1887

Chapter 5 : Fimbriae: an Adhesive Principle in Bacterial Biofilms and Tissue Tropism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Fimbriae: an Adhesive Principle in Bacterial Biofilms and Tissue Tropism, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap05-2.gif

Abstract:

Among spp., is the most abundant species in the human oral cavity. This chapter provides an account of the current knowledge of a key adhesive principle, the fimbriae of , which are considered to be the main players for the cell-cell and cell-substratum interactions involving the early colonizers of dental plaque. The genome sequence of has led to the identification and characterization of various fimbrial components and the specific enzymes, called sortases, that are responsible for the ordered assembly of fimbrial subunits into covalently cross-linked polymers and subsequent incorporation into the cell wall. The genome sequence also revealed the presence of an unusually large number of putative cell wall-anchored proteins, some of which must serve as additional adhesive principles facilitating the adherence of bridge organisms and late colonizers. Importantly, not only is the srtA mutant defective in cell wall anchoring of LPXTG-containing surface proteins but also it is attenuated in animal models of infection. The fimbrial system is a versatile adhesive principle for promoting bacterial coaggregation and host tissue adherence that leads to the development of one of the most complex biofilms, the dental plaque.

Citation: Ton-That H, Das A, Mishra A. 2011. Fimbriae: an Adhesive Principle in Bacterial Biofilms and Tissue Tropism, p 63-77. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch5

Key Concept Ranking

Bacterial Proteins
0.6879356
Bacterial Cell Wall
0.5764426
Type 2 Fimbriae
0.53217435
Actinomyces naeslundii
0.49123797
0.6879356
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Model of oral biofilm formation. The formation of oral biofilm or dental plaque is thought to occur in three successive stages. Initial colonizers like (), (), , and (collectively, ) and () adhere to the salivary pellicle and interact with each other (coaggregation) (stage 1). These interactions of fimbriae and nonfimbrial adhesins with their respective receptors provide a dynamic surface matrix for subsequent colonization of (), (), (), spp. (), (), (), and () (stage 2). Colonization of bridging bacterium attracts the late colonizers of plaque, such as () (formerly called ), (), (), and () (stage 3). Adapted from references and with permission.

Citation: Ton-That H, Das A, Mishra A. 2011. Fimbriae: an Adhesive Principle in Bacterial Biofilms and Tissue Tropism, p 63-77. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The major fimbrial shaft FimA is required for receptor-mediated coaggregation of and and for hemagglutination of red blood cells (RBC). strains were analyzed for their coaggregation with 34 or its isogenic mutant OC1 lacking the coaggregation receptor polysaccharides (RSP) ( ) or for their hemagglutination with RBC. WT, wild type. Modified from reference with permission.

Citation: Ton-That H, Das A, Mishra A. 2011. Fimbriae: an Adhesive Principle in Bacterial Biofilms and Tissue Tropism, p 63-77. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Sortase-catalyzed cell wall anchoring and pilus assembly in gram-positive bacteria. (A) Sortase-catalyzed transpeptidation reaction that covalently links the prototype protein A to the cell wall of . Protein A precursors are synthesized in the cytoplasm and exported across the membrane by the Sec apparatus (SecYEG). Although its leader peptide sequence is removed, the protein A precursor is membrane bound, due to its hydrophobic domain (black box) and charged tail (+). Sortase cleaves the conserved LPXTG motif, forming an acyl enzyme intermediate via a thioester linkage. This intermediate is resolved by a nucleophilic attack of a cross bridge amino group of a lipid II molecule, which is made in the cytoplasm and flips from the membrane by an unknown mechanism. This covalent protein-lipid complex is incorporated into the cell wall peptidoglycan by a series of transglycosylation reactions. (B) Pilus assembly of the archetype SpaA pili on the cell wall peptidoglycan of . SpaA/SpaB/SpaC pilin precursors are synthesized in the cytoplasm, exported across the membrane, and undergo a pathway similar to that described for panel A to form acyl intermediates with the pilus-specific sortase. The first transpeptidation reaction occurs between the lysine residue located within the pilin motif of an acyl SpaA-sortase intermediate and the threonine residue within the LPXTG motif of an acyl SpaC-sortase intermediate. Pili are extended by a cyclic addition of acyl SpaA-sortase intermediates to this SpaC-SpaA dimer. Pilus polymerization terminates when an acyl SpaB enzyme intermediate is added via a similar lysine-mediated transpeptidation reaction that is catalyzed by the housekeeping sortase. Finally, the pilus polymers are covalently linked to the cell wall peptidoglycan in a manner similar to that described for panel A.

Citation: Ton-That H, Das A, Mishra A. 2011. Fimbriae: an Adhesive Principle in Bacterial Biofilms and Tissue Tropism, p 63-77. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Pilusosome: a molecular platform for pilus assembly in gram-positive bacteria? Coryne-bacterial thin sections on nickel grids were stained with specific antiserum against SpaA (α-SpaA) (A to C) or SrtA (α-SrtA) (D) and goat anti-rabbit IgG conjugated to 12-nm-diameter gold particles (filled arrowhead). Extensively washed samples were then reacted with α-SpaB (A), α-SpaC (B), or α-SecA (C and D), followed by goat anti-rabbit IgG-conjugated 18-nm-diameter gold particles (open arrowhead). Samples were viewed by transmission electron microscopy after staining with 1% uranyl acetate. Scale bars, 0.5 μm. Modified from reference with permission.

Citation: Ton-That H, Das A, Mishra A. 2011. Fimbriae: an Adhesive Principle in Bacterial Biofilms and Tissue Tropism, p 63-77. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Fimbriae and fimbrial gene clusters of MG1. (A) strain MG1 was negatively stained with uranyl acetate and viewed by transmission electron microscopy. Bar, 0.2 μm. (B) Graphic presentation of two gene clusters identified in the chromosome of MG1. Each encodes proteins forming the fimbrial shaft (FimP and FimA) and tip (FimQ and FimB) and fimbriaspecific sortases (SrtC1 and SrtC2). Whether and genes encoding ribosomal proteins Rpl are involved in fimbrial biogeneiss is not known. Modified from reference with permission.

Citation: Ton-That H, Das A, Mishra A. 2011. Fimbriae: an Adhesive Principle in Bacterial Biofilms and Tissue Tropism, p 63-77. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Sortase-mediated fimbrial biogenesis in . Fimbrial formation in is proposed to occur in a manner similar to that described for the SpaA pili (see Fig. 3 B), except that no SpaB-like molecule has been identified. In this case, it is likely that an acyl-FimA intermediate with the housekeeping sortase would act as a nucleophile to terminate fimbrial polymerization.

Citation: Ton-That H, Das A, Mishra A. 2011. Fimbriae: an Adhesive Principle in Bacterial Biofilms and Tissue Tropism, p 63-77. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817107.ch05
1. Altschul, S. F.,, W. Gish,, W. Miller,, E. W. Myers, and, D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403410.
2. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller, and, D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:33893402.
3. Bakaletz, L. O. 2004. Developing animal models for polymicrobial diseases. Nat. Rev. Microbiol. 2:552568.
4. Brennan, M. J.,, J. O. Cisar,, A. E. Vatter, and, A. L. Sandberg. 1984. Lectin-dependent attachment of Actinomyces naeslundii to receptors on epithelial cells. Infect. Immun. 46:459464.
5. Brinton, C. C., Jr. 1965. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in gram negative bacteria. Trans. N. Y. Acad. Sci. 27:10031054.
6. Budzik, J. M.,, L. A. Marraffini, and, O. Schneewind. 2007. Assembly of pili on the surface of Bacillus cereus vegetative cells. Mol. Microbiol. 66:495510.
7. Budzik, J. M.,, L. A. Marraffini,, P. Souda,, J. P. Whitelegge,, K. F. Faull, and, O. Schneewind. 2008. Amide bonds assemble pili on the surface of bacilli. Proc. Natl. Acad. Sci. USA 105:1021510220.
8. Chen, P.,, J. O. Cisar,, S. Hess,, J. T. Ho, and, K. P. Leung. 2007. Amended description of the genes for synthesis of Actinomyces naeslundii T14V type 1 fimbriae and associated adhesin. Infect. Immun. 75:41814185.
9. Cisar, J. O.,, V. A. David,, S. H. Curl, and, A. E. Vatter. 1984. Exclusive presence of lactose-sensitive fimbriae on a typical strain (WVU45) of Actinomyces naeslundii. Infect. Immun. 46:453458.
10. Cisar, J. O.,, P. E. Kolenbrander, and, F. C. McIntire. 1979. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect. Immun. 24:742752.
11. Cisar, J. O.,, F. C. McIntire, and, A. E. Vatter. 1978. Fimbriae of Actinomyces viscosus t14v: their relationship to the virulence-associated antigen and to coaggregation with Streptococcus sanguis 34. Adv. Exp. Med. Biol. 107:695701.
12. Cisar, J. O.,, A. L. Sandberg,, C. Abeygunawardana,, G. P. Reddy, and, C. A. Bush. 1995. Lectin recognition of host-like saccharide motifs in streptococcal cell wall polysaccharides. Glycobiology 5:655662.
13. Cisar, J. O.,, A. E. Vatter, and, F. C. McIntire. 1978. Identification of the virulence-associated antigen on the surface fibrils of Actinomyces viscosus T14. Infect. Immun. 19:312319.
14. Cole, M. F.,, M. K. Evans,, J. L. Kirchherr,, M. J. Sheridan, and, G. H. Bowden. 2004. Study of humoral immunity to commensal oral bacteria in human infants demonstrates the presence of secretory immunoglobulin A antibodies reactive with Actinomyces naeslundii genospecies 1 and 2 ribotypes. Clin. Diagn. Lab. Immunol. 11:473482.
15. Comfort, D.,, and R. T. Clubb. 2004. A comparative genome analysis identifies distinct sorting pathways in gram-positive bacteria. Infect. Immun. 72:27102722.
16. Cossart, P.,, and R. Jonquieres. 2000. Sortase, a universal target for therapeutic agents against gram-positive bacteria? Proc. Natl. Acad. Sci. USA 97:50135015.
17. Do, T.,, U. Henssge,, S. C. Gilbert,, D. Clark, and, D. Beighton. 2008. Evidence for recombination between a sialidase (nanH) of Actinomyces naeslundii and Actinomyces oris, previously named “Actinomyces naeslundii genospecies 1 and 2.” FEMS Microbiol. Lett. 288:156162.
18. Donkersloot, J. A.,, J. O. Cisar,, M. E. Wax,, R. J. Harr, and, B. M. Chassy. 1985. Expression of Actinomyces viscosus antigens in Escherichia coli: cloning of a structural gene (fimA) for type 2 fimbriae. J. Bacteriol. 162:10751078.
19. Dramsi, S.,, P. Trieu-Cuot, and, H. Bierne. 2005. Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res. Microbiol. 156:289297.
20. Duguid, J. P.,, I. W. Smith,, G. Dempster, and, P. N. Edmunds. 1955. Non-flagellar filamentous appendages (fimbriae) and haemagglutinating activity in Bacterium coli. J. Pathol. Bacteriol. 70:335348.
21. Gaspar, A. H.,, and H. Ton-That. 2006. Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae. J. Bacteriol. 188:15261533.
22. Gibbons, R. J.,, D. I. Hay,, J. O. Cisar, and, W. B. Clark. 1988. Adsorbed salivary prolinerich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces. Infect. Immun. 56:29902993.
23. Gibbons, R. J.,, and M. Nygaard. 1970. Interbacterial aggregation of plaque bacteria. Arch. Oral. Biol. 15:13971400.
24. Girard, A. E.,, and B. H. Jacius. 1974. Ultra-structure of Actinomyces viscosus and Actinomyces naeslundii. Arch. Oral Biol. 19:7179.
25. Guttilla, I. K.,, A. H. Gaspar,, A. Swierczynski,, A. Swaminathan,, P. Dwivedi,, A. Das, and, H. Ton-That. 2009. Acyl enzyme intermediates in sortase-catalyzed pilus morphogenesis in gram-positive bacteria. J. Bacteriol. 191:56035612.
26. Hoflack, L.,, and M. K. Yeung. 2001. Actinomyces naeslundii fimbrial protein Orf977 shows similarity to a streptococcal adhesin. Oral Microbiol. Immunol. 16:319320.
27. Honda, E.,, and R. Yanagawa. 1974. Agglutination of trypsinized sheep erythrocytes by the pili of Corynebacterium renale. Infect. Immun. 10:14261432.
28. Jonsson, I. M.,, S. K. Mazmanian,, O. Schneewind,, T. Bremell, and, A. Tarkowski. 2003. The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. Microbes Infect. 5:775780.
29. Kamma, J. J.,, A. Diamanti-Kipioti,, M. Nakou, and, F. J. Mitsis. 2000. Profile of subgingival microbiota in children with mixed dentition. Oral Microbiol. Immunol. 15:103111.
30. Kang, H. J.,, F. Coulibaly,, F. Clow,, T. Proft, and, E. N. Baker. 2007. Stabilizing isopeptide bonds revealed in gram-positive bacterial pilus structure. Science 318:16251628.
31. Kline, K. A.,, A. L. Kau,, S. L. Chen,, A. Lim,, J. S. Pinkner,, J. Rosch,, S. R. Nallapareddy,, B. E. Murray,, B. Henriques-Normark,, W. Beatty,, M. G. Caparon, and, S. J. Hultgren. 2009. Mechanism for sortase localization and the role of sortase localization in efficient pilus assembly in Enterococcus faecalis. J. Bacteriol. 191:32373247.
32. Kolenbrander, P. E.,, R. N. Andersen,, D. S. Blehert,, P. G. Egland,, J. S. Foster, and, R. J. Palmer, Jr. 2002. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66:486505.
33. Kolenbrander, P. E.,, P. G. Egland,, P. I. Diaz, and, R. J. Palmer, Jr. 2005. Genomegenome interactions: bacterial communities in initial dental plaque. Trends Microbiol. 13:1115.
34. Kolenbrander, P. E.,, R. J. Palmer, Jr.,, A. H. Rickard,, N. S. Jakubovics,, N. I. Chalmers, and, P. I. Diaz. 2006. Bacterial interactions and successions during plaque development. Periodontol. 2000 42:4779.
35. Li, T.,, M. K. Khah,, S. Slavnic,, I. Johansson, and, N. Stromberg. 2001. Different type 1 fimbrial genes and tropisms of commensal and potentially pathogenic Actinomyces spp. with different salivary acidic proline-rich protein and statherin ligand specificities. Infect. Immun. 69:72247233.
36. Liu, T.,, R. J. Gibbons,, D. I. Hay, and, Z. Skobe. 1991. Binding of Actinomyces viscosus to collagen: association with the type 1 fimbrial adhesin. Oral Microbiol Immunol. 6:15.
37. Love, J. F.,, and J. R. Murphy. 2006. Coryne-bacterium diphtheriae: iron-mediated activation of DtxR and regulation of diphtheria toxin expression, p. 726–737. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy, and, J. I. Rood (ed.), Gram-Positive Pathogens, 2nd ed. ASM Press, Washington, DC.
38. Mandlik, A.,, A. Das, and, H. Ton-That. 2008. The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria. Proc. Natl. Acad. Sci. USA 105:1414714152.
39. Mandlik, A.,, A. H. Gaspar,, A. Swaminathan,, A. Mishra,, A. Das, and, H. Ton-That. 2009. Gram-positive bacterial pili and the host-pathogen interface, p. 75–90. In K. F. Jarrell (ed.), Pili and Flagella: Current Research and Future Trends. Caister Academic Press, Norfolk, United Kingdom.
40. Mandlik, A.,, A. Swierczynski,, A. Das, and, H. Ton-That. 2007. Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells. Mol. Microbiol. 64:111124.
41. Mandlik, A.,, A. Swierczynski,, A. Das, and, H. Ton-That. 2008. Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol. 16:3340.
42. Maresso, A. W.,, T. J. Chapa, and, O. Schneewind. 2006. Surface protein IsdC and sortase B are required for heme-iron scavenging of Bacillus anthracis. J. Bacteriol. 188:81458152.
43. Mazmanian, S. K.,, G. Liu,, H. Ton-That, and, O. Schneewind. 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760763.
44. Mazmanian, S. K.,, H. Ton-That, and, O. Schneewind. 2001. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol. Microbiol. 40:10491057.
45. Mazmanian, S. K.,, H. Ton-That,, K. Su, and, O. Schneewind. 2002. An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis. Proc. Natl. Acad. Sci. USA 99:22932298.
46. McIntire, F. C.,, A. E. Vatter,, J. Baros, and, J. Arnold. 1978. Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34. Infect. Immun. 21:978988.
47. Mishra, A.,, A. Das,, J. O. Cisar, and, H. Ton-That. 2007. Sortase-catalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii. J. Bacteriol. 189:31563165.
48. Mishra, A.,, C. Wu,, J. Yang,, J. O. Cisar,, A. Das, and, H. Ton-That. 2010. The Actinomyces oris type 2 fimbrial shaft FimA mediates co-aggregation with oral streptococci, adherence to red blood cells and biofilm development. Mol. Microbiol. 77:841854.
49. Monteiro-Vitorello, C. B.,, L. E. Camargo,, M. A. Van Sluys,, J. P. Kitajima,, D. Truffi,, A. M. do Amaral,, R. Harakava,, J. C. de Oliveira,, D. Wood,, M. C. de Oliveira,, C. Miyaki,, M. A. Takita,, A. C. da Silva,, L. R. Furlan,, D. M. Carraro,, G. Camarotte,, N. F. Almeida, Jr.,, H. Carrer,, L. L. Coutinho,, H. A. El-Dorry,, M. I. Ferro,, P. R. Gagliardi,, E. Giglioti,, M. H. Goldman,, G. H. Goldman,, E. T. Kimura,, E. S. Ferro,, E. E. Kuramae,, E. G. Lemos,, M. V. Lemos,, S. M. Mauro,, M. A. Machado,, C. L. Marino,, C. F. Menck,, L. R. Nunes,, R. C. Oliveira,, G. G. Pereira,, W. Siqueira,, A. A. de Souza,, S. M. Tsai,, A. S. Zanca,, A. J. Simpson,, S. M. Brumbley, and, J. C. Setubal. 2004. The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli. Mol. Plant-Microbe Interact. 17:827836.
50. Muryoi, N.,, M. T. Tiedemann,, M. Pluym,, J. Cheung,, D. E. Heinrichs, and, M. J. Stillman. 2008. Demonstration of the iron-regulated surface determinant (Isd) heme transfer pathway in Staphylococcus aureus. J. Biol. Chem. 283:2812528136.
51. Navarre, W. W.,, and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63:174229.
52. Newton, S. M.,, P. E. Klebba,, C. Raynaud,, Y. Shao,, X. Jiang,, I. Dubail,, C. Archer,, C. Frehel, and, A. Charbit. 2005. The svpA-srtB locus of Listeria monocytogenes: fur-mediated iron regulation and effect on virulence. Mol. Microbiol. 55:927940.
53. Nobbs, A. H.,, R. Rosini,, C. D. Rinaudo,, D. Maione,, G. Grandi, and, J. L. Telford. 2008. Sortase A utilizes an ancillary protein anchor for efficient cell wall anchoring of pili in Streptococcus agalactiae. Infect. Immun. 76:35503560.
54. Papaioannou, W.,, S. Gizani,, A. D. Haffajee,, M. Quirynen,, E. Mamai-Homata, and, L. Papagiannoulis. 2009. The microbiota on different oral surfaces in healthy children. Oral Microbiol. Immunol. 24:183189.
55. Periasamy, S.,, N. I. Chalmers,, L. Du-Thumm, and, P. E. Kolenbrander. 2009. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 43146 for growth on saliva in a three-species community that includes Streptococcus oralis 34. Appl. Environ. Microbiol. 75:32503257.
56. Preza, D.,, I. Olsen,, J. A. Aas,, T. Willumsen,, B. Grinde, and, B. J. Paster. 2008. Bacterial profiles of root caries in elderly patients. J. Clin. Microbiol. 46:20152021.
57. Rickard, A. H.,, P. Gilbert,, N. J. High,, P. E. Kolenbrander, and, P. S. Handley. 2003. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11:94100.
58. Ruhl, S.,, A. L. Sandberg, and, J. O. Cisar. 2004. Salivary receptors for the proline-rich protein-binding and lectin-like adhesins of oral actinomyces and streptococci. J. Dent. Res. 83:505510.
59. Sandberg, A. L.,, S. Ruhl,, R. A. Joralmon,, M. J. Brennan,, M. J. Sutphin, and, J. O. Cisar. 1995. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin. Infect. Immun. 63:26252631.
60. Scott, J. R.,, and D. Zahner. 2006. Pili with strong attachments: Gram-positive bacteria do it differently. Mol. Microbiol. 62:320330.
61. Skaar, E. P.,, and O. Schneewind. 2004. Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme. Microbes Infect. 6:390397.
62. Stromberg, N.,, and T. Boren. 1992. Actinomyces tissue specificity may depend on differences in receptor specificity for GalNAc beta-containing glycoconjugates. Infect. Immun. 60:32683277.
63. Swaminathan, A.,, A. Mandlik,, A. Swierczynski,, A. Gaspar,, A. Das, and, H. Ton-That. 2007. Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Coryne-bacterium diphtheriae. Mol. Microbiol. 66:961974.
64. Swierczynski, A.,, and H. Ton-That. 2006. Type III pilus of corynebacteria: pilus length is determined by the level of its major pilin subunit. J. Bacteriol. 188:63186325.
65. Telford, J. L.,, M. A. Barocchi,, I. Margarit,, R. Rappuoli, and, G. Grandi. 2006. Pili in Gram-positive pathogens. Nat. Rev. Microbiol. 4:509519.
66. Ton-That, H.,, L. A. Marraffini, and, O. Schneewind. 2004. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta 1694:269278.
67. Ton-That, H.,, L. A. Marraffini, and, O. Schneewind. 2004. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae. Mol. Microbiol. 53:251261.
68. Ton-That, H.,, and O. Schneewind. 2004. Assembly of pili in Gram-positive bacteria. Trends Microbiol. 12:228234.
69. Ton-That, H.,, and O. Schneewind. 2003. Assembly of pili on the surface of Corynebacterium diphtheriae. Mol. Microbiol. 50:14291438.
70. Yeung, M. K. 1993. Complete nucleotide sequence of the Actinomyces viscosus T14V sialidase gene: presence of a conserved repeating sequence among strains of Actinomyces spp. Infect. Immun. 61:109116.
71. Yeung, M. K. 1999. Molecular and genetic analyses of Actinomyces spp. Crit. Rev. Oral Biol. Med. 10:120138.
72. Yeung, M. K.,, B. M. Chassy, and, J. O. Cisar. 1987. Cloning and expression of a type 1 fimbrial subunit of Actinomyces viscosus T14V. J. Bacteriol. 169:16781683.
73. Yeung, M. K.,, J. A. Donkersloot,, J. O. Cisar, and, P. A. Ragsdale. 1998. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect. Immun. 66:14821491.
74. Yeung, M. K.,, and P. A. Ragsdale. 1997. Synthesis and function of Actinomyces naeslundii T14V type 1 fimbriae require the expression of additional fimbria-associated genes. Infect. Immun. 65:26292639.

Tables

Generic image for table
TABLE 1

Fimbrial and putative cell wall-anchored proteins in MG1

Citation: Ton-That H, Das A, Mishra A. 2011. Fimbriae: an Adhesive Principle in Bacterial Biofilms and Tissue Tropism, p 63-77. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error