1887

Chapter 13 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap13-2.gif

Abstract:

Genetic analysis focused on BoNT genes and flanking genes, which elucidated the botulinum locus encompassing the genes encoding BoNT, associated nontoxic proteins, and the regulator Bot/R, and provided evidence of its variation among the different toxinotypes. Whole genomes sequencing is now available for eight strains and is in progress for several other strains. These sequence data will allow us to get deeper insights into the lifestyle of —in particular, its survival in the environment and in food products, as well as its regulation of toxin production and also permit us to better understand its relationship with related nontoxigenic clostridia and the modes of transfer of toxin genes. The neurotoxin and ANTP genes are clustered in close vicinity and constitute the botulinum locus. Indeed, two main types of botulinum locus can be distinguished, the HA locus containing and genes and the OrfX locus containing , , and genes in addition to the gene. The upstream regions of the botulinum locus are identical in the genome of the three A1 strains and contain a flagellin gene. Bacteriophages mediate the neurotoxin gene transfer in group III of . In vitro transcription, transcripts were observed when BotR/A-Core was incubated only with DNA templates containing ntnh-bont/A and ha35 promoters. Thus, BotR/A is an alternative sigma factor required for specifc expression of the botulinum locus operons.

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13

Key Concept Ranking

Multiple-Locus Variable-Number Tandem-Repeat Analysis
0.41779253
Transcription Start Site
0.41575786
0.41779253
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The number of putative orthologous genes in and other clostridia. The number of putative orthologous genes between type A strain Hall, strain E88, strain 13, strain 630, and is shown, according to reference .

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genome comparison of eight strains. A bidirectional blast (blastP) was performed, comparing all protein sequences of the F strain to the seven other genomes. Outer circle: all predicted open reading frames of strain Langeland, plotted according to DNA strand location. The next seven circles represent, from outside to inside, the genomes of the A strains ATCC19397, Hall, ATCC3502, the A3 strain Loch Maree, the B1 strain Okra, the B strain Eklund 17B, and the E3 strain Alaska E43, respectively. Light grey: shared “backbone” (protein identity >90%). Dark grey: absent genes (protein identity of <10%). Medium grey: divergence (between 10 and 90% protein identity).

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Different gene organization of botulinum loci in type A strains.

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Gene organization of botulinum loci in type B to G strains.

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Flanking regions of botulinum loci in type A and B strains.

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Homologies at amino acid sequence level and mosaic structures of NTNH from HA and OrfX loci indicating that the gene might be a hot spot for recombination events. Percentage values are amino acid sequence identities. Black boxes show high homology levels, and grey boxes lower homology levels.

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Phylogenetic tree of BoNT types according to their amino acid sequence relatedness and the UPGMA method. (A) Main BoNT types: BoNT/A1 (strain Hall); BoNT/B2 (strain ATCC7949); BoNT/Bnp (strain Eklund17B); BoNT/C (strain 468); BoNT/D (strain 1873); BoNT/CD (strain 6813); BoNT/E1 (strain Beluga); BuNT/E4 (strain ATCC43755); BoNT/F (strain Langeland); BoNT/Fnp (strain 202F); BoNT/G (strain NCFB3012). (B) BoNT/A subtypes: BoNT/A1 (strain Hall); BoNT/A2 (strain Kyoto F); BoNT/A3 (strain Loch Maree); BoNT/A4 (strain 657); BoNT/A5 (strain HO 4402 065). (C) Main BoNT/B subtypes: BoNT/B1 (strain NCTC7273); BoNT/B2 (strain ATCC7949); BoNT/B3 (strain CDC795); BoNT/Bnp (strain Eklund17B), bivalent BoNT/B (strain Ba657).

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816902.ch13
1. Arndt, E. R.,, M. J. Jacobson,, E. E. Abola,, C. M. Forsyth,, W. H. Tepp,, J. D. Marks,, E. A. Johnson, and, E. S. Stevens. 2006. A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1-A4. J. Mol. Biol. 362:733742.
2. Arndt, J. W.,, J. Gu,, L. Jaroszewski,, R. Schwarzenbacher,, M. A. Hanson,, F. J. Lebeda, and, R. C. Stevens. 2005. The structure of the neurotoxin-associated protein HA33/A from Clostridium botulinum suggests a reoccurring beta-trefoil fold in the progenitor toxin complex. J. Mol. Biol. 346:10831093.
3. Artin, I.,, A. T. Carter,, E. Holst,, M. Lovenklev,, D. R. Mason,, M. W. Peck, and, P. Radstrom. 2008. Effects of carbon dioxide on neurotoxin gene expression in nonproteolytic Clostridium botulinum type E. Appl. Environ. Microbiol. 74:23912397.
4. Artin, I.,, D. R. Mason,, C. Pin,, J. Schelin,, M. W. Peck,, E. Holst,, P. Radstrom, and, A. T. Carter. 2009. Effects of carbon dioxide on growth, neurotoxin formation and the transcriptome of proteolytic Clostridium botulinum. Appl. Environ. Microbiol. 76:11681172.
5. Baldassarri, L.,, G. Donelli,, M. Cerquetti, and, P. Mastrantonio. 1991. Capsule-like structures in Clostridium difficile strains. Microbiologica 14:295300.
6. Barash, J. R., and, S. S. Arnon. 2004. Dual toxin-producing strain of Clostridium botulinum type Bf isolated from a California patient with infant botulism. J. Clin. Microbiol. 42:17131715.
7. Barth, H.,, K. Aktories,, M. R. Popoff, and, B. G. Stiles. 2004. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol. Mol. Biol. Rev. 68:373402.
8. Bennik, M. H. J.,, M. Mauchline,, F. Bosveld,, M. Elmore,, N. P. Minton,, J. Parkhill, and, M. W. Peck. 2003. The genome sequence of proteolytic Clostridium botulinum ATCC3502 (Hall A): some highlights. Presented at the Clostridial 03 Pathogenesis, Woods Hole, MA.
9. Bhandari, M.,, K. D. Campbell,, M. D. Collins, and, A. K. East. 1997. Molecular characterization of the clusters of genes encoding the botulinum neurotoxin complex in Clostridium botulinum (Clostridium argentinense) type G and nonproteolytic Clostridium botulinum type B. Curr. Microbiol. 35:207214.
10. Bihidayasiri, R., and, D. D. Truong. 2005. Expanding use of botulinum toxin. J. Neurol. Sci. 235:19.
11. Borriello, S. P.,, A. R. Welch,, F. E. Barclay, and, H. A. Davies. 1988. Mucosal association by Clostridium difficile in the hamster gastrointestinal tract. J. Med. Microbiol. 25:191196.
12. Brefort, G.,, M. Magot,, H. Ionesco, and, M. Sebald. 1977. Characterization and transferability of Clostridium perfrin-gens plasmids. Plasmid 1:5266.
13. Brin, M. F.,, M. Hallett, and, J. Jankovic. 2002. Scientific and Therapeutic Aspects of Botulinum Toxin. Lippincott Williams and Wilkins, Philadelphia, PA.
14. Broussolle, V.,, F. Alberto,, C. A. Shearman,, D. R. Mason,, L. Botella,, C. Nguyen-The,, M. W. Peck, and, F. Carlin. 2002. Molecular and physiological characerization of spore germination in Clostridium botulinum and Clostridium sporogenes. Anaerobe 8:89100.
15. Brüggemann, H.,, S. Bäumer,, W. F. Fricke,, A. Wiezr,, H. Liesagang,, I. Decker,, C. Herzberg,, R. Martinez-Arias,, A. Henne, and, G. Gottschalk. 2003. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Ntl. Acad. Sci. USA 100:13161321.
16. Brüggemann, H., and, G. Gottschalk. 2008. Comparative ge-nomics of clostridia: link between the ecological niche and cell surface properties. Ann. N. Y. Acad. Sci. 1125:7381.
17. Brüggemann, H., and, G. Gottschalk. 2004. Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe 10:5368.
18. Calabi, E.,, F. Calabi,, A. D. Phillips, and, N. F. Fairweather. 2002. Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infect. Immun. 70:57705778.
19. Carter, A. X,, C. J. Paul,, D. R. Mason,, S. M. Twine,, M. J. Alston,, S. M. Logan,, J. W. Austin, and, M. W. Peck. 2009. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genomics 10:115.
20. Cato, E. P.,, W. L. George, and, S. M. Finegold. 1986. Genus Clostridium, p. 1141-1200. In P. H. A. Sneath,, N. S. Mair,, M. E. Sharpe, and, J. G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 2. Williams and Wilkins, Baltimore, MD.
21. Chen, Y.,, H. Korkeala,, J. Aarnikunnas, and, M. Lindstrom. 2007. Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype. J. Bacteriol. 189:86438650.
22. Collins, M. D., and, A. K. East. 1997. Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J. Appl. Microbiol. 84:517.
23. Cordoba, J. J.,, M. D. Collins, and, A. K. East. 1995. Studies on the genes encoding botulinum neurotoxin type A of Clostridium botulinum from a variety of sources. System. Appl. Microbiol. 18:1322.
24. Couesnon, A.,, S. Raffestin, and, M. R. Popoff. 2006. Expression of botulinum neurotoxins A and E, ans associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR. Microbiology 152:759770.
25. Craig, L.,, M. E. Pique, and, J. A. Tainer. 2004. Type IV pilus structure and bacterial pathogenicity. Nat. Rev. Microbiol. 2:363378.
26. Davies, H. A., and, S. P. Borriello. 1990. Detection of capsule in strains of Clostridium difficile of varying virulence and toxi-genicity. Microb. Pathog. 9:141146.
27. Dekleva, M. L., and, B. R. DasGupta. 1990. Purification and characterization of a protease from Clostridium botulinum type A that nicks single-chain type A botulinum neurotoxin into di-chain form. J. Bacteriol. 172:24982503.
28. Dickert, S.,, A. J. Pierik, and, W. Buckel. 2002. Molecular characterization of phenyllactate dehydratase and its initiator from Clostridium sporogenes. Mol. Microbiol. 44:4960.
29. Dineen, S. S.,, M. Bradshaw, and, E. A. Johnson. 2003. Neurotoxin gene clusters in Clostridium botulinum type A strains: sequence comparison and evolutionary implications. Curr. Microbiol. 46:342352.
30. Dineen, S. S.,, M. Bradshaw,, C. E. Karasek, and, E. A. Johnson. 2004. Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum. FEMS Microbiol. Lett. 235:916.
31. Dover, N.,, J. R. Barash, and, S. S. Arnon. 2009. Novel Clostridium botulinum toxin gene arrangement with subtype A5 and partial subtype B3 botulinum neurotoxin genes. J. Clin. Microbiol. 47:23492350.
32. Doxey, A. C.,, M. D. Lynch,, K. M. Muller,, E. M. Meiering, and, B. J. McConkey. 2008. Insights into the evolutionary origins of clostridial neurotoxins from analysis of the Clostridium botulinum strain A neurotoxin gene cluster. BMC Evol. Biol. 8:316.
33. Dupuy, B.,, N. Mani,, S. Katayama, and, A. L. Sonenshein. 2005. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor. Mol. Microbiol. 55:11961206.
34. Dupuy, B.,, S. Raffestin,, S. Matamouros,, N. Mani,, M. R. Popoff, and, A. L. Sonenshein. 2006. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors. Mol. Microbiol. 60:10441057.
35. Durre, P. 2005. Sporulation in clostridia, p. 659-669. In P. Durre (ed.), Handbook of Clostridia. Taylor and Francis, Boca Raton, FL.
36. East, A. K.,, M. Bhandari,, J. M. Stacey,, K. D. Campbell, and, M. D. Collins. 1996. Organization and phylogenetic interrelationships of genes encoding components of the botulinum toxin complex in proteolytic Clostridium botulinum types A, B, and F: evidence of chimeric sequences in the gene encoding the nontoxic nonhemagglutinin component. Int. J. Syst. Bacteriol. 46:11051112.
37. Eklund, M. W., and, J. Dowell. 1987. Avian Botulism. Charles C Thomas, Springfield, IL.
38. Eklund, M. W., and, F. T. Poysky. 1974. Interconversion of type C and D strains of Clostridium botulinum by specific bac-teriohages. Appl. Microbiol. 27:251258.
39. Eklund, M. W.,, F. T. Poysky, and, W. H. Habig. 1989. Bacterio-phages and plasmids in Clostridium botulinum and Clostridium tetani and their relationship to production of toxins., p. 25-51. In L. L. Simpson (ed.), Botulinum Neurotoxin and Tetanus Toxin. Academic Press, San Diego, CA.
40. Eklund, M. W.,, F. T. Poysky,, J. A. Meyers, and, G. A. Pelroy. 1974. Interspecies conversion of Clostridium botulinum type C to Clostridium novyi type A by bacteriophage. Science 172:480482.
41. Eklund, M. W.,, F. T. Poysky,, S. M. Reed, and, C. A. Smith. 1971. Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science 172:480482.
42. Fenicia, L.,, G. Franciosa,, M. Pourshaban, and, P. Aureli. 1999. Intestinal toxemia botulism in two young people, caused by Clostridium butyricum type E. Clin. Infect. Dis. 29:381387.
43. Franciosa, G.,, L. Fenicia,, M. Pourshaban, and, P. Aureli. 1997. Recovery of a strain of Clostridium botulinum producing both neurotoxin A and neurotoxin B from canned macrobiotic food. Appl. Environ. Microbiol. 63:11481150.
44. Franciosa, G.,, J. L. Ferreira, and, C. L. Hatheway. 1994. Detection of type A, B, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms. J. Clin. Microbiol. 32:19111917.
45. Franciosa, G.,, F. Floridi,, A. Maugliani, and, P. Aureli. 2004. Differentitation of the gene clusters encoding botulinum neurotoxin type A complexes in Clostridium botulinum type A, Ab, and A(B) strains. Appl. Environ. Microbiol. 70:71927199.
46. Franciosa, G.,, A. Maugliani,, F. Floridi, and, P. Aureli. 2006. A novel type A2 neurotoxin gene cluster in Clostridium botulinum strain Mascarpone. FEMS Microbiol. Lett. 261:8894.
47. Franciosa, G.,, A. Maugliani,, C. Scalfaro, and, P. Aureli. 2009. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS ONE 4:e4829.
48. Fujinaga, Y.,, K. Takeshi,, K. Inoue,, R. Fujita,, T. Ohyama,, K. Moriishi, and, K. Oguma. 1995. Type A and B neurotoxin genes in a Clostridium botulinum type AB strain. Biochem. Biophys. Res. Commun. 213:737745.
49. Hall, J. D.,, L. M. McCroskey,, B. J. Pincomb, and, C. L. Hatheway. 1985. Isolation of an organism resembling Clostridium barati which produces type F botulinal toxin from an infant with botulism. J. Clin. Microbiol. 21:654655.
50. Hauser, D.,, M. Gibert,, P. Boquet, and, P. M. R. 1992. Plasmid localization of a type E botulinal neurotoxin gene homologue in toxigenic Clostridium butyricum strains, and absence of this gene in non-toxigenic C. butyricum strains. FEMS Microbiol. Lett. 99:251256.
51. Hauser, D.,, M. Gibert,, M. W. Eklund,, P. Boquet, and, M. R. Popoff. 1993. Comparative analysis of C3 and botulinal neurotoxin genes and their environment in Clostridium botulinum C and D. J. Bacteriol. 175:72607268.
52. Hauser, D.,, M. Gibert,, J. C. Marvaud,, M. W. Eklund, and, M. R. Popoff. 1995. Botulinal neurotoxin C1 complex, Clostridial neurotoxin homology and genetic transfer in Clostridium botulinum. Toxicon 33:515526.
53. Helmann, J. D. 2002. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46:47110.
54. Henderson, I.,, T. Davis,, M. Elmore, and, N. Minton. 1997. The genetic basis of toxin production in Clostridium botulinum and Clostridium tetani, p. 261-294. In I. Rood (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, New York, NY.
55. Henderson, I.,, S. M. Whelan,, T. O. Davis, and, N. P. Minton. 1996. Genetic characterization of the botulinum toxin complex of Clostridium botulinum strain NCTC2916. FEMS Mi-crobiol. Lett. 140:151158.
56. Herrmann, G.,, E. Jayamani,, G. Mai, and, W. Buckel. 2008. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J. Bacteriol. 190:784791.
57. Hielm, S.,, J. Björkroth,, E. Hyytiä, and, H. Korkeala. 1998. Prevalence of Clostridium botulinum in Finnish trout farms: pulsed-field gel electrophoresis typing reveals extensive genetic diversity among Type E isolates. Appl. Environ. Microbiol. 64:41614167.
58. Hielm, S.,, K. J. Björkroth,, E. Hyytia, and, H. Korkeala. 1998. Genomic analysis of Clostridium botulinum group II by pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 64:703708.
59. Hill, K. K.,, T. J. Smith,, C. H. Helma,, L. O. Ticknor,, B. T. Foley,, R. T. Svensson,, J. L. Brown,, E. A. Johnson,, L. A. Smith,, R. T. Okinaka,, P. J. Jackson, and, J. D. Marks. 2007. Genetic diversity among botulinum neurotoxin-producing clostridial strains. J. Bacteriol. 189:818832.
60. Hill, K. K.,, G. Xie,, B. T. Foley,, T. J. Smith,, A. C. Munk,, D. Bruce,, L. A. Smith,, T. S. Brettin, and, J. C. Detter. 2009. Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol. 7:66.
61. Hinderink, K.,, M. Lindstrom, and, H. Korkeala. 2009. Group I Clostridium botulinum strains show significant variation in growth at low and high temperatures. J. Food Prot. 72:375383.
62. Hippe, H.,, J. R. Andreesen, and, G. Gottschalk. 1992. The genus Clostridium-Nonmedical, p. 1800-1866. In A. Balows,, H. G. Truper,, M. Dworkin,, W. Harder, and, K. H. Scheifer (ed.), The Prokaryotes, vol. II. Springer Verlag, New York, NY.
63. Hirst, T. R. 1995. Biogenesis of cholera toxin and related oligomeric toxins, p. 123-184. In J. Moss,, B. Iglewsski,, M. Vaughan, and, A. T. Tu (ed.), Bacteriol Toxins and Virulence Factors in Disease. Marcel Dekker, New York, NY.
64. Hutson, R. A.,, M. D. Collins,, A. K. East, and, D. E. Thompson. 1994. Nucleotide sequence of the gene coding for non-proteolytic Clostridium botulinum type B neurotoxin: comparison with other clostridial neeurotoxins. Curr. Microbiol. 28:101110.
65. Hutson, R. A.,, D. E. Thompson,, P. A. Lawson,, R. P. Schocken-Itturino,, E. C. Bottger, and, M. D. Collins. 1993. Genetic interrelationships of proteolytic Clostridium botulinum types A, B, and F and other members of the Clostridium botulinum complex as revealed by small-subunit rRNA gene sequences. Antonie Van Leeuwenhoek 64:273283.
66. Hutson, R. A.,, Y. Zhou,, M. D. Collins,, E. A. Johnson,, C. L. Hatheway, and, H. Sugiyama. 1996. Genetic characterization of Clostridium botulinum type A containing silent type B neurotoxin gene sequences. J. Biol. Chem. 271:1078610792.
67. Hwang, H. J.,, J. C. Lee,, Y. Yamamoto,, M. R. Sarker,, T. Tsuchiya, and, K. Oguma. 2007. Identification of structural genes for Clostridium botulinum type C neurotoxin-converting phage particles. FEMS Microbiol. Lett. 270:8289.
68. Hyytia, E.,, J. Bjorkroth,, S. Hielm, and, H. Korkeala. 1999. Characterisation of Clostridium botulinum groups I and II by randomly amplified polymorphic DNA analysis and repetitive element sequence-based PCR. Int. J. Food Microbiol 48-179189.
69. Hyytia, E.,, S. Hielm,, J. Björkroth, and, H. Korkeala. 1999. Biodiversity of Clostridium botulinum Type E strains isolated from fish and fishery products. Appl. Environ. Microbiol. 65:20572064.
70. Ihara, H.,, T. Kohda,, F. Morimoto,, K. Tsukamoto,, T. Karasawa,, S. Nakamura,, M. Mukamoto, and, S. Kozaki. 2003. Sequence of the gene for Clostridium botulinum type B neurotoxin associated with infant botulism, expression of the C-terminal half of heavy chain and its binding activity. Biochim. Biophys. Acta 1625:1926.
71. Inoue, K.,, Y. Fujinaga,, T. Watanabe,, T. Ohyama,, K. Takeshi,, K. Moriishi,, H. Nakajima,, K. Inoue, and, K. Oguma. 1996. Molecular composition of Clostridium botulinum type A progenitor toxins. Infect. Immun. 64:15891594.
72. Jacobson, M. J.,, G. Lin,, B. Raphael,, J. Andreadis, and, E. A. Johnson. 2008. Analysis of neurotoxin cluster genes in Clostridium botulinum strains producing botulinum neurotoxin serotype A subtypes. Appl. Environ. Microbiol. 74:27782786.
73. Jacobson, M. J.,, G. Lin,, T. S. Whittam, and, E. A. Johnson. 2008. Phylogenetic analysis of Clostridium botulinum type A by multi-locus sequence typing. Microbiology 154:24082415.
74. Jankovic, J. 2004. Botulinum toxin in clinical practice. J. Neu-rol. Neurosurg. Psychiatr. 75:951957.
75. Johnson, E. A.,, W. Tepp,, M. Bradshaw,, R. J. Gilbert,, P. E. Cook, and, E. D. McIntosh. 2005. Characterization of Clostridium botulinum strains associated with an infant botulism case in the United Kingdom. J. Clin. Microbiol. 43:26022607.
76. Johnson, J. L., and, B. S. Francis. 1975. Taxonomy of the clostridia: ribosomal ribonucleic acid homologies among the species. J. Gen. Microbiol. 88:229244.
77. Jovita, M. R.,, M. D. Collins, and, A. K. East. 1998. Gene organization and sequence determination of the two botulinum neurotoxin gene clusters in Clostridium botulinum. Curr. Microbiol. 36:226231.
78. Karjalainen, T.,, A. J. Waligora-Dupriet,, M. Cerquetti,, P. Spigaglia,, A. Maggioni,, P. Mauri, and, P. Mastrantonio. 2001. Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile. Infect. Immun. 69:34423446.
79. Keto-Timonen, R.,, M. Nevas, and, H. Korkeala. 2005. Efficient DNA fingerprint of Clostridium botulinum types A, B, E, and F by amplified fragment length polymorphism analysis. Appl. Environ. Microbiol. 71:11481154.
80. Kim, J.,, D. Darkey, and, W. Buckel. 2005. 2-Hydroxycaproyl-CoA dehydratase and its activation frm Clostridium difficile. FEBS J. 272:550561.
81. Kozaki, S.,, Y. Kamata,, T. Nishiki,, H. Kakinuma,, H. Maruyama,, H. Takahashi,, T. Karasawa,, K. Yamakawa, and, S. Nakamura. 1998. Characterization of Clostridium botulinum type B neurotoxin associated with infant botulism in Japan. Infect. Immun. 66:48114816.
82. Kubota, T.,, S. Shirakawa,, S. Kozaki,, E. Isogai,, H. Isogai,, K. Kimura, and, N. Fujii. 1996. Mosaic structure of the nontoxic-nonhemagglutinating component gene in Clostridium botulinum type A strain isolated from infant botulism in Japan. Biochem. Biophys. Res. Commun. 224:843848.
83. Lawson, P. A.,, P. Llop-Perez,, R. A. Hutson,, H. Hippe, and, M. D. Collins. 1993. Towards a phylogeny of the clostridia based on 16S rRNA sequences. FEMS Microbiol. Lett. 113:8792.
84. Li, B.,, X. Qian,, H. K. Sarkar, and, B. R. Singh. 1998. Molecular characterization of type E Clostridium botulinum and comparison to other types of Clostridium botulinum. Biochim. Biophys. Acta 1395:2127.
85. Lin, W. J., and, E. A. Johnson. 1995. Genome analysis of Clostridium botulinum type A by pulsed-field gel electro-phoresis. Appl. Environ. Microbiol. 61:44414447.
86. Lindström, M.,, K. Hinderink,, P. Somervuo,, K. Kiviniemi,, M. Nevas,, Y. Chen,, P. Auvinen,, A. T. Carter,, D. R. Mason,, M. W. Peck, and, H. Korkeala. 2009. Comparative genomic hybridization analysis of two predominant Nordic group I (proteolytic) Clostridium botulinum type B clusters. Appl. Environ. Microbiol. 75:26432651.
87. Lindström, M., and, H. Korkeala. 2006. Laboratory diagnosis of botulism. Clin. Microbiol. Rev. 19:298314.
88. Lövenklev, M.,, I. Artin,, O. Hagberg,, E. Borch,, E. Holst, and, P. Radström. 2004. Quantitative interaction effects of carbon dioxide, sodium chloride, and sodium nitrite on neurotoxin gene expression in nonproteolytic Clostridium botulinum type B. Appl. Environ. Microbiol. 70:29282934.
89. Lund, B. M., and, M. W. Peck. 2000. Clostridium botulinum, p. 1057-1109. In B. M. Lund,, T. C. Baird-Parker, and, G. W. Gould (ed.), The Microbiology Safety and Quality of Food, vol. II. Aspen Publishers, Gaithersburg, MD.
90. Macdonald, T. E.,, C. H. Helma,, L. O. Ticknor,, P. J. Jackson,, R. T. Okinaka,, L. A. Smith,, T. J. Smith, and, K. K. Hill. 2008. Differentiation of Clostridium botulinum serotype A strains by multiple-locus variable-number tandem-repeat analysis. Appl. Environ. Microbiol. 74:875882.
91. Marshall, K. M.,, M. Bradshaw,, S. Pellet, and, E. A. Johnson. 2007. Plasmid encoded neurotoxin genes in Clostridium botulinum serotype A subtypes. Biochem. Biophys. Res. Commun. 361:4954.
92. Marvaud, J. C.,, U. Eisel,, T. Binz,, H. Niemann, and, M. R. Popoff. 1998. tetR is a positive regulator of the Tetanus toxin gene in Clostridium tetani and is homologous to botR. Infect. Immun. 66:56985702.
93. Marvaud, J. C.,, M. Gibert,, K. Inoue,, V. Fujinaga,, K. Oguma, and, M. R. Popoff. 1998. botR is a positive regulator of botulinum neurotoxin and associated non toxic protein genes in Clostridium botulinum A. Mol. Microbiol. 29:10091018.
94. McCroskey, L. M.,, C. L. Hatheway,, L. Fenicia,, B. Pasolini, and, P. Aureli. 1986. Characterization of an organism that produces type E botulinal toxin but which resembles Clostridium butyricum from the feces of an infant with type E botulism. J. Clin. Microbiol. 23:201202.
95. McCroskey, L. M.,, C. L. Hatheway,, B. A. Woodruff,, J. A. Greenberg, and, P. Jurgenson. 1991. Type F botulism due to neurotoxigenic Clostridium baratii from an unknown source in an adult. J. Clin. Microbiol. 29:26182620.
96. Meng, X.,, T. Karasawa,, K. Zou,, X. Kuang,, X. Wang,, C. Lu,, C. Wang,, K. Yamakawa, and, S. Nakamura. 1997. Characterization of a neurotoxigenic Clostridium butyricum strain isolated from the food implicated in an outbreak of food-borne type E botulism. J. Clin. Microbiol. 35:21602162.
97. Meng, X.,, K. Yamakawa,, K. Zou,, X. Wang,, X. Kuang,, C. Lu,, C. Wang,, T. Karasawa, and, S. Nakamura. 1999. Isolation and characterization of neurotoxigenic Clostridium butyricum from soil in China. J. Med. Microbiol. 48:133137.
98. Minton, N. P. 1995. Molecular genetics of clostridial neurotoxins. Curr. Top. Microbiol. Immunol. 195:161194.
99. Mitchell, W. J.,, P. Tewatia, and, P. G. Meaden. 2007. Genomic analysis of the phosphotransferase system in Clostridium botulinum. J Mol. Microbiol. Biotechnol. 12:3342.
100. Moriishi, K.,, M. Koura,, N. Aba,, N. Fujii,, Y. Fujinaga,, K. Inoue, and, K. Oguma. 1996. Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D. Biochem. Biophys. Acta 1307:123126.
101. Moriishi, K.,, M. Koura,, N. Fujii,, Y. Fujinaga,, K. Inoue,, B. Syuto, and, K. Oguma. 1996. Molecular cloning of the gene encoding the mosaic neurotoxin, composed of parts of botulinum neurotoxin types C1 and D, and PCR detection of this gene from Clostridium botulinum type C organisms. Appl. Environ. Microbiol. 62:662667.
102. Nakamura, K.,, T. Kohda,, K. Umeda,, H. Yamamoto,, M. Mukamoto, and, S. Kozaki. Characterization of the D/C mosaic neurotoxin produced by Clostridium botulinum associated with bovine botulism in Japan. Vet. Microbiol. 140:147154.
103. Nevas, M.,, M. Lindström,, S. Hielm,, K. J. Björkroth,, M. W. Peck, and, H. Korkeala. 2005. Diversity of proteolytic Clostridium botulinum strains, determined by a pulse-field gel electrophoresis approach. Appl. Environ. Microbiol. 71:13111317.
104. Nioche, P.,, V. Berka,, J. Vipond,, N. Minton,, A. L. Tsai, and, C. S. Raman. 2004. Femtomolar sensitivity of a NO sensor from Clostridium botulinum. Science 306:15501553.
105. Nölling, J.,, G. Breton,, M. V. Omelchenko,, K. S. Makarova,, Q. Zeng,, R. Gibson,, H. M. Lee,, J. Dubois,, D. Qiu, and, J. Hitti. 2001. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183:48234838.
106. Paredes, C. J.,, K. V. Alsaker, and, E. T. Papoutsakis. 2005. A comparative genomic view of clostridial sporulation and physiology. Nat. Rev. Microbiol. 3:969978.
107. Paul, C. J.,, S. M. Twine,, K. J. Tam,, J. A. Mullen,, J. F. Kelly,, J. W. Austin, and, S. M. Logan. 2007. Flagellin diversity in Clostridium botulinum groups I and II: a new strategy for strain identification. Appl. Environ. Microbiol. 73:29632975.
108. Peck, M. W. 2009. Biology and genomic analysis of Clostridium botulinum. Adv. Microb. Physiol. 55:183265, 320.
109. Popoff, M. R. 1995. Ecology of neurotoxigenic strains of clostridia. Curr. Top. Microbiol. Immunol. 195:129.
110. Popoff, M. R., and, J. C. Marvaud. 1999. Structural and genomic features of clostridial neurotoxins, p. 174-201. In J. E. Alouf and, J. H. Freer (ed.), The Comprehensive Source-book of Bacteriol Protein Toxins, 2 ed., vol. 2. Academic Press, London, England.
111. Poulain, B.,, B. G. Stiles,, M. R. Popoff, and, J. Molgo. 2006. Attack of the nervous system by clostridial toxins: Physical findings, cellular and molecular actions, p. 348-389. In J. E. Alouf and, M. R. Popoff (ed.), The Sourcebook of Bacteriol Protein Toxins, 3rd ed. Elsevier, Academic Press, Amsterdam.
112. Poulet, S.,, D. Hauser,, M. Quanz,, H. Niemann, and, M. R. Popoff. 1992. Sequences of the botulinal neurotoxin E derived from Clostridium botulinum type E (strain Beluga) and Clostridium butyricum (strains ATCC43181 and ATCC43755). Biochem. Biophys. Res. Commun. 183:107113.
113. Raffestin, S.,, B. Dupuy,, J. C. Marvaud, and, M. R. Popoff. 2005. BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani. Mol. Microbiol. 55:235249.
114. Raphael, B. H.,, C. Luquez,, L. M. McCroskey,, L. A. Joseph,, M. J. Jacobson,, E. A. Johnson,, S. E. Maslanka, and, J. D. Andreadis. 2008. Genetic homogeneity of Clostridium botulinum type A1 strains with unique toxin gene clusters. Appl. Environ. Microbiol. 74:43904397.
115. Sakaguchi, Y.,, H. Hayashi,, K. Kurokawa,, K. Nakayama,, K. Oshima,, Y. Fujinaga,, M. Ohnishi,, E. Ohtsubo,, M. Hattori, and, K. Oguma. 2005. The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny. Proc. Natl. Acad. Sci. USA 102:1747217477.
116. Santos-Buelga, J.,, M. D. Collins, and, A. K. East. 1998. Characterization of the genes encoding the botulinum neurotoxin complex in a strain of Clostridium botulinum producing type B and F neurotoxins. Curr. Microbiol. 37:312318.
117. Sebaihia, M.,, M. W. Peck,, N. P. Minton,, N. R. Thomson,, M. T. Holden,, W. J. Mitchell,, A. T. Carter,, S. D. Bentley,, D. R. Mason,, L. Crossman,, C. J. Paul,, A. Ivens,, M. H. Wells-Bennik,, I. J. Davis,, A. M. Cerdeno-Tarraga,, C. Churcher,, M. A. Quail,, T. Chillingworth,, T. Feltwell,, A. Fraser,, I. Goodhead,, Z. Hance,, K. Jagels,, N. Larke,, M. Maddison,, S. Moule,, K. Mungall,, H. Norbertczak,, E. Rabbinowitsch,, M. Sanders,, M. Simmonds,, B. White,, S. Whithead, and, J. Parkhill. 2007. Genome sequence of a proteolytic (group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res. 17:10821092.
118. Sebaihia, M.,, B. W. Wren,, P. Mullany,, N. F. Fairweather,, N. Minton,, R. Stabler,, N. R. Thomson,, A. P. Roberts,, A. M. Cerdeno-Tarraga,, H. Wang,, M. T. Holden,, A. Wright,, C. Churcher,, M. A. Quail,, S. Baker,, N. Bason,, K. Brooks,, T. Chillingworth,, A. Cronin,, P. Davis,, L. Dowd,, A. Fraser,, T. Feltwell,, Z. Hance,, S. Holroyd,, K. Jagels,, S. Moule,, K. Mungall,, C. Price,, E. Rabbinowitsch,, S. Sharp,, M. Simmonds,, K. Stevens,, L. Unwin,, S. Whithead,, B. Dupuy,, G. Dougan,, B. Barrell, and, J. Parkhill. 2006. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38:779786.
119. Shimizu, T.,, K. Ohtani,, H. Hirakawa,, K. Ohshima,, A. Yamashita,, T. Shiba,, N. Ogasawara,, M. Hattori,, S. Kuhara, and, H. Hayashi. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesheater. Proc. Natl. Acad. Sci. USA 99:9961001.
120. Smith, L. D. S. 1975. Clostridium tetani, p. 177-201. In L. D. S. Smith (ed.), The Pathogenic Anaerobic Bacteria. Charles C Thomas, Publisher, Springfield, IL.
121. Smith, T. J.,, K. K. Hill,, B. T. Foley,, J. C. Detter,, A. C. Munk,, D. C. Bruce,, N. A. Doggett,, L. A. Smith,, J. D. Marks,, G. Xie, and, T. S. Brettin. 2007. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, /Ba4 and /B1 clusters are located within plasmids. PLoS ONE 2:e1271.
122. Smith, T. J.,, J. Lou,, N. Geren,, M. Forsyth,, R. Tsai,, S. L. La Porte,, W. H. Tepp,, M. Bradshaw,, E. A. Johnson,, L. A. Smith, and, J. D. Marks. 2005. Sequence variation within botulinum neurotoxin serotypes impacts antibody binding and neutralization. Infect. Immun. 73:54505457.
123. Stackebrandt, E., and, H. Hippe. 2001. Taxonomy and sytematics, p. 19-48. In H. Bahl and, P. Durre (ed.), Clostridia. Wiley-VCH, Weinheim, Germany.
124. Strom, M. S.,, M. W. Eklund, and, F. T. Poysky. 1984. Plasmids in Clostridium botulinum and related species. Appl. Environ. Microbiol. 48:956963.
125. Suen, J. C.,, C. L. Hatheway,, A. G. Steigerwalt, and, D. J. Brenner. 1988. Clostridium argentinense sp. nov.: a genetically homogeneous group composed of all strains of Clostridium botulinum toxin type G and some nontoxigenic strains previously identified as Clostridium subter-minale or Clostridium hastiforme. Int. J. Syst. Bacteriol. 38:375381.
126. Tabita, K. S.,, S. Sakaguchi,, S. Kozaki, and, G. Sakaguchi. 1991. Distinction between Clostridium botulinum type A strains associated with food-borne botulism and those with infant botulism in Japan in intraintestinal toxin production in infant mice and some other properties. FEMS Microbiol. Lett. 79:251256.
127. Takeda, M.,, K. Tsukamoto,, T. Kohda,, M. Matsui,, M. Mukamoto, and, S. Kozaki. 2005. Characterization of the neurotoxin produced by isolates associated with avian botulism. Avian Dis. 49:376381.
128. Takumi, K.,, A. Takeoka, and, T. Kawata. 1983. Purification and characterization of a wall protein antigen from Clostridium botulinum type A. Infect. Immun. 39:13461353.
129. Varga, J. J.,, V. Nguyen,, D. K. O’Brien,, K. Rodgers,, R. A. Walker, and, S. B. Melville. 2006. Type IV pili-dependent gliding motility in the gram-positive pathogen Clostridium perfringens and other clostridia. Mol. Microbiol. 62:680694.
130. Varga, J. J.,, B. Therit, and, S. B. Melville. 2008. Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect. Immun. 76:49444951.
131. Wall, D., and, D. Kaiser. 1999. Type IV pili and cell motility. Mol. Microbiol. 32:110.
132. Wang, X.,, T. Maegawa,, T. Karazawa,, S. Kozaki,, K. Tsukamoto,, Y. Gyobu,, K. Yamakawa,, K. Oguma,, Y. Sakaguchi, and, S. Nakamura. 2000. Genetic analysis of Type E botulism toxin-producing Clostridium butyricum strains. Appl. Environ. Microbiol. 66:49924997.
133. Weickert, M. J.,, G. H. Chambliss, and, H. Sugiyama. 1986. Production of toxin by Clostridium botulinum type A strains cured of plasmids. Appl. Environ. Microbiol. 51:5256.
134. Willems, A.,, A. K. East,, P. A. Lawson, and, M. D. Collins. 1993. Sequence of the gene coding for the neurotoxin of Clostridium botulinum type A associated with infant botulism: comparison with other clostridial neurotoxins. Res. Microbiol. 144:547556.
135. Wörner, K.,, H. Szurmant,, C. Chiang, and, J. A. Hoch. 2006. Phosphorylation and functional analysis of the sporulation initiation factor Spo0A from Clostridium botulinum. Mol. Microbiol. 59:10001012.
136. Yamakawa, K.,, T. Karasawa,, H. Kakinuma,, H. Maruyama,, H. Takahashi, and, S. Nakamura. 1997. Emergence of Clostridium botulinum typeB-like nontoxigenic organisms in a patient with type B infant botulism. J. Clin. Microbiol. 35:21632164.
137. Zhou, Y.,, H. Sugiyama, and, E. A. Johnson. 1993. Transfer of neurotoxigenicity from Clostridium butyricum to a nontoxigenic Clostridium botulinum type E-like strain. Appl. Environ. Microbiol. 59:38253831.

Tables

Generic image for table
Table 1

Groups of botulinum neurotoxin-producing clostridia, produced toxins, and main properties

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Generic image for table
Table 2

Main characteristics of

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Generic image for table
Table 3

Main characteristics of plasmids from six strains

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Generic image for table
Table 4

Main characteristics of C phage

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Generic image for table
Table 5

Number of genes putatively acquired by horizontal gene transfer (HGT) in genomes

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13
Generic image for table
Table 6

Putative proteases from strain Hall ( )

Citation: Brüggemann H, Wollherr A, Mazuet C, Popoff M. 2011. , p 185-212. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error