Smith. 2005. Escherichia, p. 1362–1385. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
10. Coats, S. R.,, C. T. Do,, L. M. Karimi-Naser, P. H. Braham, and, R. P. Darveau. 2007. Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding site. Cell. Microbiol. 9:11911202.
11. Cocchiaro, J. L., and, R. H. Valdivia. 2009. New insights into Chlamydia intracellular survival mechanisms. Cell. Microbiol. 11:15711578.
12. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, N. R. Thomson,, P. R. Wheeler,, N. Honore,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lacroix,, J. Maclean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward, and, B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409:10071011.
13. Dobrindt, U.,, F. Agerer,, K. Michaelis,, A. Janka,, C. Buchrieser,, M. Samuelson,, C. Svanborg,, G. Gottschalk,, H. Karch, and, J. Hacker. 2003. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J. Bacteriol. 185:18311840.
14. Dobrindt, U.,, B. Hochhut,, U. Hentschel, and, J. Hacker. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2:414424.
15. Doring, G., and, E. Gulbins. 2009. Cystic fibrosis and innate immunity: how chloride channel mutations provoke lung disease. Cell. Microbiol. 11:208216.
16. Eckburg, P. B.,, E. M. Bik,, C. N. Bernstein,, E. Purdom,, L. Dethlefsen,, M. Sargent,, S. R. Gill,, K. E. Nelson, and, D. A. Relman. 2005. Diversity of the human intestinal microbial flora. Science 308:16351638.
17. Fraser, C. M.,, S. J. Norris,, G. M. Weinstock,, O. White,, G. G. Sutton,, R. Dodson,, M. Gwinn,, E. K. Hickey,, R. Clayton,, K. A. Ketchum,, E. Sodergren,, J. M. Hardham,, M. P. McLeod,, S. Salzberg,, J. Peterson,, H. Khalak,, D. Richardson,, J. K. Howell,, M. Chidambaram,, T. Utterback,, L. McDonald,, P. Artiach,, C. Bowman,, M. D. Cotton,, C. Fujii,, S. Garland,, B. Hatch,, K. Horst,, K. Roberts,, M. Sandusky,, J. Weidman,, H. O. Smith, and, J. C. Venter. 1998. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375388.
18. Fredricks,, D. N.,, T. L. Fiedler and, J. M. Marrazzo. 2005. Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med. 353:18991911.
19. Funke, G. 2005. Corynebacteria and rare coryneforms, p. 977–997. In S. P. Borriello,, P. R. Murray and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
20. Grice, E. A.,, H. H. Kong,, S. Conlan,, C. B. Deming,, J. Davis,, A. C. Young,, G. G. Bouffard,, R. W. Blakesley,, P. R. Murray,, E. D. Green,, M. L. Turner, and, J. A. Segre. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:11901192.
21. Hacker, J.,, L. Bender,, M. Ott,, J. Wingender,, B. Lund,, R. Marre, and, W. Goebel. 1990. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog. 8:213225.
22. Hall-Stoodley, L., and, P. Stoodley. 2009. Evolving concepts in biofilm infections. Cell. Microbiol. 11:10341043.
23. Harrison, T. G. 2005. Legionella, p. 1761–1785. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
24. Hyman, R. W.,, M. Fukushima,, L. Diamond,, J. Kumm,, L. C. Giudice, and, R. W. Davis. 2005. Microbes on the human vaginal epithelium. Proc. Natl. Acad. Sci. USA 102:79527957.
25. Johansson, M. E.,, M. Phillipson,, J. Petersson,, A. Velcich,, L. Holm, and, G. C. Hansson. 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl. Acad. Sci. USA 105:1506415069.
26. Johnson, E. A. 2005a. Clostridium botulinum and Clostridium tetani, p. 1035–1088. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
27. Johnson, J. A. 2005b. Vibrio, p. 1507–1523. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
28. Kilian, M. 2005. Streptococcus and Lactobacillus, p. 833–881. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
29. Kline, K. A.,, S. Falker,, S. Dahlberg,, S. Normark, and, B. Henriques-Normark. 2009. Bacterial adhesins in hostmicrobe interactions. Cell Host Microbe 5:580592.
30. Kocks, C.,, E. Gouin,, M. Tabouret,, P. Berche,, H. Ohayon, and, P. Cossart. 1992. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521531.
31. Kroes, I.,, P. W. Lepp, and, D. A. Relman. 1999. Bacterial diversity within the human subgingival crevice. Proc. Natl Acad. Sci. USA 96:1454714552.
32. Kufer, T. A., and, P. J. Sansonetti. 2007. Sensing of bacteria: NOD a lonely job. Curr. Opin. Microbiol. 10:6269.
33. Lecuit, M.,, S. Vandormael-Pournin,, J. Lefort,, M. Huerre,, P. Gounon,, C. Dupuy,, C. Babinet and, P. Cossart. 2001. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:17221725.
34. Lightfoot, N. F., and, G. Lloyd. 2005. Coxiella burnetii, p. 2072–2080. In S. P. Borriello,, P. R. Murray and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
35. Madigan, M. T.,, J. M. Martinko, and, J. Parker. 2000. Brock Biology of Microorganisms, 9th ed. Prentice Hall International, Inc., London.
36. Marshall, B. J., and, J. R. Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1:13111315.
37. Matzinger, P. 1994. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12:9911045.
38. Maurelli, A. T.,, R. E. Fernandez,, C. A. Bloch,, C. K. Rode, and, A. Fasano. 1998. “Black holes” and bacterial pathogenicity: a large genomic deletion that enhances the virulence of Shigella spp., and enteroinvasive Escherichia coli. Proc. Natl. Acad. Sci. USA 95:39433948.
39. Mietzner, T. A.,, and S. A. Morse. 2005. Neisseria, p. 1270–1300. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
40. Molinari, M.,, M. Salio,, C. Galli,, N. Norais,, R. Rappuoli,, A. Lanzavecchia, and, C. Montecucco. 1998. Selective inhibition of Ii-dependent antigen presentation by Helicobacter pylori toxin VacA. J. Exp. Med. 187:135140.
41. Moran, A. P.,, M. M. Prendergast, and, B. J. Appelmelk. 1996. Molecular mimicry of host structures by bacterial lipopoly-saccharides and its contribution to disease. FEMS Immunol. Med. Microbiol. 16:105115.
42. Munford, R. S., and, A. W. Varley. 2006. Shield as signal: lipopolysaccharides and the evolution of immunity to gram-negative bacteria. PLoS Pathog. 2:e67.
43. Murray, P. R., and, M. J. Corbel. 2005. Brucella, p. 1719–1751. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
44. Murray, P. R.,, B. Holmes, and, H. M. Aucken. 2005. Citrobacter, Enterobacter, Klebsiella, Plesiomonas, Serratia, and other members of the Enterobacteriaceae, p. 1474–1506. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
45. Nougayrede, J. P.,, S. Homburg,, F. Taieb,, M. Boury,, E. Brzuszkiewicz,, G. Gottschalk,, C. Buchrieser,, J. Hacker,, U. Dobrindt, and, E. Oswald. 2006. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313:848851.
46. Odenbreit, S.,, J. Puls,, B. Sedlmaier,, E. Gerland,, W. Fischer, and, R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287:14971500.
47. Osrin, D.,, S. Vergnano, and, A. Costello. 2004. Serious bacterial infections in newborn infants in developing countries. Curr. Opin. Infect. Dis. 17:217224.
48. Palleroni, N. J. 2005. Pseudomonas, p. 1591–1606. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
49. Parton, R. 2005. Bordetella, p. 1786–1817. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
50. Peacock, S. J. 2005. Staphylococcus, p. 771–832. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
51. Portaels, F.,, M. T. Silva, and, W. M. Meyers. 2009. Buruli ulcer. Clin. Dermatol. 27:291305.
52. Postic, D. 2005. Borrelia, p. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
53. Pugsley, A. P. 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57:50108.
54. Raoult, D., and, J. S. Dumler. 2005. Rickettsia and Orenta, p. 2026–2047. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
55. Rosqvist, R.,, K. E. Magnusson, and, H. Wolf-Watz. 1994. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13:964972.
56. Sansonetti, P. J. 2005. Shigella, p. 1386–1397. In S. P. Borriello, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
57. Sansonetti, P. J., and, R. Medzhitov. 2009. Learning tolerance while fighting ignorance. Cell 138:416420.
58. Slack, M. P. E. 2005. Haemophilus, p. 1692–1718. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
59. Spickett, G. P. 2008. Immune deficiency disorders involving neutrophils. J. Clin. Pathol. 61:10011005.
60. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin, and, R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754759.
61. Threlfall, E. J. 2005. Salmonella, p. 1398–1434. In S. P. Borriello,, P. R. Murray, and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
62. Trosky, J. E.,, A. D. Liverman, and, K. Orth. 2008. Yersinia outer proteins: Yops. Cell. Microbiol. 10:557565.
63. Turk, B. E. 2007. Manipulation of host signalling pathways by anthrax toxins. Biochem. J. 402:405417.
64. Turnbaugh, P. J.,, R. E. Ley,, M. Hamady,, C. M. Fraser-Liggett,, R. Knight, and, J. I. Gordon. 2007. The human microbiome project. Nature 449:804810.
65. Turnbull, P. C. 2002. Introduction: anthrax history, disease and ecology. Curr. Top. Microbiol. Immunol. 271:119.
66. Vaishnava, S.,, C. L. Behrendt,, A. S. Ismail,, L. Eckmann, and, L. V. Hooper. 2008. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. USA 105:2085820863.
67. Vandenberg, O.,, M. B. Skirrow, and, J.-P. Butzler. 2005. Campylobacter and Arcobacter, p. 1541–1562. In S. P. Borriello,, P. R. Murray and, G. Funke (eds.), Topley & Wilson’s Microbiology and Microbial Infections: Bacteriology, 10th ed. Hodder Arnold, London.
68. Wassenaar, T. M., and, W. Gaastra. 2001. Bacterial virulence: can we draw the line? FEMS Microbiol. Lett. 201:17.
69. Wolfe, N. D.,, C. P. Dunavan, and, J. Diamond. 2007. Origins of major human infectious diseases. Nature 447:279283.
70. Wright, K. J., and, S. J. Hultgren. 2006. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiol. 1:7587.
71. Wu, L.,, O. Estrada,, O. Zaborina,, M. Bains,, L. Shen,, J. E. Kohler,, N. Patel,, M. W. Musch,, E. B. Chang,, Y. X. Fu,, M. A. Jacobs,, M. I. Nishimura,, R. E. Hancock,, J. R. Turner, and, J. C. Alverdy. 2005. Recognition of host immune activation by Pseudomonas aeruginosa. Science 309:774777.

Tables

Generic image for table
TABLE 1

The main virulence mechanisms that allow the establishment of an infection are illustrated. Please note that the list of examples is not meant to be exhaustive.

Citation: Sansonetti P, Puhar A. 2011. Overview of Bacterial Pathogens, p 155-164. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error