1887

Chapter 4 : Protein Stable Isotope Probing

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Protein Stable Isotope Probing, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816896/9781555815370_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555816896/9781555815370_Chap04-2.gif

Abstract:

The chapter on protein stable isotope probing (protein-SIP) focuses on cultivation conditions, extraction of proteins, different protein-separation techniques, methods of mass spectrometry (MS) analysis, and the calculation of stable isotope incorporation levels. The outlook includes the use of other isotopes than carbon, other molecule classes than proteins, and how protein stable isotope probing (protein-SIP) is integrated into metaproteomic approaches for the analysis of structure and function of microbial consortia. This chapter describes the method of protein-SIP by means of proof-of-principle experiments using strain ML2 as the model organism and with fully labeled [C]benzene or NH as a model substrate. For intact protein profiling (IPP), measurements were performed in the positive voltage polarity ion reflector mode. Mostly, recorded MS/ MS-spectra are of poor quality and mass-tags of only a few generated amino acid-ions can be defined and compared with the database. The measurements for shotgun mass mapping (SMM) were performed with external calibration using the peptide calibration standard II, which covered a mass range from m/z ~700 to 3,200. In a study, ML2, an aerobic, heterotrophic proteobacterium, was grown in mineral medium in the presence of [C]benzene, fully labeled [C]benzene, or [C]benzene and labeled NHCl. In the stationary growth phase, cells were harvested, and subsequently the whole protein extracts were separated by 2-D gel electrophoresis. One of the most important challenges is the identification of peptides from samples with dynamic and variable labeling. Therefore, new algorithms for the analysis of fragmentation spectra and database search are needed.

Citation: Jehmlich N, Seifert J, Taubert M, Schmidt F, Vogt C, Richnow H, Bergen M. 2011. Protein Stable Isotope Probing, p 73-95. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch4

Key Concept Ranking

Microbial Ecology
0.49815476
Sodium Dodecyl Sulfate
0.46179307
Amino Acid Synthesis
0.44047976
Coomassie Brilliant Blue
0.44047976
0.49815476
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1.
FIGURE 1.

Workflow of protein-SIP. Depending on your experimental design and which stable isotopes are used, the culture grows on the same conditions, except the heavy isotope labeled carbon source. After cell harvesting and protein extraction, the samples are processed in parallel in order to obtain comparable results. Proteins or peptides are separated and fractionated and may be analyzed by several tools and techniques (see Fig. 3 ). In proteomics, the analysis ends with an MS measurement. Mostly, this is done by matrix-assisted laser desorption/ionization (MALDI) or electrospray ionization (ESI) MS, depending on the aim of investigation and complexity of measured samples.

Citation: Jehmlich N, Seifert J, Taubert M, Schmidt F, Vogt C, Richnow H, Bergen M. 2011. Protein Stable Isotope Probing, p 73-95. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2.
FIGURE 2.

Workflow of protein preparation for MS analysis. The simplest way is , in which a crude protein extract or intact cells treated by a protease such as trypsin is purified and desalted by small reverse-phase columns and further analyzed by MALDI-MS or ESI-MS. In contrast, the gel-based approach achieves the fractionation and separation of proteins by gel electrophoresis (1D-SDS-PAGE or 2-D electrophoresis) and further enzymatic in-gel digestion (e.g., also with trypsin) but also ends with MALDI- or ESI-MS measurements.

Citation: Jehmlich N, Seifert J, Taubert M, Schmidt F, Vogt C, Richnow H, Bergen M. 2011. Protein Stable Isotope Probing, p 73-95. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.
FIGURE 3.

Theoretical background of the halfdecimal-place rule (HDPR) calculation method. Typical theoretical C and C isotope-resolved peptides ( 500, 1,000, and 1,500) are shown in the upper panel, where the monoisotopic isotopes with the exact calculated decimal place are depicted. In the upper right panel, the mass-shifted decimal places of the corresponding C peptides are underlined. This information was used to plot as a reference, around 90,000 peptides of , in order to receive reference slopes for 0 atom% and 100 atom% C incorporation by a robust linear regression algorithm. They served as references for partial C incorporation. ( )

Citation: Jehmlich N, Seifert J, Taubert M, Schmidt F, Vogt C, Richnow H, Bergen M. 2011. Protein Stable Isotope Probing, p 73-95. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4.
FIGURE 4.

Scheme of functional metaproteomics: from “omics” data to biological content. After cultivation, fractions of the samples can be taken for DNA/RNA analyses in order to get a better overview of the structural composition of the analyzed culture. Black arrows indicate the workflow for the labeled sample, and in parallel for the unlabeled (control) sample, the white arrows are used. The central part of the workflow is database comparison with genome sequence information. Raw data acquired from the MS are computationally processed and further used for protein identifications. In conjunction with the information of stable isotope incorporation into specific functional proteins, a reconstruction of the microbial culture can be built up with the information of functional classification (e.g., extracellular or intracellular), taxonomic structure, and metabolic activity.

Citation: Jehmlich N, Seifert J, Taubert M, Schmidt F, Vogt C, Richnow H, Bergen M. 2011. Protein Stable Isotope Probing, p 73-95. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5.
FIGURE 5.

Representative MALDI-TOF/TOF-MS-spectra of the benzene 1,2-dioxygenase beta protein subunit. Three different PMF-spectra from the same protein. Isotopologues of peptides are visible and in the insets the unlabeled peptide ITSDVSWSEN-PASR at 1548.74 from the C-benzene culture (A), the labeled peptide at 1565.69 from the benzene/NH4 culture (B), and the labeled peptide at 1612.93 from the C-sbenzene culture (C) are shown that allow the calculation of the number of incorporated nitrogen and carbon atoms in this peptide.

Citation: Jehmlich N, Seifert J, Taubert M, Schmidt F, Vogt C, Richnow H, Bergen M. 2011. Protein Stable Isotope Probing, p 73-95. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6.
FIGURE 6.

MS/MS-spectra of the peptide ITSDVSWSENPASR. The corresponding y-ions in each spectrum are indicated with their mass, except for the y-ion at 1435.65, which is not determined. (A) The y-ion of arginine at 175.10 indicates the natural isotopic distribution of the chemical elements. (B) The y-ion at 179.08 and (C) at 181.49 reveals a mass shift, which indicated an incorporation of nitrogen and carbon. (Adapted from , with permission from Wiley InterScience.)

Citation: Jehmlich N, Seifert J, Taubert M, Schmidt F, Vogt C, Richnow H, Bergen M. 2011. Protein Stable Isotope Probing, p 73-95. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.
FIGURE 7.

Workflow of the shotgun proteomic approach. ML2 was grown independently with natural and labeled substrates; IPP and SMM approaches were applied in order to detect and quantify the metabolic incorporation of heavy isotopes (N and C) into peptides and proteins. (Adapted from , with permission from Wiley InterScience.)

Citation: Jehmlich N, Seifert J, Taubert M, Schmidt F, Vogt C, Richnow H, Bergen M. 2011. Protein Stable Isotope Probing, p 73-95. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8.
FIGURE 8.

Mass spectrometry analysis of selected proteins from the artificial mixed culture composed of EbN1 and UFZ-1 grown on different substrates. (A) A detailed view into a PMF-spectrum of the chaperone protein dnaK (EbN1) SLGQFNLSDIPPAPR 1611.86 from the mixed culture grown with C-toluene/gluconate as well as [C]toluene/gluconate (C). (B) A detailed view of the PMF-spectra of the heat shock protein HSP20 family (gene sequence homology to A1501) from the mixed culture grown with [C]toluene/gluconate is displayed as well as the sample from a culture grown on [C]toluene/gluconate (D). There was no C incorporation in peptides detectable belonging to the enrichment culture UFZ-1. (Adapted from .)

Citation: Jehmlich N, Seifert J, Taubert M, Schmidt F, Vogt C, Richnow H, Bergen M. 2011. Protein Stable Isotope Probing, p 73-95. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816896.ch04
1. Amann, R. I.,, W. Ludwig and, K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
2. Axcell, B. C., and, P. J. Geary. 1975. Purification and some properties of a soluble benzene-oxidizing system from a strain of Pseudomonas. Biochem. J. 146:173.
3. Benndorf, D.,, G. U. Balcke,, H. Harms, and, M. von Bergen. 2007. Functional metaproteome analysis of protein extracts from contaminated soil and ground-water. ISME J. 1:224234.
4. Beynon, R. J., and, J. M. Pratt. 2005. Metabolic labeling of proteins for proteomics. Mol. Cell. Proteomics 4:857872.
5. Boschker, H. T. S.,, S. C. Nold,, P. Wellsbury,, D. Bos,, W. de Graaf,, R. Pel,, R. J. Parkes, and, T. E. Cappenberg. 1998. Direct linking of microbial populations to specific biogeochemical processes by C- 13-labelling of biomarkers. Nature 392:801805.
6. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248254.
7. Choudhary, K.,, V. L. Spicer,, L. J. Donald,, H. W. Duckworth,, W. Ens,, P. C. Loewen, and, K. G. Standing. 2006. Method for estimating the isotopic distributions of metabolically labeled proteins by MALDI-TOFMS: Application to NMR samples. Anal. Chem. 78:54195423.
8. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry, 3rd,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M. A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead, and, B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
9. Elsner, M.,, L. Zwank,, D. Hunkeler, and, R. P. Schwarzenbach. 2005. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ. Sci. Technol. 39:68966916.
10. Feisthauer, S.,, L. Y. Wick,, M. Kästner,, S. R. Kaschabek,, M., Schlömann, and, H. H. Richnow. 2008. Differences of heterotrophic 13CO2 assimilation by Pseudomonas knackmussii strain B13 and Rhodococcus opacus 1CP and potential impact on biomarker stable isotope probing. Environ Microbiol. 10:16411651.
11. Fenselau, C., and, P.A. Demirev. 2001. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev. 20:157171.
12. Fetzer, I.,, N. Jehmlich,, C. Vogt,, H. H. Richnow,, J. Seifert,, H. Harms,, M. von Bergen, and, F. Schmidt. 2010. Calculation of partial isotope incorporation into peptides measured by mass spectrometry. BMC Res. Notes 3:178
13. Gay, S.,, P. A. Binz,, D. F. Hochstrasser, and, R. D. Appel. 1999. Modeling peptide mass fingerprinting data using the atomic composition of peptides. Electrophoresis 20:35273534.
14. Gottschalk, G. (ed.). 1979. >Bacterial Metabolism. Springer Series in Microbiology. New York, NY.
15. Gustavsson, N.,, B. Greber,, T. Kreitler,, H. Himmel-bauer,, H. Lehrach, and, J. Gobom. 2005. A pro-teomic method for the analysis of changes in protein concentrations in response to systemic perturbations using metabolic incorporation of stable isotopes and mass spectrometry. Proteomics 5:35633570.
16. Gygi, S. P.,, G. L. Corthals,, Y. Zhang,, Y. Rochon, and, R. Aebersold. 2000. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA 97:93909395.
17. Habermann, B.,, A. G. Bebin,, S. Herklotz,, M. Volkmer,, K. Eckelt,, K. Pehlke,, H. H. Epperlein,, H. K. Schackert,, G. Wiebe, and, E. M. Tanaka. 2004. An Ambystoma mexicanum EST sequencing project: analysis of 17,352 expressed sequence tags from embryonic and regenerating blastema cDNA libraries. Genome Biol. 5:R67.
18. Hampel, F. R.,, E. M. Ronchetti,, P. J. Rousseeuw, and, W. A. Stahel (ed.). 2005. Robust Statistics: The Approach Based on the Influence Functions. Wiley-VCH, New York, NY.
19. Hartigan, J. A., and, M. A. Wong. 1979. A k-means clustering algorithm. Applied Statistics 28:100108.
20. Heinzle, E.,, Y. Yuan,, S. Kumar,, C. Wittmann,, M. Gehre,, H. H. Richnow,, P. Wehrung,, P. Adam, and, P. Albrecht. 2008. Analysis of 13C labeling enrichment in microbial culture applying metabolic tracer experiments using gas chromatography-combustion-isotope ratio mass spectrometry. Anal Biochem. 15:380:202210.
21. Huber, P. J. (ed.). 1981, 2004. Robust Statistics. Wiley-VCH, New York, NY.
22. Hughes, C.,, B. Ma, and, G. A. Lajoie. 2010. De novo sequencing methods in proteomics. Methods Mol. Biol. 604:105121.
23. Jehmlich, N.,, I. Fetzer,, J. Seifert,, J. Mattow,, C. Vogt,, H. Harms,, B. Thiede,, H. H. Richnow,, M. von Bergen, and, F. Schmidt. 2010. Decimal place slope: a fast and precise method for quantifying 13C incorporation levels for detecting metabolic activity of microbial species. Mol. Cell. Proteomics epub.
24. Jehmlich, N.,, F. Schmidt,, M. Hartwich,, M. von Bergen,, H. H. Richnow, and, C. Vogt. 2008a. Incorporation of carbon and nitrogen atoms into proteins measured by protein-based stable isotope probing (Protein-SIP). Rapid Comm. Mass Spectrom. 22:28892897.
25. Jehmlich, N.,, T. Hübschmann,, M. Gesell Salazar,, U., Völker,, D. Benndorf,, S., Müller,, M. von Bergen, and, F. Schmidt. 2010. Advanced tool for characterization of microbial cultures by combining cytomics and proteomics. Appl Microbiol Biotechnol. 88(2):575584.
26. Jehmlich, N.,, F. Schmidt,, M. Taubert,, J. Seifert,, M. von Bergen,, H. H. Richnow and, C. Vogt. 2009. Comparison of methods for simultaneous identification of bacterial species and determination of metabolic activity by protein-based stable isotope probing (Protein-SIP) experiments. Rapid Comm. Mass Spectrom. 23:18711878.
27. Jehmlich, N.,, F. Schmidt,, M. von Bergen,, H. H. Richnow, and, C. Vogt. 2008b. Protein-based stable isotope probing (Protein-SIP) reveals active species within anoxic mixed cultures. Isme J. 2:11221133.
28. Karty, J. A.,, M. M. Ireland,, Y. V. Brun, and, J. P. Reilly. 2002. Artifacts and unassigned masses encountered in peptide mass mapping. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 782:363383.
29. Keller, M., and, R. Hettich. 2009. Environmental proteomics: a paradigm shift in characterizing microbial activities at the molecular level. Microbiol. Mol. Biol. Rev. 73:6270.
30. Kertesz, M. A., and, P. Mirleau. 2004. The role of soil microbes in plant sulphur nutrition. J. Exp. Bot. 55:19391945.
31. Lämmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680685.
32. MacCoss, M. J.,, C. C. Wu,, D. E. Matthews, and, J. R. Yates. 2005. Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. Anal. Chem. 77:76467653.
33. Manefield, M.,, A. S. Whiteley,, R. I. Griffiths, and, M. J. Bailey. 2002. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 68:53675373.
34. Mann, M. 1995. 43rd ASMS Conference on Mass Spectrometry and Applied Topics. 9(6):12211227. Atlanta, GA.
35. Mattow, J.,, F. Schmidt,, W. Hohenwarter,, F. Siejak,, U. E. Schaible, and, S. H. Kaufmann. 2004. Protein identification and tracking in two-dimensional electrophoretic gels by minimal protein identifiers. Proteomics 4:29272941.
36. Meckenstock, R. U.,, B. Morasch,, C. Griebler, and, H. H. Richnow. 2004. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J. Contam. Hydrol. 75:215255.
37. Neuhoff, V.,, N. Arold,, D. Taube, and, W. Ehrhardt. 1988. Improved staining of proteins in polyacryl-amide gels including isoelectric-focusing gels with clear background at nanogram sensitivity using Coo-massie Brilliant Blue G- 250 and R- 250. Electropho-resis 9:255262.
38. Olsen, G. J.,, D. J. Lane,, S. J. Giovannoni,, N. R. Pace, and, D. A. Stahl. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol 40:33765.
39. Ong, S. E., and, M. Mann. 2005. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1:252262.
40. Perkins, D. N.,, D. J. Pappin,, D. M. Creasy, and, J. S. Cottrell. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:35513567.
41. Purdy, K. J. 2005. Nucleic acid recovery from complex environmental samples. Methods Enzymol. 397:271292.
42. Radajewski, S.,, P. Ineson,, N. R. Parekh, and, J. C. Murrell. 2000. Stable-isotope probing as a tool in microbial ecology. Nature 403:646649.
43. Santos, P. M.,, D. Benndorf, and, I. Sa-Correia. 2004. Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics. Proteomics 4:26402652.
44. Schmidt, F.,, N. Jehmlich,, F. D. Kopinke, and, M. von Bergen. 2009. Verfahren zur relativen Quantifzierung von Peptiden nach Einbau von 36S nach metabolischer Markierung. German Patent no. DE 10 2008 043 241.
45. Schmidt, F.,, M. Schmid,, P. R. Jungblut,, J. Mattow,, A. Facius, and, K. P. Pleissner. 2003. Iterative data analysis is the key for exhaustive analysis of peptide mass fingerprints from proteins separated by two-dimensional electrophoresis. J. Am. Soc. Mass Spectrom. 14:943956.
46. Shevchenko, A.,, M. Wilm, and, M. Mann. 1997. Peptide sequencing by mass spectrometry for homology searches and cloning of genes. J. Protein Chem. 16:481490.
47. Snijders, A. P.,, M. G. De Vos,, B. De Koning, and, P. C. Wright. 2005. A fast method for quantitative proteomics based on a combination between two-dimensional electrophoresis and 15N-metabolic labelling. Electrophoresis 26:31913199.
48. Snijders, A. P. L.,, B. De Koning, and, P. C. Wright. 2005. Perturbation and interpretation of nitrogen isotope distribution patterns in proteomics. J. Pro-teome Res. 4:21852191.
49. Stelzer, N.,, C. Buning,, F. Pfeifer,, A. B. Dohrmann,, C. C. Tebbe,, I. Nijenhuis,, M. Kastner, and, H. H. Richnow. 2006. In situ microcosms to evaluate natural attenuation potentials in contaminated aquifers. Organic Geochemistry 37:13941410.
50. Tam le, T.,, H. Antelmann,, C. Eymann,, D. Albrecht,, J. Bernhardt, and, M. Hecker. 2006. Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Proteomics 6:45654585.
51. VerBerkmoes, N. C.,, V. J. Denef,, R. L. Hettich, and, J. F. Banfield. 2009. Systems biology. Functional analysis of natural microbial consortia using community proteomics. Nat. Rev. Microbiol. 7:196205.
52. Whitman, W. B.,, D. C. Coleman, and, W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. U.S.A. 95:65786583.
53. Widdel, F., and, R. Rabus. 2001. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12:259276.
54. Wisniewski, J. R.,, A. Zougman,, N. Nagaraj, and, M. Mann. 2009. Universal sample preparation method for proteome analysis. Nat. Methods 6:359362.
55. Woese, C. R., and, G. E. Fox. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U.S.A. 74:50885090.
56. Yergey, J. A. 1983. A general-approach to calculating isotopic distributions for mass-spectrometry. Int. J. Mass Spectrom. Ion Proc. 52:337349.

Tables

Generic image for table
TABLE 1

Stable isotope composition of elements potentially relevant for protein-SIP

Citation: Jehmlich N, Seifert J, Taubert M, Schmidt F, Vogt C, Richnow H, Bergen M. 2011. Protein Stable Isotope Probing, p 73-95. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error