1887

6 : Sequence-Based Methods for Pathogen Discovery: the Complex Associations of Microbes, Microbial Sequences, and Host

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Sequence-Based Methods for Pathogen Discovery: the Complex Associations of Microbes, Microbial Sequences, and Host, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555816971/9781555811976_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555816971/9781555811976_Chap06-2.gif

Abstract:

This chapter focuses on the use of newer sequence-based methods for discovering novel microbial pathogens and some of the questions raised concerning interpretation of experimental findings. A remarkable degree of microbial diversity has recently emerged from surveys of natural environments that rely on direct acquisition and analysis of microbial gene sequences. Specialization and adaptation to an animal host are believed to involve acquisition of blocks of genes that encode virulence-associated attributes. The use of host markers to measure and predict host inflammation is not new. Two strategies are invoked by those who seek to identify novel or unrecognized microbial pathogens. The first is based on the straightforward notion that these pathogens will be found where there is unexplained disease, and in particular, disease that bears traditional features of infection. The second strategy is based on the observation that pathogens are often found within environmental niches that provide access to more privileged anatomic sites within a host. In addition to the distribution of microbial sequences and other signatures within the human body, the issue of kinetics must be confronted. With increasing experience comes appreciation of subtlety. This holds especially true for the use of microbial sequence-based detection methods. Broad-range ribosomal DNA (rDNA) polymerase chain reaction (PCR) frequently reveals bacterial sequences that are similar to but do not perfectly match any sequence in the available databases.

Citation: Relman D. 2000. Sequence-Based Methods for Pathogen Discovery: the Complex Associations of Microbes, Microbial Sequences, and Host, p 69-81. In Scheld W, Craig W, Hughes J (ed), Emerging Infections 4. ASM Press, Washington, DC. doi: 10.1128/9781555816971.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Evolutionary tree of the domain . The width and depth of each wedge are proportionate to the breadth and depth, respectively. of the diversity within its member. The wedges for divisions in which there are known cultivated members are black; those for divisions that comprise only sequences recovered directly from an environment are white. The seven divisions that contain members known to cause human disease are indicated by asterisks. Modified from reference with permission.

Citation: Relman D. 2000. Sequence-Based Methods for Pathogen Discovery: the Complex Associations of Microbes, Microbial Sequences, and Host, p 69-81. In Scheld W, Craig W, Hughes J (ed), Emerging Infections 4. ASM Press, Washington, DC. doi: 10.1128/9781555816971.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Sequential steps in any molecular approach to pathogen discovery.

Citation: Relman D. 2000. Sequence-Based Methods for Pathogen Discovery: the Complex Associations of Microbes, Microbial Sequences, and Host, p 69-81. In Scheld W, Craig W, Hughes J (ed), Emerging Infections 4. ASM Press, Washington, DC. doi: 10.1128/9781555816971.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Related questions pertaining to the selection of a sequence target for pathogen detection and characterization.

Citation: Relman D. 2000. Sequence-Based Methods for Pathogen Discovery: the Complex Associations of Microbes, Microbial Sequences, and Host, p 69-81. In Scheld W, Craig W, Hughes J (ed), Emerging Infections 4. ASM Press, Washington, DC. doi: 10.1128/9781555816971.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Molecular methods for pathogen discovery, organized according to source of the molecular signature.

Citation: Relman D. 2000. Sequence-Based Methods for Pathogen Discovery: the Complex Associations of Microbes, Microbial Sequences, and Host, p 69-81. In Scheld W, Craig W, Hughes J (ed), Emerging Infections 4. ASM Press, Washington, DC. doi: 10.1128/9781555816971.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555816971.chap6
1. Barns, S. M.,, R. E. Fundyga,, M. W. Jeffries,, and N. R. Pace. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609 1613.
2. Brown, P. O.,, and L. Hartwell. 1998. Genomics and human disease-variations on variation. Nat. Genet. 18: 91 93.
3. Chang, Y.,, E. Cesarman,, M. S. Pessin,, F. Lee,, J. Culpepper,, D. M. Knowles,, and P. S. Moore. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266: 1865 1869.
4. Choo, Q. L.,, G. Kuo,, A. J. Weiner,, L. R. Overby,, D. W. Bradley,, and M. Houghton. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244: 359 362.
5. Dagan, R.,, O. Shriker,, I. Hazan,, E. Leibovitz,, D. Greenberg,, F. Schlaeffer,, and R. Levy. 1998. Prospective study to determine clinical relevance of detection of pneumococcal DNA in sera of children by PCR. J. Clin. Microbiol. 36: 669 673.
6. DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685 5689.
7. Dojka, M. A.,, J. K. Harris,, and N. R. Pace. 2000. Expanding the known diversity and environmental distribution of an uncultured phylogenetic division of bacteria. Appl. Environ. Microbiol. 66: 1617 1621.
8. Dumler, J. S.,, and A. Valsamakis. 1999. Molecular diagnostics for existing and emerging infections: complementary tools for a new era of clinical microbiology. Am. J. Clin. Pathol. 112( Suppl. 1): S33 S39.
9. Eisen, M. B.,, P. T. Spellman,, P. O. Brown,, and D. Botstein. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Nat. Acad. Sci. USA 95: 14863 14868.
10. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. BioI. Rev. 61: 136 169.
11. Fredricks, D. N.,, J. A. Jolley,, P. W. Lepp,, J. C. Kosek,, and D. A. Relman. 2000. Rhinosporidium seeberi: a human pathogen from a novel group of aquatic protistan parasites. Emerg. Infect. Dis. 6: 273 282.
12. Fredricks, D. N.,, and D. A. Relman. 1999. Application of polymerase chain reaction to the diagnosis of infectious diseases. Clin. Infect. Dis. 29: 475 486.
13. Fredricks, D. N.,, and D. A. Relman. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9: 18 33.
14. Gabay, C.,, and I. Kushner. 1999. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340: 448 454.
15. Gao, S. J.,, and P. S. Moore. 1996. Molecular approaches to the identification of unculturable infectious agents. Emerg. Infect. Dis. 2: 159 167.
16. Giovannoni, S. J.,, T. B. Britschgi,, C. L. Moyer,, and K. G. Field. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345: 60 63.
17. Groisman, E. A.,, and H. Ochman. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87: 791 794.
18. Herr, R. A.,, L. Ajello,, J. W. Taylor,, S. N. Arseculeratne,, and L. Mendoza. 1999. Phylogenetic analysis of Rhinosporidium seeberi's 18S small-subunit ribosomal DNA groups this pathogen among members of the protoctistan Mesomycetozoa clade. J. Clin. Microbiol. 37: 2750 2754.
19. Hugenholtz, P.,, B. M. Goebel,, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765 4774.
20. Kroes, I.,, P. W. Lepp,, and D. A. Relman. 1999. Bacterial diversity within the human subgingival crevice. Proc. Nat. Acad. Sci. USA 96: 14547 14552.
21. Lane, D. J.,, B. Pace,, G. J. Olsen,, D. A. Stahl,, M. L. Sogin,, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82: 6955 6959.
22. Lipkin, W. I.,, G. H. Travis,, K. M. Carbone,, and M. C. Wilson. 1990. Isolation and characterization of Borna disease agent cDNA clones. Proc. Natl. Acad. Sci. USA 87: 4184 4188.
23. Lisitsyn, N.,, N. Lisitsyn,, and M. Wigler. 1993. Cloning the differences between two complex genomes. Science 259: 946 951.
24. Lower, R.,, J. Lower,, and R. Kurth. 1996. The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA 93: 5177 5184.
25. Malawista, S. E.,, S. W. Barthold,, and D. H. Persing. 1994. Fate of Borrelia burgdorferi DNA in tissues of infected mice after antibiotic treatment. J. Infect. Dis. 170: 1312 1316.
26. Mandell, G. L.,, J. E. Bennett,, and R. Dolin (ed.). 2000. Principles and Practice of Infectious Diseases, 5th ed. Churchill Livingstone, Philadelphia, Pa.
27. Manger, I. D.,, and D. A. Relman. 2000. How the bost "sees" pathogens: global gene expression responses to infection. Curr. Opin. Immunol. 12: 215 218.
28. Meier, A.,, D. H. Persing,, M. Finken,, and E. C. Bottger. 1993. Elimination of contaminating DNA within polymerase chain reaction reagents: implications for a general approacb to detection of uncultured pathogens. J. Clin. Microbiol. 31: 646 652.
29. Miao, E. A.,, and S. I. Miller. 1999. Bacteriophages in the evolution of pathogen-host interactions. Proc. Natl. Acad. Sci. USA 96: 9452 9454.
30. Moore, P. S.,, and Y. Chang. 1998. Kaposi's sarcoma (KS), KS-associated herpesvirus, and the criteria for causality in the age of molecular biology. Am. J. Epidemiol. 147: 217 221.
31. Nichol, S. T.,, C. F. Spiropoulou,, S. Morzunov,, P. E. Rollin,, T. G. Ksiazek,, H. Feldmann,, A. Sanchez,, J. Childs,, S. Zaki,, and C. J. Peters. 1993. Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262: 914 917.
32. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734 740.
33. Perkins, B. A.,, J. M. Flood,, R. Danila,, R. C. Holman,, A. L. Reingold,, L. A. KIug,, M. Virata,, P. R. Cieslak,, S. R. Zaki,, R. W. Pinner,, and R. F. Khabbaz. 1996. Unexplained deaths due to possibly infectious causes in the United States: defining the problem and designing surveillance and laboratory approaches. The Unexplained Deaths Working Group. Emerg. Infect. Dis. 2: 47 53.
34. Perou, C. M.,, S. S. Jeffrey,, M. van de Rijn,, C. A. Rees,, M. B. Eisen,, D. T. Ross,, A. Pergamenschikov,, C. F. Williams,, S. X. Zhu,, J. C. Lee,, D. Lashkari,, D. Shalon,, P. O. Brown,, and D. Botstein. 1999. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Nat. Acad. Sci. USA 96: 9212 9217.
35. Ramzan, N. N.,, E. J. Loftus,, L. J. Burgart,, M. Rooney,, K. P. Batts,, R. H. Wiesner,, D. N. Fredricks,, D. A. Relman,, and D. H. Persing. 1997. Diagnosis and monitoring of Whipple disease by polymerase chain reaction. Ann. Intern. Med. 126: 520 527.
36. Relman, D. A., 1998. Cyclospora: whence and where to?, p. 185 194. In W. M. Scheld,, W. A. Craig,, and J. M. Hughes (ed.), Emerging Infections 2. ASM Press, Washington, D.C.
37. Relman, D. A. 1998. Detection and identification of previously unrecognized microbial pathogens. Emerg. Infect. Dis. 4: 382 389.
38. Relman, D. A. 1999. The search for unrecognized pathogens. Science 284: 1308 1310.
39. Relman, D. A.,, and S. Falkow,. 2000. A molecular perspective of microbial pathogenicity, p. 2 12. In G. L. Mandell,, J. E. Bennett,, and R. Dolin (ed.), Principles and Practice of Infectious Diseases, 5th ed. Churchill Livingstone, Philadelphia, Pa.
40. Relman, D. A.,, J. S. Loutit,, T. M. Schmidt,, S. Falkow,, and L. S. Tompkins. 1990. The agent of bacillary angiomatosis: an approach to the identification of uncultured pathogens. N. Engl. J. Med. 323: 1573 1580.
41. Relman, D. A.,, T. M. Schmidt,, R. P. MacDermott,, and S. Falkow. 1992. Identification of the uncultured bacillus of Whipple's disease. N. Engl. J. Med. 327: 293 301.
42. Ross, D. T.,, U. Scherf,, M. B. Eisen,, C. M. Perou,, C. Rees,, P. Spellman,, V. Iyer,, S. S. Jeffrey,, M. Van de Rijn,, M. Waltham,, A. Pergamenschikov,, J. C. Lee,, D. Lashkari,, D. Shalon,, T. G. Myers,, J. N. Weinstein,, D. Botstein,, and P. O. Brown. 2000. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet. 24: 227 235.
43. Suau, A.,, R. Bonnet,, M. Sutren,, J. J. Godon,, G. R. Gibson,, M. D. Collins,, and J. Dore. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65: 4799 4807.
44. Tang, Y. W.,, G. W. Procop,, and D. H. Persing. 1997. Molecular diagnostics of infectious diseases. Clin. Chem. 43: 2021 2038.
45. Whitcombe, D.,, C. R. Newton,, and S. Little. 1998. Advances in approaches to DNA-based diagnostics. Curr. Opin. Biotechnol. 9: 602 608.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error