1887

Chapter 14 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555816902/9781555814571_Chap14-2.gif

Abstract:

is one of the most frequent causative agents of human food-poisoning worldwide. Strains of are divided into five distinct toxin types on the basis of their differential production of four major extracellular toxins. The published genomes of ATCC 13124, SM101, and strain 13 contain single circular chromosomes of 3,256,683, 2,897,393, and 3,031,430 bp, respectively. The genome sequence of strain 13 was examined to identify catabolic pathways that may utilize such sugar substrates as energy sources. Importantly, the fermentative pathways were predicted to lead to the production of CO and H gasses that may be involved in the establishment of an anaerobic environment within an infected host suitable for growth. One of the hallmark characteristics of clostridial species is their capacity to form endospores, which are essentially highly modified dormant cells resistant to extremes of heat and radiation. In strain 13, 49 genes involved in capsule production were found to be organized into a single large gene cluster. Beyond broadening one's appreciation for toxin genes, the genome sequences highlighted additional factors that may facilitate the pathogenic potential of this organism, for example, genes involved in capsule production and in sporulation. Future studies will explore the precise functional roles of these genes in the virulence of and may yield avenues to combating infections.

Citation: Hassan K, Paulsen I. 2011. , p 213-221. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch14

Key Concept Ranking

Mobile Genetic Elements
0.58858955
Lactic Acid Bacteria
0.40184978
0.58858955
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555816902.ch14
1. Ando, Y.,, T. Tsuzuki,, H. Sunagawa, and, S. Oka. 1985. Heat resistance, spore germination, and enterotoxigenicity of Clostridium perfringens. Microbiol. Immunol. 29:317326.
2. Awad, M. M.,, A. E. Bryant,, D. L. Stevens, and, J. I. Rood. 1995. Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium per-fringens-mediated gas gangrene. Mol. Microbiol 15:191202.
3. Awad, M. M.,, D. M. Ellemor,, R. L. Boyd,, J. J. Emmins, and, J. I. Rood. 2001. Synergistic effects of alpha-toxin and perfringolysin O in Clostridium perfringens-mediated gas gangrene. Infect. Immun. 69:79047910.
4. Bruggemann, H., and, G. Gottschalk. 2008. Comparative ge-nomics of clostridia: link between the ecological niche and cell surface properties. Ann. N. Y. Acad. Sci. 1125:7381.
5. Bryant, A. E.,, R. Bergstrom,, G. A. Zimmerman,, J. L. Salyer,, H. R. Hill,, R. K. Tweten,, H. Sato, and, D. L. Stevens. 1993. Clostridium perfringens invasiveness is enhanced by effects of theta toxin upon PMNL structure and function: the roles of leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein. FEMS Immunol. Med. Microbiol. 7:321336.
6. Brynestad, S., and, P. E. Granum. 2002. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 74:195202.
7. Brynestad, S., and, P. E. Granum. 1999. Evidence that Tn5565, which includes the enterotoxin gene in Clostridium perfringens, can have a circular form which may be a transposition intermediate. FEMS Microbiol. Lett. 170:281286.
8. Brynestad, S.,, B. Synstad, and, P. E. Granum. 1997. The Clostridium perfringens enterotoxin gene is on a transposable element in type A human food poisoning strains. Microbiology 143:21092115.
9. Bullifent, H. L.,, A. Moir,, M. M. Awad,, P. T. Scott,, J. I. Rood, and, R. W. Titball. 1996. The level of expression of alpha-toxin by different strains of Clostridium perfringens is dependent on differences in promoter structure and genetic background. Anaerobe 2:365371.
10. Centers for Disease Control and Prevention. May 17, 2010. HHS and USDA Select agents and toxins, 7 CFR Part 331, 9 CFR Part 121, and 42 CFR Part 73. http://www.selectagents.gov/Select%20Agents%20and%20Toxins%20List.html.
11. Clarke, S. C. 2005. Bacteria as potential tools in bioterrorism, with an emphasis on bacterial toxins. Br. J. Biomed. Sci. 62:4046.
12. Collie, R. E., and, B. A. McClane. 1998. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J. Clin. Microbiol. 36:3036.
13. Darling, A. C.,, B. Mau,, F. R. Blattner, and, N. T. Perna. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14:13941403.
14. Dobrindt, U.,, B. Hochhut,, U. Hentschel, and, J. Hacker. 2004. Genomic islands in pathogenic and environmental microorganisms. Nat. Rev. Microbiol. 2:414424.
15. Eisen, J. A.,, J. F. Heidelberg,, O. White, and, S. L. Salzberg. 2000. Evidence for symmetric chromosomal inversions around the replication origin in bacteria. Genome Biol. 1:RESEARCH0011.
16. Reference deleted.
17. Kalelkar, S.,, J. Glushka,, H. van Halbeek,, L. C. Morris, and, R. Cherniak. 1997. Structure of the capsular polysaccharide of Clostridium perfringens Hobbs 5 as determined by NMR spectroscopy. Carbohydr. Res. 299:119128.
18. Katayama, S.,, B. Dupuy,, G. Daube,, B. China, and, S. T. Cole. 1996. Genome mapping of Clostridium perfringens strains with I-CeuI shows many virulence genes to be plasmid-borne. Mol. Gen. Genet. 251:720726.
19. Lyristis, M.,, A. E. Bryant,, J. Sloan,, M. M. Awad,, I. T. Nisbet,, D. L. Stevens, and, J. I. Rood. 1994. Identification and molecular analysis of a locus that regulates extracellular toxin production in Clostridium perfringens. Mol. Microbiol. 12:761777.
20. Mahony, D. E., and, T. I. Moore. 1976. Stable L-forms of Clostridium perfringens and their growth on glass surfaces. Can. J. Microbiol. 22:953959.
21. McClane, B. A. 1996. An overview of Clostridium perfringens enterotoxin. Toxicon 34:13351343.
22. McClane, B. A., and, G. Chakrabarti. 2004. New insights into the cytotoxic mechanisms of Clostridium perfringens enterotoxin. Anaerobe 10:107114.
23. Miyamoto, K.,, G. Chakrabarti,, Y. Morino, and, B. A. McClane. 2002. Organization of the plasmid cpe Locus in Clostridium perfringens type A isolates. Infect. Immun. 70:42614272.
24. Miyamoto, K.,, D. J. Fisher,, J. Li,, S. Sayeed,, S. Akimoto, and, B. A. McClane. 2006. Complete sequencing and diversity analysis of the enterotoxin-encoding plasmids in Clostridium perfringens type A non-food-borne human gastrointestinal disease isolates. J. Bacteriol. 188:15851598.
25. Myers, G. S.,, D. A. Rasko,, J. K. Cheung,, J. Ravel,, R. Seshadri,, R. T. DeBoy,, Q. Ren,, J. Varga,, M. M. Awad,, L. M. Brinkac,, S. C. Daugherty,, D. H. Haft,, R. J. Dodson,, R. Madupu,, W. C. Nelson,, M. J. Rosovitz,, S. A. Sullivan,, H. Khouri,, G. I. Dimitrov,, K. L. Watkins,, S. Mulligan,, J. Benton,, D. Radune,, D. J. Fisher,, H. S. Atkins,, T. Hiscox,, B. H. Jost,, S. J. Billington,, J. G. Songer,, B. A. McClane,, R. W. Titball,, J. I. Rood,, S. B. Melville, and, I. T. Paulsen. 2006. Skewed genomic variability in strains of the toxi-genic bacterial pathogen, Clostridium perfringens. Genome Res. 16:10311040.
26. O’Brien, D. K., and, S. B. Melville. 2003. Multiple effects on Clostridium perfringens binding, uptake and trafficking to lys-osomes by inhibitors of macrophage phagocytosis receptors. Microbiology 149:13771386.
27. Okumura, K.,, K. Ohtani,, H. Hayashi, and, T. Shimizu. 2008. Characterization of genes regulated directly by the VirR/VirS system in Clostridium perfringens. J. Bacteriol. 190:77197727.
28. Orsburn, B.,, S. B. Melville, and, D. L. Popham. 2008. Factors contributing to heat resistance of Clostridium perfringens en-dospores. Appl. Environ. Microbiol. 74:33283335.
29. Petit, L.,, M. Gibert, and, M. R. Popoff. 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol. 7:104110.
30. Rood, J. I. 1998. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 52:333360.
31. Rood, J. I., and, S. T. Cole. 1991. Molecular genetics and patho-genesis of Clostridium perfringens. Microbiol. Rev. 55:621648.
32. Sarker, M. R.,, R. J. Carman, and, B. A. McClane. 1999. Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol. Microbiol. 33:946958.
33. Sawires, Y. S., and, J. G. Songer. 2006. Clostridium perfringens: insight into virulence evolution and population structure. Anaerobe 12:2343.
34. Scott, P. X, and, J. I. Rood. 1989. Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens. Gene 82:327333.
35. Sebaihia, M.,, M. W. Peck,, N. P. Minton,, N. R. Thomson,, M. T. Holden,, W. J. Mitchell,, A. T. Carter,, S. D. Bentley,, D. R. Mason,, L. Crossman,, C. J. Paul,, A. Ivens,, M. H. Wells-Bennik,, I. J. Davis,, A. M. Cerdeno-Tarraga,, C. Churcher,, M. A. Quail,, T. Chillingworth,, T. Feltwell,, A. Fraser,, I. Good-head,, Z. Hance,, K. Jagels,, N. Larke,, M. Maddison,, S. Moule,, K. Mungall,, H. Norbertczak,, E. Rabbinowitsch,, M. Sanders,, M. Simmonds,, B. White,, S. Whithead, and, J. Parkhill. 2007. Genome sequence of a proteolytic (group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res. 17:10821092.
36. Sebald, M., and, R. N. Costilow. 1975. Minimal growth requirements for Clostridium perfringens and isolation of auxotrophic mutants. Appl. Microbiol. 29:16.
37. Sheng, S., and, R. Cherniak. 1997. Structure of the capsular polysaccharide of Clostridium perfringens Hobbs 10 determined by NMR spectroscopy. Carbohydr. Res. 305:6572.
38. Shimizu, T., W. Ba-Thein,, M. Tamaki, and, H. Hayashi. 1994. The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, col-lagenase, and hemagglutinin in Clostridium perfringens. J. Bacteriol. 176:16161623.
39. Shimizu, T.,, K. Ohtani,, H. Hirakawa,, K. Ohshima,, A. Yamashita,, T. Shiba,, N. Ogasawara,, M. Hattori,, S. Kuhara, and, H. Hayashi. 2002. Complete genome sequence of Clostridium perfringens, an anaerobic flesheater. Proc. Natl. Acad. Sci. USA 99:9961001.
40. Smedley, J. G.,, III, D. J. Fisher,, S. Sayeed,, G. Chakrabarti, and, B. A. McClane. 2004. The enteric toxins of Clostridium perfringens. Rev. Physiol. Biochem. Pharmacol. 152:183204.
41. Stevens, D. L.,, R. K. Tweten,, M. M. Awad,, J. I. Rood, and, A. E. Bryant. 1997. Clostridial gas gangrene: evidence that alpha and theta toxins differentially modulate the immune response and induce acute tissue necrosis. J. Infect. Dis. 176:189195.
42. Suyama, M., and, P. Bork. 2001. Evolution of prokaryotic gene order: genome rearrangements in closely related species. Trends Genet. 17:1013.
43. Tillier, E. R., and, R. A. Collins. 2000. Genome rearrangement by replication-directed translocation. Nat. Genet. 26:195197.
44. Tsutsui, K.,, J. Minami,, O. Matsushita,, S. Katayama,, Y. Taniguchi,, S. Nakamura,, M. Nishioka, and, A. Okabe. 1995. Phylogenetic analysis of phospholipase C genes from Clostridium perfringens types A to E and Clostridium novyi. J. Bacteriol. 177:71647170.
45. U.S. Department of Agriculture, Animal and Plant Health Inspection Service. Select agent and toxin list. http://www.aphis.usda.gov/programs/ag_selectagent/ag_bioterr_toxinslist.html.
46. Yamagishi, T., K. Sugitani,, K. Tanishima, and, S. Nakamura. 1997. Polymerase chain reaction test for differentiation of five toxin types of Clostridium perfringens. Microbiol. Immunol. 41:295299.

Tables

Generic image for table
Table 1

Major C. toxin genes in sequenced strains

Citation: Hassan K, Paulsen I. 2011. , p 213-221. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch14
Generic image for table
Table 2

General features of genome sequences

Citation: Hassan K, Paulsen I. 2011. , p 213-221. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch14
Generic image for table
Table 3

Nontyping toxins and virulence factors encoded in genomes

Citation: Hassan K, Paulsen I. 2011. , p 213-221. In Fratamico P, Liu Y, Kathariou S (ed), Genomes of Foodborne and Waterborne Pathogens. ASM Press, Washington, DC. doi: 10.1128/9781555816902.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error