1887

Chapter 20 : Immune Responses to Persistent Viruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Immune Responses to Persistent Viruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555816872/9781555815141_Chap20-2.gif

Abstract:

This chapter discusses some general principles regarding immune responses during chronic viral infections. A broad consideration of viral pathogenesis and antiviral immune responses is crucial to bear in mind when examining these persisting viral infections. In discussing immune responses to persisting viruses, it is important to keep in mind the strategies exploited by different viruses to facilitate persistence. The immune response is capable of effectively controlling or eradicating a large number of viral infections and it does so by using a variety of effector mechanisms including cytotoxic T cells, antibodies, cytokines (from the innate and adaptive immune responses), among others. The pathology upon infection with viruses like chronic lymphocytic choriomeningitis virus (LCMV) or hepatitis C virus (HCV) is therefore largely immune-mediated, rather than virus-mediated. While the focus of this chapter is on chronic viral infections that cause disease, it may be that the majority of persisting viruses coexist effectively with the immune system and cause little or no disease in healthy people. Persistent virus infections represent a major challenge for the future, both in terms of designing vaccines and therapies and in terms of defining the fundamental immunology. The key features outlined here provide a reasonable basis for exploring the responses to new viruses as they emerge, and for the design of new therapies for prevention and treatment of existing viruses.

Citation: Wherry E, Klenerman P. 2011. Immune Responses to Persistent Viruses, p 255-267. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch20

Key Concept Ranking

MHC Class I
0.49621335
MHC Class II
0.49425206
Herpes simplex virus 1
0.44047
0.49621335
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Host virus dynamics in acute resolving and persistent infection. The upper panel shows a setting where LCMV or HCV sets up acute infection that is then rapidly contained. In this case, robust and functional T-cell responses are induced and sustained over time. The lower panel shows a dynamic with long-term persistence of virus. In this case, T-cell responses are also induced but are not effectively sustained either physically or functionally. The immunologic correlates are shown on the right-hand side. These vary slightly between HCV and LCMV as indicated. The timescales are also different between the two viruses due to the very long period (weeks) after HCV infection prior to the initiation of the immune response.

Citation: Wherry E, Klenerman P. 2011. Immune Responses to Persistent Viruses, p 255-267. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Distinct T-cell differentiation pathways associated with different virologic outcomes. After acute infection, if the virus is cleared effector T cells will eventually revert to a central memory phenotype (Top). If the virus is not cleared, two possible outcomes exist: either expansion of the effector memory pool, typically associated with subclinical virus persistence (Middle), or a program of T-cell exhaustion, typically associated with high level virus carriage (Bottom). The relationships between the phenotypes are not fully defined and the surface markers shown vary between infections and between mice and humans to some extent.

Citation: Wherry E, Klenerman P. 2011. Immune Responses to Persistent Viruses, p 255-267. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Stages of T-cell exhaustion. CD8 T-cell exhaustion is characterized by hierarchical stages of T-cell dysfunction in comparison with a resting memory cell. The top depicts the properties of a functional memory CD8 T cell generated following an acute/cleared infection or vaccination. The bottom depicts the stages or degrees of exhaustion that can occur when a virus persists. Decreased function and increased apoptosis are associated with higher viral load, lower CD4 T-cell help, and increased expression of inhibitory receptors such as PD-1.

Citation: Wherry E, Klenerman P. 2011. Immune Responses to Persistent Viruses, p 255-267. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

T-cell escape observed through an HLA “footprint.” Sequencing of dominant viral sequences in a cross-sectional manner can reveal prototypical escape mutations. Sequences are indicated according to a specific HLA (X in the diagram; e.g., B27). If an excess of mutations is seen at a specific site in the HLA-X group there is statistical evidence for T-cell-mediated immune pressure.

Citation: Wherry E, Klenerman P. 2011. Immune Responses to Persistent Viruses, p 255-267. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

HLA footprinting is limited by many variables. Although T-cell mediated selection may occur, the footprinting approach relies on the sequence of events indicated in the black diagrams. If a viral region is highly conserved, highly targeted by a single response, mutates under selection pressure and reverts upon transmission then a footprint is typically visible. However, intrinsic variation, geographical linkage of HLA and variant, failure of reversion, multiple selection events, or failure of selection can all lead to loss of power of the approach.

Citation: Wherry E, Klenerman P. 2011. Immune Responses to Persistent Viruses, p 255-267. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Dynamics of T-cell responses during diverse types of persisting viral infections. T-cell frequencies and the dynamics of maintenance differ widely during chronic infections. Viruses that persist at a low level may be associated with T-cell memory inflation. This group includes viruses such as CMV and many others shown. Viruses where exhaustion may dominate include LCMV, HBV, and HCV, but this may also be true in many other settings and even for the same infection differing between specific epitopes.

Citation: Wherry E, Klenerman P. 2011. Immune Responses to Persistent Viruses, p 255-267. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816872.ch20
1. Appay, V.,, D. C. Douek, and, D. A. Price. 2008. CD8+ T cell efficacy in vaccination and disease. Nat. Med. 14:624628.
2. Barber, D. L.,, E. J. Wherry,, D. Masopust,, B. Zhu,, J. P. Allison,, A. H Sharpe,, G. J. Freeman, and, R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682687.
3. Blackburn, S. D., and, E. J. Wherry. 2007. IL-10, T cell exhaustion and viral persistence. Trends Micro. 15:143146.
4. Boppana, S. P.,, L. B. Rivera,, K. B. Fowler,, M. Mach, and, W. J. Britt. 2001. Intrauterine transmission of cytomegalovirus to infants of women with preconceptional immunity. N. Engl. J. Med. 344:13661371.
5. Bowen,, D. G., and, C. M. Walker 2005. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436:946952.
6. Brooks, D. G.,, L. Teyton,, M. B. Oldstone, and, D. B. McGavern. 2005. Intrinsic functional dysregulation of CD4 T cells occurs rapidly following persistent viral infection. J. Virol. 79:1051410527.
7. Buchmeier, M. J., and, A. J. Zajac. 1999. Lymphocytic chorio-meningitis virus, p. 575–605. In R. Ahmed (ed.), Persistent Viral Infections. John Wiley & Sons, Chichester, UK.
8. Casali, P., and, M. B. Oldstone. 1983. Immune complexes in viral infection. Curr. Top. Micro. Immun. 104:748.
9. Charles, E. D.,, R. M. Green,, S. Marukian,, A. H. Talal,, G. V. Lake-Bakaar,, I. M. Jacobson,, C. M. Rice, and, L. B. Dustin. 2008. Clonal expansion of immunoglobulin M + CD27+ B cells in HCV-associated mixed cryoglobulinemia. Blood 111:13441356.
10. Cooper, S.,, A. L. Erickson,, E. J. Adams,, J. Kansopon,, A. J. Weiner,, D. Y. Chien,, M. Houghton,, P. Parham, and, C. M. Walker. 1999. Analysis of a successful immune response against hepatitis C virus. Immunity 10:439449.
11. Crawford, A., and, E. J. Wherry. 2009. The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses. Curr. Opin. Immunol. 21:179186.
12. Fellay, J.,, K. V. Shianna,, D. Ge,, S. Colombo,, B. Ledergerber,, M. Weale,, K. Zhang,, C. Gumbs,, A. Castagna,, A. Cossarizza, et al. 2007. A whole-genome association study of major determinants of host control of HIV-1. Science 317:944947.
13. Gold, M. C.,, M. W. Munks,, M. Wagner,, C. W. McMahon,, A. Kelly,, D G. Kavanagh,, M. K. Slifka,, U. H. Koszinowski,, D. H. Raulet, and, A. B. Hill. 2004. Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J. Immunol. 172:69446953.
14. Goulder, P. J.,, R. E. Phillips,, R. A. Colbert,, S. McAdam,, G. Ogg,, M. A. Nowak,, P. Giangrande,, G. Luzzi,, B. Morgan,, A. Edwards,, A. J. McMichael, and, S. Rowland-Jones. 1997. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med. 3:212217.
15. Grakoui, A.,, N. H. Shoukry,, D. J. Woollard,, J. H. Han,, H. L. Hanson,, J. Ghrayeb,, K. K. Murthy,, C. M. Rice, and, C. M. Walker. 2003. HCV persistence and immune evasion in the absence of memory T cell help. Science 302:659662.
16. Hangartner, L.,, R. M. Zinkernagel, and, H. Hengartner. 2006. Antiviral antibody responses: the two extremes of a wide spectrum. Nat. Rev. Immunol 6:231243.
17. Harari, A.,, S. Petitpierre,, F. Vallelian, and, G. Pantaleo. 2004. Skewed representation of functionally distinct populations of virus-specific CD4 T cells in HIV-1-infected subjects with progressive disease: changes after antiretroviral therapy. Blood 103:966972.
18. Harcourt, G. C.,, S. Garrard,, M. P. Davenport,, A. Edwards, and, R. E. Phillips. 1998. HIV-1 variation diminishes CD4 T lymphocyte recognition. J. Exp. Med. 188:17851793.
19. Hughes, D.,, J. Hafferty,, L. Fulton,, P. Friend,, A. Devaney,, J. Loke,, K. I. Welsh,, A. Handa, and, P. Klenerman, 2008. Donor and recipient CMV serostatus and antigenemia after renal transplantation: an analysis of 486 patients. J. Clin. Virol. 41:9295.
20. Hunziker, L.,, P. Klenerman,, R. M. Zinkernagel and, S. Ehl. 2002. Exhaustion of cytotoxic T cells during adoptive immunotherapy of virus carrier mice can be prevented by B cells or CD4+ T cells. Eur. J. Immunol. 32:374382.
21. Isa, A.,, V. Kasprowicz,, O. Norbeck,, A. Loughry,, K. Jeffery,, K. Broliden,, P. Klenerman,, T. Tolfvenstam, and, P. Bowness. 2005. Prolonged activation of virus-specific CD8+ T cells after acute B19 infection. PLoS Med. 2:e343.
22. Iwashiro, M.,, R. J. Messer,, K. E. Peterson,, I. M. Stromnes,, T. Sugie, and, K. J. Hasenkrug. 2001. Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection. Proc. Natl. Acad. Sci. USA 98:92269230.
23. Kaech, S. M., and, E. J. Wherry. 2007. Heterogeneity and cellfate decisions in effector and memory CD8(+) T cell differentiation during viral infection. Immunity 27:393405.
24. Karrer, U.,, S. Sierro,, M. Wagner,, A. Oxenius,, H. Hengel,, U. H. Koszinowski,, R. E. Phillips, and, P. Klenerman. 2003. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J. Immunol. 170:20222029.
25. Kaufmann, D. E., and, B. D. Walker. 2009. PD-1 and CTLA-4 inhibitory cosignaling pathways in HIV infection and the potential for therapeutic intervention. J. Immunol. 182:58915897.
26. Khanolkar, A.,, V. P. Badovinac, and, J. T. Harty. 2007. CD8 T cell memory development: CD4 T cell help is appreciated. Immunol. Res. 39:94104.
27. Kinter, A.,, J. McNally,, L. Riggin,, R. Jackson,, G. Roby, and, A. S. Fauci. 2007. Suppression of HIV-specific T cell activity by lymph node CD25+ regulatory T cells from HIV-infected individuals. Proc. Natl. Acad. Sci. USA 104:33903395.
28. Komatsu, H.,, S. Sierro,, A. V. Cuero, and, P. Klenerman. 2003. Population analysis of antiviral T cell responses using MHC class I-peptide tetramers. Clin. Exp. Immunol. 134:912.
29. Koup, R. A.,, J. T. Safrit,, Y. Cao,, C. A. Andrews,, G. McLeod,, W. Borkowsky,, C. Farthing, and, D. D. Ho. 1994. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68:46504655.
30. Lauer, G. M., and, B. D. Walker. 2001. Hepatitis C virus infection. N. Engl. J. Med. 345:4152.
31. Leslie, A. J.,, K. J. Pfafferott,, P. Chetty,, R. Draenert,, M. M. Addo,, M. Feeney,, Y. Tang,, E. C. Holmes,, T. Allen,, J. G. Prado, et al. 2004. HIV evolution: CTL escape mutation and reversion after transmission. Nat. Med. 10:282289.
32. Maini, M. K.,, C. Boni,, C. K. Lee,, J. R. Larrubia,, S. Reignat,, G. S. Ogg,, A. S. King,, J. Herberg,, R. Gilson,, A. Alisa. 2000. The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191:12691280.
33. Matloubian, M.,, R. J. Concepcion, and, R. Ahmed. 1994. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol. 68:80568063.
34. Moir, S.,, J. Ho,, A. Malaspina,, W. Wang,, A. C. DiPoto,, M. A. O’Shea,, G. Roby,, S. Kottilil,, J. Arthos, and, M. A. Proschan,, T.W. Chun, and, A. S. Fauci. 2008. Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 205:17971805.
35. Moore, C. B.,, M. John,, I. R. James,, F. T. Christiansen,, C. S. Witt, and, S. A. Mallal. 2002. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296:14391443.
36. Moskophidis, D.,, F. Lechner,, H. Pircher, and, R. M. Zinkernagel,. 1993. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362:758761.
37. Neumann-Haefelin, C.,, S. McKiernan,, S. Ward,, S. Viazov,, H. C. Spangenberg,, T. Killinger,, T. F. Baumert,, N. Nazarova,, I. Sheridan,, O. Pybus, et al. 2006. Dominant influence of an HLA-B27 restricted CD8+ T cell response in mediating HCV clearance and evolution. Hepatology 43:563572.
38. Nixon, D. F.,, A.R.M. Townsend,, J. G. Elvin,, C. R. Rizza,, J. Gallwey, and, A. J. McMichael. 1988. HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides. Nature 336:484487.
39. Northfield, J.,, M. Lucas,, H. Jones,, N. T. Young, and, P. Klenerman, 2005. Does memory improve with age? CD85j (ILT-2/LIR-1) expression on CD8 T cells correlates with ‘memory inflation’ in human cytomegalovirus infection. Immunol. Cell. Biol. 83:182188.
40. Northfield, J.W.,, V. Kasprowicz,, M. Lucas,, N. Kersting,, B. Bengsh,, A. Kim,, R. E. Phillips,, B. D. Walker,, R. Thimme,, G. Lauer, and, P. Klenerman. 2008. CD161 expression on hepatitis C virus-specific CD8+ T cells suggests a distinct pathway of T cell differentiation. Hepatology 47:396406.
41. Olsson, J.,, A. Wikby,, B. Johansson,, S. Lofgren,, B. O. Nilsson, and, F. G. Ferguson. 2000. Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech. Ageing Dev. 121:187201.
42. Oxenius, A.,, R. M. Zinkernagel, and, H. Hengartner. 1998. Comparison of activation versus induction of unresponsiveness of virus- specific CD4+ and CD8+ T cells upon acute versus persistent viral infection. Immunity 9:449457.
43. Phillips, R. E.,, S. L. Rowland-Jones,, D. F. Nixon,, F. M. Gotch,, J. P. Edwards,, A. O. Ogunlesi,, J. G. Elvin,, J. A. Rothbard,, C. R. Bangham,, C. R. Rizza, and, A. J. McMichael. 1991. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354:453459.
44. Planz, O.,, S. Ehl,, E. Furrer,, E. Horvath,, M. A. Brundler,, H. Hengartner, and, R. M. Zinkernagel. 1997. A critical role for neutralizing-antibody-producing B cells, CD4(+) T cells, and interferons in persistent and acute infections of mice with lymphocytic choriomeningitis virus: implications for adoptive immunotherapy of virus carriers. Proc. Natl. Acad. Sci. USA 94:68746879.
45. Polic, B.,, H. Hengel,, A. Krmpotic,, J. Trgovcich,, I. Pavic,, P. Luccaronin,, S. Jonjic, and, U. H. Koszinowski. 1998. Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J. Exp. Med. 188:10471054.
46. Radziewicz, H.,, C. C. Ibegbu,, M. L. Fernandez,, K. A. Workowski,, K. Obideen,, M. Wehbi,, H. L. Hanson,, J. P. Steinberg,, D. Masopust,, E. J. Wherry,, J. D. Altman,, B. T. Rouse,, G. J. Freeman,, R. Ahmed, and, A. Grakoui. 2006. Liver infiltrating lymphocytes in chronic human HCV infection display an exhausted phenotype with high PD-1 and low CD127 expression. J. Virol. 81:25452553.
47. Recher, M.,, K. S. Lang,, L. Hunziker,, S. Freigang,, B. Eschli,, N. L. Harris,, A. Navarini,, B. M. Senn,, K. Fink,, M. Lotscher,, L. Hangartner,, R. Zellweger,, M. Hersberger,, A. Theocharides,, H. hengartner, and, R. M. Zinkernagel. 2004. Deliberate removal of T cell help improves virus-neutralizing antibody production. Nat. Immunol. 5:934942.
48. Sallusto, F.,, J. Geginat, and, A. Lanzavecchia. 2004. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22:745763.
49. Scheid, J. F.,, H. Mouquet,, N. Feldhahn,, M. S. Seaman,, K. Velinzon,, J. Pietzsch,, R. G. Ott,, R. M. Anthony,, H. Zebroski,, A. Hurley,, A. Phogat,, B. Chakrabarti,, Y. Li,, M. Connors,, F. Pereyra,, B. D. Walker,, H. Wardemann,, D. Ho,, R. T. Wyatt,, J. R. Mascola,, J. V. Ravetch, and, M. C. Nussenzweig. 2009. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458:636640.
50. Scriba, T. J.,, H. T. Zhang,, H. L. Brown,, A. Oxenius,, N. Tamm,, S. Fidler,, J. Fox,, J. N. Weber,, P. Klenerman,, C. L. Day,, M. Lucas, and, R. E. Phillips. 2005. HIV-1-specific CD4 + T lymphocyte turnover and activation increase upon viral rebound. J. Clin. Invest. 115:443450.
51. Selin, L. K.,, M. A. Brehm,, Y. N. Naumov,, M. Cornberg,, S. K. Kim,, S. C. Clute, and, R. M. Welsh. 2006. Memory of mice and men: CD8+ T-cell cross-reactivity and heterologous immunity. Immunol. Rev. 211:164181.
52. Semmo, N., and, P. Klenerman. 2007. CD4+ T cell responses in hepatitis C virus infection. World J, Gastro. 13:48314838.
53. Shin, H.,, S. D. Blackburn,, J. N. Blattman, and, E. J. Wherry. 2007. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med. 204:941949.
54. Shin, H., and, E. J. Wherry. 2007. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 19:408415.
55. Sierro, S.,, R. Rothkopf, and, P. Klenerman. 2005. Evolution of diverse antiviral CD8 + T cell populations after murine cytomegalovirus infection. Eur. J. Immunol. 35:11131123.
56. Velu, V.,, K. Titanji,, B. Zhu,, S. Husain,, A. Pladevega,, L. Lai,, T. H. Vanderford,, L. Chennareddi,, G. Silvestri,, G. J. Freeman,, R. Ahmed, and, R. R. Amara. 2008. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature. 458:206210.
57. Vezys, V.,, A. Yates,, K. A. Casey,, G. Lanier,, R. Ahmed,, R. Antia, and, D. Masopust. 2009. Memory CD8 T-cell compartment grows in size with immunological experience. Nature 457:196199.
58. Virgin, H. W.,, E. J. Wherry, and, R. Ahmed. 2009. Redefining chronic viral infection. Cell 138:3050.
59. Walker, B. D.,, S. Chakrabarti,, B. Moss,, T,, J. Paradis,, T. Flynn,, A. G. Durno,, R. S. Blumberg,, J. C. Kaplan,, M. S. Hirsch, and, R. T. Schooley. 1987. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature 328:345348.
60. Ward, S. M.,, B. C. Fox,, P. J. Brown,, J. Worthington,, S. B. Fox,, R. W. Chapman,, K. A. Fleming,, A. H. Banham, and, P. Klenerman. 2007. Quantification and localisation of FOXP3+ T lymphocytes and relation to hepatic inflammation during chronic HCV infection. J. Hepatol. 47:316324.
61. Wei, X.,, J. M. Decker,, S. Wang,, H. Hui,, J. C. Kappes,, X. Wu,, J. F. Salazar-Gonzalez,, M. G. Salazar,, J. M. Kilby,, M. S. Saag,, N. L. Komarova,, M. A. Nowak,, B. H. Hahn,, P. D. Kwong, and, G. M. Shaw. 2003. Antibody neutralization and escape by HIV-1. Nature 422:307312.
62. Wherry, E. J.,, S. J. Ha,, S. M. Kaech,, W. N. Haining,, S. Sarkar,, V. Kalia,, S. Subramaniam,, J. N. Blattman,, D. L. Barber, and, R. Ahmed. 2007. Molecular Signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27:670684.
63. Wherry, E. J.,, V. Teichgraber,, T. C. Becker,, D. Masopust,, S. M. Kaech,, R. Antia,, U. H. von Andrian, and, R. Ahmed. 2003. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. Immunol. 4:225234.
64. Zajac, A. J.,, J. N. Blattman,, K. Murali-Krishna,, D. J. Sourdive,, M. Suresh,, J. D. Altman, and, R. Ahmed. 1998. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188:22052213.
65. Zellweger, R. M.,, L. Hangartner,, J. Weber,, R. M. Zinkernagel, and, H. Hengartner. 2006. Parameters governing exhaustion of rare T cell-independent neutralizing IgM-producing B cells after LCMV infection. Eur. J. Immunol. 36:31753185.

Tables

Generic image for table
TABLE 1

Strategies to facilitate persisting viral infection

Citation: Wherry E, Klenerman P. 2011. Immune Responses to Persistent Viruses, p 255-267. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch20
Generic image for table
TABLE 2

Properties of functional memory T cells generated following acute infection or vaccination

Citation: Wherry E, Klenerman P. 2011. Immune Responses to Persistent Viruses, p 255-267. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch20
Generic image for table
TABLE 3

Molecular pathways associated with T cell exhaustion during chronic viral infection

Citation: Wherry E, Klenerman P. 2011. Immune Responses to Persistent Viruses, p 255-267. In Kaufmann S, Rouse B, Sacks D (ed), The Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555816872.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error