Chapter 17 : A Glance Toward the Future: Where Do We Go from Here?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

A Glance Toward the Future: Where Do We Go from Here?, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816896/9781555815370_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555816896/9781555815370_Chap17-2.gif


In environments where growth can be fast and production of proteins and metabolites is rapid, the stable isotope probing (SIP) approach is at its best. Rapid incorporation of stable isotopes into DNA, RNA, protein, and/or metabolites will be used routinely in medical and dental research, perhaps drawing these fields far closer toward environmental microbiology than they have been in the past. Eukaryotes evolved in a sea of and , and it would be astounding if there were not many interdependent metabolic interactions that describe the total organism as a eukaryotic/bacterial/archaeal conglomerate. This understanding will be one of the great accomplishments of the next decades and will be greatly enhanced by SIP technologies at nearly every level (DNA, RNA, protein, and metabolites). The differences between hydrogen transfer and electron transfer could be significant and offer some major challenges to the understanding of microbial ecology: challenges that may be solved in part via the application of SIP approaches and others that will require new ways of thinking and experimentation. Several papers have appeared recently on extracellular electron transport. It is clear from the work in several laboratories that microbes have mechanisms available to them to donate electrons directly to solid surfaces and to take electrons directly from solid surfaces raising the possibility that an energy realm previously not thought possible by most microbiologists could exist in sedimentary environments, utilizing various types of extracellular electron transport mechanisms to deliver energy in the form of electrons among energy sources, cells, and electron acceptors.

Citation: Nealson K. 2011. A Glance Toward the Future: Where Do We Go from Here?, p 333-336. In Murrell J, Whiteley A (ed), Stable Isotope Probing and Related Technologies. ASM Press, Washington, DC. doi: 10.1128/9781555816896.ch17

Key Concept Ranking

Environmental Microbiology
Microbial Ecology
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Cheng, S.,, D. Xing,, D. F. Call, and, B. E. Logan. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43:39533958.
2. D’Hondt, S.,, B. B. Jorgensen,, D. J. Miller,, A. Batzke,, R. Blake,, B. A. Cragg,, H. Cypionka,, G. R. Dickens,, T. Ferdelman,, K. U. Hinrichs,, N. G. Holm,, R. Mitterer,, A. Spivack,, G. Wang,, B. Bekins,, B. Engelen,, K. Ford,, G. Gettemy,, S. D. Rutherford,, H. Sass,, C. G. Skilbeck,, I. W. Aiello,, G. Guerin,, C. H. House,, F. Inagaki,, P. Meister,, T. Naehr,, S. Niitsuma,, R. J. Parkes,, A. Schippers,, D. C. Smith,, A. Teske,, J. Wiegel,, C. N. Padilla, and, J. L. Acosta. 2004. Distributions of microbial activities in deep subseafloor sediments. Science 306:22162221.
3. D’Hondt, S.,, S. Rutherford, and, A. J. Spivack. 2002. Metabolic activity of subsurface life in deep-sea sediments. Science 295:20672070.
4. Fredrickson, J. K.,, M. F. Romine,, A. S. Beliaev,, J. M. Auchtung,, M. E. Driscoll,, T. S. Gardner,, K. H. Nealson,, A. L. Osterman,, G. Pinchuk,, J. L. Reed,, D. A. Rodionov,, J. L. Rodrigues,, D. A. Saffarini,, M. H. Serres,, A. M. Spormann,, I. B. Zhulin, and, J. M. Tiedje. 2008. Towards environmental systems biology of Shewanella. Natl. Rev. Microbiol. 6:592603.
5. Fry, J. C.,, R. J. Parkes,, B. A. Cragg,, A. J. Weight-man, and, G. Webster. 2008. Prokaryotic biodiversity and activity in the deep subsea floor biosphere. FEMS Microbiol. Ecol. 66:181196.
6. Inagaki, F.,, T. Nunoura,, S. Nakagawa,, A. Teske,, M. Lever,, A. Lauer,, M. Suzuki,, K. Takai,, M. Delwiche,, F. S. Colwell,, K. H. Nealson,, K. Horikoshi,, S. D’Hondt, and, B. B. Jorgensen. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl. Acad. Sci. USA 103:28152820.
7. Lipp, J. S.,, Y. Morono,, F. Inagaki, and, K. U. Hinrichs. 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 454:991994.
8. Logan, B. E. 2009. Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7:375381.
9. Lovley, D. R., and, E. J. P. Phillips. 1988. Novel mode of microbial energy-metabolism—organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54:14721480.
10. Myers, C. R., and, K. H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:13191321.
11. Nealson, K. H. 2010. Sediment reactions defy dogma. Nature 463:10331034.
12. Nielsen, L. P.,, N. Risgaard-Petersen,, H. Fossing,, P. B. Christensen, and, M. Sayama. 2010. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature.
13. Olsen, G. J.,, D. J. Lane,, S. J. Giovannoni,, N. R. Pace, and, D. A. Stahl. 1986. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40:337365.
14. Olsen, G. J.,, C. R. Woese, and, R. Overbeek. 1994. The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176:16.
15. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere in a Yellowstone hot spring. Science 276:734740.
16. Pace, N.,, D. A. Stahl,, D. J. Lane, and, G. J. Olsen. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Adv. Microb. Ecol. 9:155.
17. Parkes, R. J.,, B. A. Cragg,, N. Banning,, F. Brock,, G. Webster,, J. C. Fry,, E. Hornibrook,, R. D. Pancost,, S. Kelly,, N. Knab,, B. B. Jorgensen,, J. Rinna, and, A. J. Weightman. 2007. Biogeochemistry and biodiversity of methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ. Microbiol. 9:11461161.
18. Parkes, R. J.,, G. Webster,, B. A. Cragg,, A. J. Weightman,, C. J. Newberry,, T. G. Ferdelman,, J. Kallmeyer,, B. B. Jorgensen,, I. W. Aiello, and, J. C. Fry. 2005. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390394.
19. Rabaey, K.,, S. T. Read,, P. Clauwaert,, S. Freguia,, P. L. Bond,, L. L. Blackall, and, J. Keller. 2008. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J. 2:519527.
20. Roussel, E. G.,, M. A. Bonavita,, J. Querellou,, B. A. Cragg,, G. Webster,, D. Prieur, and, R. J. Parkes. 2008. Extending the sub-seafloor biosphere. Science 320:1046.
21. Schippers, A.,, L. N. Neretin,, J. Kallmeyer,, T. G. Ferdelman,, B. A. Cragg,, R. J. Parkes, and, B. B. Jorgensen. 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433:861864.
22. Thrash, J. C., and, J. D. Coates. 2008. Direct and indirect electrical stimulation of microbial metabolism. Env. Sci. Technol. 42:39213931.
23. Webster, G.,, L. C. Watt,, J. Rinna,, J. C. Fry,, R. P. Evershed,, R. J. Parkes, and, A. J. Weightman. 2006. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Environ. Microbiol. 8:15751589.
24. Woese, C. R. 2004. A new biology for a new century. Microbiol. Mol. Biol. Rev. 68:173186.
25. Woese, C. R.,, O. Kandler, and, M. L. Wheelis. 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:45764579.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error