1887

Chapter 19 : Acquired Immunity against Virus Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Acquired Immunity against Virus Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap19-2.gif

Abstract:

The importance of acquired immunity against viruses is demonstrated by fatal or persistent infections of viruses in severe combined immunodeficient (SCID) mice, which lack functional T and B cells, under conditions where normal immunocompetent mice would clear the infection without apparent disease or mortality. Most of our present understanding of antiviral immune mechanisms comes from experiments performed with inbred laboratory mice, because different components of the immune system can be easily manipulated in this animal model. This chapter describes the dynamics of T- and B-cell responses elicited by virus infections and illustrates the functions and importance of these cells with examples from well-studied viral models. Immunodominant epitopes are highly immunogenic and therefore elicit T-cell responses that are easily detectable, whereas T cells specific for weakly immunogenic, subdominant epitopes are often difficult to detect. Studies with poliovirus have indicated that virus-specific CD8 T cells can recognize antigen presenting cells (APC) class I MHC-presented peptides derived from exogenous proteins. FcγRIII, which are expressed on natural killer (NK) cells in addition to monocytes and macrophages, bind mainly IgG2a, IgG2b, and IgG1 antibodies, and have the potential to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) of virus-infected cells.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2011. Acquired Immunity against Virus Infections, p 239-254. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch19

Key Concept Ranking

Adaptive Immune System
0.69803077
Innate Immune System
0.6903546
Memory B Cell
0.5825495
Viral Proteins
0.5691915
Immune Systems
0.56201595
0.69803077
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Kinetics of acquired antiviral immune responses. This shows time kinetics of the antiviral cellular (T and B cell) (Top) and serum antibody (Bottom) responses to a viral infection, progressing from a primary infection to the memory state, followed by a rechallenge with the virus. Innate cytokines include the antiviral IFNs and immunoregulatory and inflammatory cytokines produced by innate immune system cells.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2011. Acquired Immunity against Virus Infections, p 239-254. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Cell interactions during acquired immunity. Infecting viruses encounter DCs, which present processed viral antigens on class I MHC to CD8 T cells and on class II MHC to CD4 T cells. B cells capture unprocessed antigens with their B-cell receptor (surface antibody), internalize them, and present processed antigen on their class II MHC to helper CD4 T cells. CD4 and CD8 T cells proliferate and differentiate into effector cells capable of secreting cytokines, providing help to B cells, or becoming CTL. Others become long-lived memory cells. B cells differentiate into shortlived antibody-secreting plasma cells (PCs) or else enter germinal centers, undergo isotype switching and affinity maturation (somatic hypermutation and selection) and become long-lived PCs or memory B cells. fDC = follicular DC.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2011. Acquired Immunity against Virus Infections, p 239-254. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Presentation of viral antigens. (A) Processing and presentation of MHC class I restricted peptides. (1a) Following virus infection viral gene products are synthesized. (2a) Viral proteins are degraded via cellular proteasomes to produce short peptide fragments. (3a) The viral peptides are transported into the endoplasmic reticulum by the transporters associated with antigen processing. Within the ER, peptides associate with class I molecules that are complexed with the beta-2 microglobulin. (4a) This newly formed tripartite complex is then shuttled to the cell surface for recognition by virus-specific CTL. (B) Processing and presentation of MHC class II-restricted peptides. (1b) Newly synthesized MHC class II molecules are localized within the ER and are complexed with the invariant chain (li), which obstructs the peptide-binding site. The invariant chain also participates in the folding of class II molecules and in their transport to the endocytic pathway. The class II complex is shuttled out of the ER into an endosomal compartment (MIIC), where the invariant chain is degraded by proteases, revealing the peptide-binding site. (2b) APCs internalize exogenous viral proteins by endocytosis. The proteins are localized to the endocytic pathway, where they are degraded by proteases into peptides. (3b) As peptide containing endosomes enter the MIIC, the viral-derived peptides bind to class II molecules. (4b) The class II-peptide complexes migrate to the cell surface for presentation.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2011. Acquired Immunity against Virus Infections, p 239-254. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Progression of virus-induced T cell responses. The T-lymphocyte response to virus infection can be divided into three segments: activation, effector phase, and contraction. After a virus infection at a peripheral site, viral antigens accumulate within draining lymphoid tissue, where they are processed and presented to virus-specific T cells. Following the activation and proliferation of the T-cell population, the activated lymphocytes migrate to the site(s) of infection to eliminate virus-infected cells. Once the host is cleared of viral antigens, the immune system restores homeostasis by deleting a large portion of the T cells. The remaining virus-specific T cells can acquire a memory phenotype.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2011. Acquired Immunity against Virus Infections, p 239-254. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Antibody-mediated antiviral effector mechanisms. This figure depicts several antibody-dependent antiviral mechanisms, including (1) prevention of viral attachment by blocking the viral attachment site; (2) prevention of uncoating; (3) aggregation of viral particles; (4) blocking virus absorption by inducing conformational changes in the attachment site; (5) lysis of virionantibody-complement complexes; (6) opsonization; (7) lysis of virus-infected cells by antibody and complement; (8) antibody-dependent cell-mediated cytotoxicity; (9) inhibition of the release of virus particles; (10) intracellular inhibition of the viral life cycle. VR, virus receptor; V-ag, viral antigen; mφ, macrophage; CR2, complement receptor.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2011. Acquired Immunity against Virus Infections, p 239-254. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816872.ch19
1. Ahmad, A., and, J. Menezes. 1996. Antibody-dependent cellular cytotoxicity in HIV infections. Faseb J. 10:258266.
2. Ahuja, A.,, S. M. Anderson,, A. Khalil, and, M. J. Shlomchik. 2008. Maintenance of the plasma cell pool is independent of memory B cells. Proc. Natl. Acad. Sci. USA 105:48024807. doi:0800555105 [pii];10.1073/pnas.0800555105 [doi].
3. Amanna, I. J.,, N. E. Carlson, and, M. K. Slifka. 2007. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 357:19031915. doi:357/19/1903 [pii];10.1056/NEJMoa066092 [doi].
4. Araki, Y.,, M. Fann,, R. Wersto, and, N. P. Weng. 2008. Histone acetylation facilitates rapid and robust memory CD8 T cell response through differential expression of effector molecules (eomesodermin and its targets: perforin and granzyme B). J. Immunol. 180:81028108. doi: 180/12/8102 [pii].
5. Bachmann, M. F.,, U. H. Rohrer,, T. M. Kundig,, K. Burki,, H. Hengartner, and, R. M. Zinkernagel. 1993. The influence of antigen organization on B cell responsiveness. Science 262:14481451.
6. Badovinac, V. P.,, B. B. Porter, and, J. T. Harty. 2004. CD8 + T cell contraction is controlled by early inflammation. Nat. Immunol. 5:809817.
7. Bahl, K.,, S.K. Kim,, C. Calcagno,, D. Ghersi,, R. Puzone,, F. Celada,, L. K. Selin, and, R. M. Welsh. 2005. Interferon-induced attrition of CD8 T cells in the presence or absence of cognate antigen during the early stages of viral infections. J. Immunol. 176:42844295.
8. Bendelac, A.,, M. N. Rivera,, S. H. Park, and, J. H. Roark. 1997. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15:535562.
9. Biron, C. A., and, Sen,, G. C. 2001. Interferons and other cytokines, p. 321–351. In D. M. Knipe and, P. M. Howley (ed.), Fundamental Virology, 4th ed. Lippincott, Williams & Wilkins, Philadelphia.
10. Blackburn, S. D.,, H. Shin,, W. N. Haining,, T. Zou,, C. J. Workman,, A. Polley,, M. R. Betts,, G. J. Freeman,, D. A. Vignali, and, E. J. Wherry. 2009. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10:2937. doi:ni.1679 [pii];10.1038/ni.1679 [doi].
11. Brehm, M. A.,, K. A. Daniels, and, R. M. Welsh. 2005. Rapid production of TNF-alpha following TCR engagement of naive CD8 T cells. J. Immunol. 175:50435049.
12. Brehm, M. A.,, T. G. Markees,, K. A. Daniels,, D. L. Greiner,, A. A. Rossini, and, R. M. Welsh. 2003. Direct visualization of cross-reactive effector and memory allo-specific CD8 T cells generated in response to viral infections. J. Immunol. 170:40774086.
13. Burrows, S. R.,, S. L. Silins,, R. Khanna,, J. M. Burrows,, M. Rischmueller,, J. McCluskey, and, D. J. Moss. 1997. Cross-reactive memory T cells for Epstein-Barr virus augment the alloresponse to common human leukocyte antigens: degenerate recognition of major histocompatibility complex-bound peptide by T cells and its role in alloreactivity. Eur. J. Immunol. 27:17261736.
14. Butcher, E. C., and, L. J. Picker. 1996. Lymphocyte homing and homeostasis. Science 272:6066.
15. Byers, A. M.,, A. Hadley, and, A. E. Lukacher. 2007. Protection against polyoma virus-induced tumors is perforin-independent. Virology 358:485492. doi:S0042–6822(06)00616–7 [pii];10.1016/j.virol.2006.08.044[doi].
16. Callan, M. F.,, C. Fazou,, H. Yang,, T. Rostron,, K. Poon,, C. Hatton, and, A. J. McMichael. 2000. CD8(+) T-cell selection, function, and death in the primary immune response in vivo. J. Clin. Invest. 106:12511261.
17. Carragher, D. M.,, D. A. Kaminski,, A. Moquin,, L. Hartson, and, T. D. Randall. 2008. A novel role for non-neutralizing antibodies against nucleoprotein in facilitating resistance to influenza virus. J. Immunol. 181:41684176. doi: 181/6/4168 [pii].
18. Castigli, E.,, S. A. Wilson,, S. Scott,, F. Dedeoglu,, S. Xu,, K. P. Lam,, R. J. Bram,, H. Jabara, and, R. S. Geha. 2005. TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 201:3539. doi:jem.20032000 [pii]; 10.1084/jem.20032000 [doi].
19. Chachu, K. A.,, D. W. Strong,, A. D. LoBue,, C. E. Wobus,, R. S. Baric, and, H. W. Virgin. 2008. Antibody is critical for the clearance of murine norovirus infection. J. Virol. 82:66106617. doi:JVI.00141–08 [pii];10.1128/JVI.00141–08 [doi].
20. Chiron, D.,, I. Bekeredjian-Ding,, C. Pellat-Deceunynck, R. Bataille, and, G. Jego. 2008. Toll-like receptors: lessons to learn from normal and malignant human B cells. Blood 112:22052213. doi:10.1182/blood-2008–02–140673 [doi];blood-2008–02-140673[pii].
21. Choi, Y. S. and, N. Baumgarth. 2008. Dual role for B-1a cells in immunity to influenza virus infection. J. Exp. Med. 205:30533064. doi:jem.20080979 [pii];10.1084/jem.20080979 [doi].
22. Christensen, J. P.,, S. O. Kauffmann, and, A. R. Thomsen. 2003. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment. J. Immunol. 171:47334741.
23. Chu, V. T.,, P. Enghard,, G. Riemekasten, and, C. Berek. 2007. In vitro and in vivo activation induces BAFF and APRIL expression in B cells. J. Immunol. 179:59475957. doi: 179/9/5947 [pii].
24. Cole, G. A.,, N. Nathanson, and, R. A. Prendergast. 1972. Requirement for q-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature 238:335337.
25. Cornberg, M.,, A. T. Chen,, L. A. Wilkinson,, M. A. Brehm,, S. K. Kim,, C. Calcagno,, D. Ghersi,, R. Puzone,, F. Celada,, R. M. Welsh, and, L. K. Selin. 2006. Narrowed TCR repertoire and viral escape as a consequence of heterologous immunity. J. Clin. Invest. 116:14431456.
26. Day, N.,, N. Tangsinmankong,, H. Ochs,, R. Rucker,, C. Picard,, J. L. Casanova,, S. Haraguchi, and, R. Good. 2004. Interleukin receptor-associated kinase (IRAK-4) deficiency associated with bacterial infections and failure to sustain antibody responses. J. Pediatr. 144:524526. doi:10.1016/j. jpeds.2003.11.025 [doi];S0022347603008588 [pii].
27. Delgado, M. F.,, S. Coviello,, A. C. Monsalvo,, G. A. Melendi,, J. Z. Hernandez,, J. P. Batalle,, L. Diaz,, A. Trento,, H. Y. Chang,, W. Mitzner,, J. Ravetch,, J. A. Melero,, P. M. Irusta, and, F. P. Polack. 2009. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat. Med. 15:3441. doi:nm.1894 [pii];10.1038/nm.1894 [doi].
28. DiLillo, D. J.,, Y. Hamaguchi,, Y. Ueda,, K. Yang,, J. Uchida,, K. M. Haas,, G. Kelsoe, and, T. F. Tedder. 2008. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J. Immunol. 180:361371. doi:180/l/361 [pii].
29. Dimmock, N. J. 1993. Neutralization of animal viruses. Curr. Top. Microbiol. Immunol. 183:1149.
30. Dorner, T., and, A. Radbruch. 2007. Antibodies and B cell memory in viral immunity. Immunity 27:384392. doi:S1074–7613(07)00420–7 [pii];10.1016/j.immuni.2007.09.002 [doi].
31. Fang, M., and, L. J. Sigal. 2005. Antibodies and CD8+ T cells are complementary and essential for natural resistance to a highly lethal cytopathic virus. J. Immunol. 175:68296836. doi:175/10/6829 [pii].
32. Fazekas de St. Groth, S., and, R. G. Webster. 1966. Disquisitions on original antigenic sin. II. Proof in lower creatures. J. Exp. Med. 124:347361.
33. Feuerer, M.,, J. A. Hill,, D. Mathis, and, C. Benoist. 2009. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol. 10:689695. doi:ni.1760 [pii];10.1038/ni.1760[doi].
34. Fitzpatrick, D. R.,, K. M. Shirley,, L. E. McDonald,, H. Bielefeldt-Ohmann,, G. F. Kay, and, A. Kelso. 1998. Distinct methylation of the interferon gamma (IFN-gamma) and interleukin 3 (IL-3) genes in newly activated primary CD8+ T lymphocytes: regional IFN-gamma promoter demethylation and mRNA expression are heritable in CD44(high)CD8+ T cells. J. Exp. Med. 188:103117.
35. Garcia, d.,, V, P. O’Leary,, D. M. Sze,, K. M. Toellner, and, I. C. MacLennan. 1999. T-independent type 2 antigens induce B cell proliferation in multiple splenic sites, but exponential growth is confined to extrafollicular foci. Eur. J. Immunol. 29:13141323. doi:10.1002/(SICI)1521–4141-(199904)29:04<1314::AID-IMMU1314>3.0.CO;2–4[pii].
36. Genestier, L.,, M. Taillardet,, P. Mondiere,, H. Gheit,, C. Bella, and, T. Defrance. 2007. TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. J. Immunol. 178:77797786. doi:178/12/7779 [pii].
37. Greenwald, R. J.,, G. J. Freeman, and, A. H. Sharpe. 2005. The B7 family revisited. Annu. Rev. Immunol. 23:515548.
38. Guay, H. M.,, T. A. Andreyeva,, R. L. Garcea,, R. M. Welsh, and, E. Szomolanyi-Tsuda. 2007. MyD88 is required for the formation of long-term humoral immunity to virus infection. J. Immunol. 178:51245131. doi: 178/8/5124 [pii].
39. Guay, H. M.,, R. Mishra,, R. L. Garcea,, R. M. Welsh, and, E. Szomolanyi-Tsuda. 2009. Generation of protective T cell-independent antiviral antibody responses in SCID mice reconstituted with follicular or marginal zone B cells. J. Immunol. 183:518523. doi:183/1/518 [pii]; 10.4049/jimmunol.0900068 [doi].
40. Guidotti,, L. G. and, F. V. Chisari. 1999. Cytokine-induced viral purging—role in viral pathogenesis. Curr. Opin. Microbiol. 2:388391. doi:S136952749980068X [pii].
41. Halstead, S. B. 1989. Antibody, macrophages, dengue virus infection, shock and hemorrhage: a pathogenetic cascade. Rev. Infect. Dis. 11:S830S839.
42. Hand, T. W.,, M. Morre, and, S. M. Kaech. 2007. Expression of IL-7 receptor alpha is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc. Natl. Acad. Sci. USA 104:1173011735.
43. Hangartner, L.,, R. M. Zinkernagel, and, H. Hengartner. 2006. Antiviral antibody responses: the two extremes of a wide spectrum. Nat. Rev. Immunol. 6:231243. doi:nri1783 [pii];10.1038/nri1783 [doi].
44. Harty,, J. T. and, V. P. Badovinac. 2008. Shaping and reshaping CD8+ T-cell memory. Nat. Rev. Immunol. 8:107119. doi:nri2251 [pii];10.1038/nri2251 [doi].
45. Heer, A. K.,, A. Shamshiev,, A. Donda,, S. Uematsu,, S. Akira,, M. Kopf, and, B. J. Marsland. 2007. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J. Immunol. 178:21822191. doi:178/4/2182 [pii].
46. Hornung, V.,, A. Ablasser,, M. Charrel-Dennis, F. Bauernfeind,, G. Horvath,, D. R. Caffrey,, E. Latz, and, K. A. Fitzgerald. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514518. doi:nature07725 [pii];10.1038/nature07725 [doi].
47. Huang, A. Y., H. Qi, and, R. N. Germain. 2004. Illuminating the landscape of in vivo immunity: insights from dynamic in situ imaging of secondary lymphoid tissues. Immunity 21:331339.
48. Hunziker, L.,, M. Recher,, A. J. Macpherson,, A. Ciurea,, S. Freigang,, H. Hengartner, and, R. M. Zinkernagel. 2003. Hypergammaglobulinemia and autoantibody induction mechanisms in viral infections. Nat. Immunol. 4:343349.
49. Ittah, M.,, C. Miceli-Richard,, J. E. Gottenberg,, J. Sellam,, C. Lepajolec, and, X. Mariette. 2009. B-cell-activating factor expressions in salivary epithelial cells after dsRNA virus infection depends on RNA-activated protein kinase activation. Eur. J. Immunol. 39:12711279. doi:10.1002/eji.200839086 [doi].
50. Jellison, E. R.,, H. M. Guay,, E. Szomolanyi-Tsuda, and, R. M. Welsh. 2007. Dynamics and magnitude of virus-induced polyclonal B cell activation mediated by BCR-independent presentation of viral antigen. Eur. J. Immunol. 37:119128. doi:10.1002/eji.200636516 [doi].
51. Jellison, E. R.,, S. K. Kim, and, R. M. Welsh. 2005. Cutting edge: MHC class II-restricted killing in vivo during viral infection. J. Immunol. 174:614618.
52. Jiang, W.,, M. M. Lederman,, C. V. Harding,, B. Rodriguez,, R. J. Mohner, and, S. F. Sieg. 2007. TLR9 stimulation drives naive B cells to proliferate and to attain enhanced antigen presenting function. Eur. J. Immunol. 37:22052213. doi:10.1002/eji.200636984 [doi].
53. Kehry, M. R., and, P. D. Hodgkin. 1993. Helper T cells: delivery of cell contact and lymphokine-dependent signals to B cells. Semin. Immunol. 5:393400. doi:S1044–5323-(83)71045–6 [pii];10.1006/smim.1993.1045 [doi].
54. Kim, S. K.,, M. A. Brehm,, R. M. Welsh, and, L. K. Selin. 2002. Dynamics of memory T cell proliferation under conditions of heterologous immunity and bystander stimulation. J. Immunol. 169:9098. doi:JID - 2985117R.
55. Klein, U, and, R. Dalla-Favera. 2008. Germinal centres: role in B-cell physiology and malignancy. Nat. Rev. Immunol. 8:2233. doi:nri2217 [pii];10.1038/nri2217 [doi].
56. Klenerman, P., and, R. M. Zinkernagel. 1998. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 394:421422.
57. Knossow, M.,, R. S. Daniels,, A. R. Douglas,, J. J. Skehel, and, D. C. Wiley. 1984. Three-dimensional structure of an antigenic mutant of the influenza virus haemagglutinin. Nature 311:678680.
58. Kolumam, G. A.,, S. Thomas,, L. J. Thompson,, J. Sprent, and, K. Murali-Krishna. 2005. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med. 202:637650.
59. Kotturi, M. F.,, B. Peters,, F. Buendia-Laysa, Jr.,, J. Sidney,, C. Oseroff,, J. Botten,, H. Grey,, M. J. Buchmeier, and, A. Sette. 2007. Uncovering new tricks for an old virus: CD8 + T cell response to LCMV involves the L antigen. J. Virol. doi:10.1128/JVI.0263206.
60. Koyama, S.,, K. J. Ishii,, H. Kumar,, T. Tanimoto,, C. Coban,, S. Uematsu,, T. Kawai, and, S. Akira. 2007. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol. 179:47114720. doi: 179/7/4711 [pii].
61. Krishna, V. D.,, M. Rangappa, and, V. Satchidanandam. 2009. Virus-specific cytolytic antibodies to nonstructural protein 1 of Japanese encephalitis virus effect reduction of virus output from infected cells. J. Virol. 83:47664777. doi:JVI.01850–08 [pii];10.1128/JVI.01850–08 [doi].
62. Lane, T. E.,, J. L. Hardison, and, K. B. Walsh. 2006. Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system. Curr. Top. Microbiol. Immunol. 303:127.
63. Liu, N.,, N. Ohnishi,, L. Ni,, S. Akira, and, K. B. Bacon. 2003. CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat. Immunol. 4:687693. doi:10.1038/ni941 [doi];ni941 [pii].
64. Marshall, D. R.,, S. J. Turner,, G. T. Belz,, S. Wingo,, S. Andreansky,, Sangster,, J. M. Riberdy,, T. Liu,, M. Tan, and, P. C. Doherty. 2001. Measuring the diaspora for virus-specific CD8+ T cells. Proc. Natl. Acad. Sci. USA 98:63136318.
65. Martin, R. M.,, J. L. Brady, and, A. M. Lew. 1998. The need for IgG2c specific antiserum when isotyping antibodies from C57BL/6 and NOD mice. J. Immunol. Methods 212:187192.. doi:S0022–1759(98)00015–5 [pii].
66. Masopust, D.,, V. Vezys,, E. J. Wherry,, D. L. Barber, and, R. Ahmed. 2006. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. J. Immunol. 176:20792083.
67. Matzinger, P. 2002. The danger model: a renewed sense of self. Science 296:301305.
68. Moutaftsi, M.,, H. H. Bui,, B. Peters,, J. Sidney,, S. Salek-Ardakani,, C. Oseroff,, V. Pasquetto,, S. Crotty,, M. Croft,, E. J. Lefkowitz,, H. Grey, and, A. Sette. 2007. Vaccinia virus-specific CD4+ T cell responses target a set of antigens largely distinct from those targeted by CD8+ T cell responses. J. Immunol. 178:68146820.
69. Moutaftsi, M.,, B. Peters,, V. Pasquetto,, D. C. Tscharke,, J. Sidney,, H. H. Bui,, H. Grey, and, A. Sette. 2006. A consensus epitope prediction approach identifies the breadth of murine T(CD8 +)-cell responses to vaccinia virus. Nat. Biotechnol. 24:817819.
70. Murali-Krishna, K.,, J. D. Altman,, M. Suresh,, D. Sourdive,, A. J. Zajac,, J. Miller,, J. Slansky, and, R. Ahmed. 1998. Counting antigen-specific CD8 T cells: A re-evaluation of bystander activation during viral infection. Immunity 8:177187.
71. Nagata, S. 1997. Apoptosis by death factor. Cell 88:355365.
72. Obar, J. J.,, K. M. Khanna, and, L. Lefrancois. 2008. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28:859869.
73. Parish, I. A., and, S. M. Kaech. 2009. Diversity in CD8(+) T cell differentiation. Curr. Opin. Immunol. 21:291297. doi:S0952–7915(09)00088–0[pii];10.1016/j.coi.2009.05.008 [doi].
74. Parker, D. C. 1993. T cell-dependent B cell activation. Annu. Rev. Immunol 11:331360.
75. Polack, F. P.,, S. J. Hoffman,, G. Crujeiras, and, D. E. Griffin. 2003. A role for nonprotective complement-fixing antibodies with low avidity for measles virus in atypical measles. Nat. Med. 9:12091213. doi:10.1038/nm918 [doi];nm918 [pii].
76. Pozzi, L. A.,, J. W. Maciaszek, and, K. L. Rock. 2005. Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells. J. Immunol. 175:20712081. doi: 175/4/2071 [pii].
77. Prlic, M.,, L. Lefrancois, and, S. C. Jameson. 2002. Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. J. Exp. Med. 195:F49F52.
78. Pulendran, B., and, R. Ahmed. 2006. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124:849863. doi:S0092–8674-(06)00194–2 [pii];10.1016/j.cell.2006.02.019 [doi].
79. Ray, S. J.,, S. N. Franki,, R. H. Pierce,, S. Dimitrova,, V. Koteliansky,, A. G. Sprague,, P. C. Doherty,, A. R. de Fougerolles, and, D. J. Topham. 2004. The collagen binding alpha1betal integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20:167179.
80. Razvi, E. S.,, Z. Jiang,, B. A. Woda, and, R. M. Welsh. 1995. Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr and Bcl-2-transgenic mice. Am. J. Pathol. 147:7991.
81. Reiner, S. L. 2009. Decision making during the conception and career of CD4+ T cells. Nat. Rev. Immunol. 9:8182.
82. Reiss, C. S. and T. Komatsu. 1998. Does nitric oxide play a critical role in viral infections? J. Virol. 72:45474551.
83. Rock, K. L.,, I. A. York, and, A. L. Goldberg. 2004. Postproteasomal antigen processing for major histocompatibility complex class I presentation. Nat. Immunol. 5:670677. doi:10.1038/ni1089 [doi];ni1089 [pii].
84. Rouse, B. T.,, P. P. Sarangi, and, S. Suvas. 2006. Regulatory T cells in virus infections. Immunol. Rev. 212:272286. doi:IMR412 [pii]; 10.1111/j.0105–2896.2006.00412.x [doi].
85. Salek-Ardakani, S.,, M. Moutaftsi,, S. Crotty,, A. Sette, and, M. Croft. 2008. OX40 drives protective vaccinia virus-specific CD8 T cells. J. Immunol. 181:79697976. doi: 181/11/7969 [pii].
86. Sallusto, F.,, C. R. Mackay, and, A. Lanzavecchia. 2000. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18:593620.
87. Sapoznikov, A.,, Y. Pewzner-Jung,, V. Kalchenko,, R. Krauthgamer,, I. Shachar, and, S. Jung. 2008. Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat. Immunol. 9:388395. doi:ni1571 [pii];10.1038/ni1571 [doi].
88. Seedhom, M. O.,, E. R. Jellison,, K. A. Daniels, and, R. M. Welsh. 2009. High Frequencies of Virus-Specific CD8+ T Cell Precursors. J. Virol. 83:1290712916. doi:JVI.01722–09 [pii];10.1128/JVI.01722–09 [doi].
89. Selin, L. K.,, M. A. Brehm,, Y. N. Naumov,, M. Cornberg,, S. K. Kim,, S. C. Clute, and, R. M. Welsh. 2006. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol. Rev. 211:164181. doi:IMR394 [pii];10.1111/j.0105–2896.2006.00394.x[doi].
90. Shapiro-Shelef, M., and, K. Calame. 2005. Regulation of plasma-cell development. Nat. Rev. Immunol. 5:230242.
91. Singh, A. and, M. Suresh. 2007. A role for TNF in limiting the duration of CTL effector phase and magnitude of CD8 T cell memory. J. Leukoc. Biol. 82:12011211.
92. Slifka, M. K. and, R. Ahmed. 1998. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr. Opin. Immunol. 10:252258. doi:S0952–7915-(98)80162–3 [pii].
93. Slifka, M. K.,, F. Rodriguez, and, J. L. Whitton. 1999. Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature 401:7679.
94. Slifka, M. K., and, J. L. Whitton. 2001. Functional avidity maturation of CD8(+) T cells without selection of higher affinity TCR. Nat. Immunol. 2:711717.
95. Song, H., and, J. Cerny. 2003. Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. J. Exp. Med. 198:19231935. doi:10.1084/jem.20031498 [doi];jem.20031498 [pii].
96. Sprent, J., and, C. D. Surh. 2002. T cell memory. Annu. Rev. Immunol. 20:551579.
97. Strasser, A.,, P. J. Jost, and, S. Nagata. 2009. The many roles of FAS receptor signaling in the immune system. Immunity 30:180192. doi:S1074–7613(09)00069–7 [pii];10.1016/j. immuni.2009.01.001 [doi].
98. Szomolanyi-Tsuda, E.,, M. A. Brehm, and, R. M. Welsh. 2002. Acquired immunity against virus infections, p. 247–265. In S. H. E. Kaufmann,, A. Sher, and, R. Ahmed (ed.), Immunology of Infectious Diseases. American Society of Microbiology Press, Washington, DC.
99. Takaoka, A.,, Z. Wang,, M. K. Choi,, H. Yanai,, H. Negishi,, T. Ban,, Y. Lu,, M. Miyagishi,, T. Kodama,, K. Honda,, Y. Ohba, and, T. Taniguchi. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501505. doi:nature06013 [pii]; 10.1038/nature06013 [doi].
100. Thompson, A. J., and, S. A. Locarnini. 2007. Toll-like receptors, RIG-I-like RNA helicases and the antiviral innate immune response. Immunol. Cell Biol. 85:435445. doi:7100100 [pii];10.1038/sj.icb.7100100 [doi].
101. Topham, D. J.,, R. A. Tripp, and, P. C. Doherty. 1997. CD8 + T cells clear influenza virus by perforin or Fas-dependent processes. J. Immunol. 159:51975200.
102. Urbani, S.,, B. Amadei,, P. Fisicaro,, M. Pilli,, G. Missale,, A. Bertoletti, and, C. Ferrari. 2005. Heterologous T cell immunity in severe hepatitis C virus infection. J. Exp. Med. 201:675680.
103. Vezys, V.,, A. Yates,, K. A. Casey,, G. Lanier,, R. Ahmed,, R. Antia, and, D. Masopust. 2008. Memory CD8 T-cell compartment grows in size with immunological experience. Nature 457:196199.
104. Wang, X. Z.,, S. E. Stepp,, M. A. Brehm,, H. D. Chen,, L. K. Selin, and, R. M. Welsh. 2003. Virus-specific CD8 T cells in peripheral tissues are more resistant to apoptosis than those in lymphoid organs. Immunity 18:631642.
105. Weant, A. E.,, R. D. Michalek,, I. U. Khan,, B. C. Holbrook,, M. C. Willingham, and, J. M. Grayson. 2008. Apoptosis regulators Bim and Fas function concurrently to control autoimmunity and CD8+ T cell contraction. Immunity 28:218230. doi:S1074–7613(08)00034–4 [pii];10.1016/j.immuni.2007.12.014 [doi].
106. Welsh, R. M. 2001. Immunology. Brief encounter. Nature 411:541542. doi:10.1038/35079229 [doi];35079229 [pii].
107. Welsh, R. M.,, L. K. Selin, and, E. Szomolanyi-Tsuda. 2004. Immunological memory to viral infections. Annu. Rev. Immunol 22:711743.
108. Whitmire, J. K.,, B. Eam,, N. Benning, and, J. L. Whitton. 2007. Direct interfer on- gamma signaling dramatically enhances CD4+ and CD8+ T cell memory. J. Immunol. 179:11901197.
109. Williams, M. A.,, A. J. Tyznik, and, M. J. Bevan. 2006. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441:890893.
110. Wilson,, I. A. and, N. J. Cox. 1990. Structural basis of immune recognition of influenza virus hemagglutinin. Annu. Rev. Immunol. 8:737771. doi:10.1146/annurev. iy.08.040190.003513 [doi].
111. Woodland,, D. L. and, J. E. Kohlmeier. 2009. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat. Rev. Immunol. 9:153161. doi:nri2496 [pii]; 10.1038/nri2496 [doi].
112. Wu, L. C.,, D. S. Tuot,, D. S. Lyons,, K. C. Garcia, and, M. M. Davis. 2002. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418:552556.
113. Xiao, Z.,, K. A. Casey,, S. C. Jameson,, J. M. Curtsinger, and, M. F. Mescher. 2009. Programming for CD8 T cell memory development requires IL-12 or type I IFN. J. Immunol. 182:27862794. doi: 182/5/2786 [pii];10.4049/jimmunol.0803484 [doi].
114. Yewdell, J. W., and, J. R. Bennink. 1999. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17:5188.
115. Yewdell, J. W.,, E. Frank, and, W. Gerhard. 1981. Expression of influenza A virus internal antigens on the surface of infected P815 cells. J. Immunol. 126:18141819.
116. Zaiss, A. K.,, A. Vilaysane,, M. J. Cotter,, S. A. Clark,, H. C. Meijndert,, P. Colarusso,, R. M. Yates,, V. Petrilli,, J. Tschopp, and, D. A. Muruve. 2009. Antiviral antibodies target adenovirus to phagolysosomes and amplify the innate immune response. J. Immunol. 182:70587068. doi:182/11/7058 [pii];10.4049/jimmunol.0804269 [doi].
117. Zelinskyy, G.,, A. R. Kraft,, S. Schimmer,, T. Arndt, and, U. Dittmer. 2006. Kinetics of CD8+ effector T cell responses and induced CD4 + regulatory T cell responses during Friend retrovirus infection. Eur. J. Immunol. 36:26582670.
118. Zhou, S.,, R. Ou,, L. Huang, and, D. Moskophidis. 2002. Critical role for perforin-, Fas/FasL-, and TNFR1-mediated cytotoxic pathways in down-regulation of antigen-specific T cells during persistent viral infection. J. Virol. 76:829840.
119. Zinkernagel, R. M.,, E. Haenseler,, T. Leist,, A. Cerny,, H. Hengartner, and, A. Althage. 1986. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus: liver cell destruction by H-2 class 1 of the51Cr-release assay. J. Exp. Med. 164:10751092.
120. Zinkernagel, R. M.,, A. LaMarre,, A. Ciurea,, L. Hunziker,, A. F. Ochsenbein,, K. D. McCoy,, T. Fehr,, M. F. Bachmann,, U. Kalinke, and, H. Hengartner. 2001. Neutralizing antiviral antibody responses. Adv. Immunol. 79:153.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error