1887

Chapter 12 : Colonization and Community Development

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Colonization and Community Development, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap12-2.gif

Abstract:

Catheters and other prostheses provide novel surfaces for colonization by and other microorganisms and the formation of biofilms. The polyene and azole antifungal compounds, such as amphotericin B and fluconazole, are principal agents used to treat subjects with various Candida infections. It is well established that microorganisms colonizing surfaces grow as biofilm communities. Bcr1 regulates expression of the glycosylphosphatidylinositol (GPI)-anchored adhesins Als1, Als3, and Hwp1, which contribute to biofilm formation. These proteins promote fungal-cell-to-fungal-cell interactions in biofilm formation, with Hwp1 binding to Als1 and Als3. These developments in understanding the mechanisms of biofilm formation by have evolved directly through applications of genomic sequence information. The availability of the genome sequence has facilitated genome-wide bioinformatics analysis to predict every protein that may be modified by the addition of a GPI anchor. Most colonizing microorganisms on mucosal surfaces have to survive in mixed microbial communities. There are three steps in the initiation of disease by : (i) establishment within a mixed-species community, (ii) outgrowth of , and (iii) infection of tissues. It is hypothesized that the ability of oral streptococci and to engage in physical and chemical communication promotes the colonization of in the oral cavity and the development of mixed-species communities of bacteria and fungi. is a highly successful colonizer of humans and may exist in a carriage state at mucosal surfaces in the gastrointestinal (GI) and genitourinary tracts.

Citation: Jenkinson H, Munro C. 2011. Colonization and Community Development, p 163-183. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch12

Key Concept Ranking

Two-Component Signal Transduction Systems
0.42539597
Tumor Necrosis Factor alpha
0.4214933
0.42539597
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Cell wall structure of The main structural components of the cell wall are chitin [poly-β-(1,4)--acetylglucosamine] (C) and β-(1,3)-glucan (G). The outer layers are composed of mannan (M) and cell wall proteins (cross-hatched irregular shapes). These are attached to the cell wall via GPI remnants to β-(1-6)-glucan (dotted lines) or retained within the cell wall noncovalently. Mannoproteins may be linked through alkali-sensitive bonds to β-(1,3)-glucan. Abbreviations: SA, surface-associated proteins, e.g., Pra1p and Bgl2p; GPI, GPI-anchored proteins, e.g., Eap1p and Als3p. Two examples of membrane integral proteins are shown, transporter (T) and sensor (S).

Citation: Jenkinson H, Munro C. 2011. Colonization and Community Development, p 163-183. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Intermicrobial interactions in the formation of mixed-species oral cavity communities containing Streptococci (Strep) are considered to be the major primary colonizers of salivary pellicle-coated surfaces and of mucosal surfaces. can adhere to salivary or cell membrane receptors and may interact with deposited streptococci in a bimodal or multimodal mechanism. recognizes receptor polysaccharides on the streptococci, while the latter interact with cell wall glycoproteins of organisms are densely fimbriated, and the fimbriae recognize streptococcal receptor polysaccharides, while an unknown adhesin recognizes recognizes both and streptococci, and it binds to in a mannose-sensitive interaction involving a protein adhesin or adhesins present on the bacteria. Lactobacilli are often found in association with ( ), but cell-cell interaction mechanisms of these organisms have not yet been investigated.

Citation: Jenkinson H, Munro C. 2011. Colonization and Community Development, p 163-183. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817107.ch12
1. Alberti-Segui, C.,, A. J. Morales,, H. Xing,, M. M. Kessler,, D. A. Willins,, K. G. Weinstock,, G. Cottarel,, K. Fechtel, and, B. Rogers. 2004. Identification of potential cell-surface proteins in Candida albicans and investigation of the role of a putative cell-surface glycosidase in adhesion and virulence. Yeast 21:285302.
2. Alem, M. A.,, M. D. Oteef,, T. H. Flowers, and, L. J. Douglas. 2006. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot. Cell 5:17701779.
3. Almeida, R. S.,, S. Brunke,, A. Albrecht,, S. Thewes,, M. Laue,, J. E. Edwards,, S. G. Filler, and, B. Hube. 2008. The hyphalassociated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog. 4:e1000217.
4. Ashman, R. B.,, C. S. Farah,, S. Wanasaengsakui,, Y. Hu,, G. Pang, and, R. L. Clancy. 2004. Innate versus adaptive immunity in Candida albicans infections. Immunol. Cell Biol. 82:196204.
5. Baillie, G. S.,, and L. J. Douglas. 1999. Role of dimorphism in the development of Candida albicans biofilms. J. Med. Microbiol. 48:671679.
6. Bamford, C. V.,, A. d’Mello,, A. H. Nobbs,, L. C. Dutton,, M. M. Vickerman, and, H. F. Jenkinson. 2009. Streptococcus gordonii modulates Candida albicans biofilm formation through inter-generic communication. Infect. Immun. 77:36963704.
7. Bauer, J.,, and J. Wendland. 2007. Candida albicans Sfl1 suppresses flocculation and filamentation. Eukaryot. Cell 6:17361744.
8. Ben-Aryeh, H.,, E. Blumfield,, R. Szargel,, D. Laufer, and, I. Berdicevsky. 1995. Oral Candida carriage and blood group antigen secretor status. Mycoses 38:355358.
9. Bilhan, H.,, T. Sulun,, G. Erkose,, H. Kurt,, Z. Erturan,, O. Kuyat, and, T. Bilgin. 2009. The role of Candida albicans hyphae and Lactobacillus in denture-related stomatitis. Clin. Oral Investig. 13:363368.
10. Boon, C.,, Y. Deng,, L. H. Wang,, Y. He,, J. L. Xu,, Y. Fan,, S. Q. Pan, and, L. H. Zhang. 2008. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J. 2:2736.
11. Brand, A.,, J. D. Barnes,, K. S. Mackenzie,, F. C. Odds, and, N. A. Gow. 2008. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa. FEMS Microbiol. Lett. 28:4855.
12. Braun, B. R.,, and A. D. Johnson. 1997. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105109.
13. Braun, B. R.,, D. Kadoch, and, A. D. Johnson. 2001. NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament formation. EMBO J. 20:47534761.
14. Buijssen, K. J.,, H. J. Harmsen,, H. C. van der Mei,, H. J. Busscher, and, B. F. Van der Laan. 2007. Lactobacilli: important in biofilm formation on voice prostheses. Otolaryngol. Head Neck Surg. 137:505507.
15. Butler, G.,, M. D. Rasmussen,, M. F. Lin,, M. A. Santos,, S. Sakthikumar,, C. A. Munro,, E. Rheinbay,, M. Grabherr,, A. Forche,, J. L. Reedy,, I. Agrafioti,, M. B. Arnaud,, S. Bates,, A. J. Brown,, S. Brunke,, M. C. Costanzo,, D. A. Fitzpatrick,, P. W. de Groot,, D. Harris,, L. L. Hoyer,, B. Hube,, F. M. Klis,, C. Kodira,, N. Lennard,, M. E. Logue,, R. Martin,, A. M. Neiman,, E. Nikolaou,, M. A. Quail,, J. Quinn,, M. C. Santos,, F. F. Schmitzberger,, G. Sherlock,, P. Shah,, K. A. Silverstein,, M. S. Skrzypek,, D. Soll,, R. Staggs,, I. Stansfield,, M. P. Stumpf,, P. E. Sudbery,, T. Srikantha,, Q. Zeng,, J. Berman,, M. Berriman,, J. Heitman,, N. A. Gow,, M. C. Lorenz,, B. W. Birren,, M. Kellis, and, C. A. Cuomo. 2009. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657662.
16. Cameron, B. J.,, and L. J. Douglas. 1996. Blood group glycolipids as epithethial cell receptors for Candida albicans. Infect. Immun. 64:891896.
17. Cannon, R. D.,, E. Lamping,, A. R. Holmes,, K. Niimi,, K. Tanabe,, M. Niimi, and, B. C. Monk. 2007. Candida albicans drug resistance— another way to cope with stress. Microbiology 153:32113217.
18. Cannon, R. D.,, A. K. Nand, and, H. F. Jenkinson. 1995. Adherence of Candida albicans to human salivary components adsorbed to hydroxylapatite. Microbiology 141:213219.
19. Cao, Y. Y.,, Y. B. Cao,, Z. Xu,, K. Ying,, Y. Li,, Y. Xie,, Z. Y. Zhu,, W. S. Chen, and, Y. Y. Jiang. 2005. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob. Agents Chemother. 49:584589.
20. Carlisle, P. L.,, M. Banerjee,, A. Lazzell,, C. Monteagudo,, J. L. Lopez-Ribot, and, D. Kadosh. 2009. Expression levels of a filamentspecific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc. Natl. Acad. Sci. USA 106:599604.
21. Castillo, L.,, E. Calvo,, A. I. Martinez,, J. Ruiz-Herrera,, E. Valentin,, J. A. Lopez, and, R. Sentandreu. 2008. A study of the Candida albicans cell wall proteome. Proteomics 8:38713881.
22. Chaffin, W. L. 2008. Candida albicans cell wall proteins. Microbiol. Mol. Biol. Rev. 72:495544.
23. Chandra, J.,, D. M. Kuhn,, P. K. Mukherjee,, L. L. Hoyer,, T. McCormick, and, M. A. Ghannoum. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183:53855394.
24. Chen, H.,, M. Fujita,, Q. Feng,, J. Clardy, and, G. R. Fink. 2004. Tyrosol is a quorum-sensing molecule in Candida albicans. Proc. Natl. Acad. Sci. USA 101:50485052.
25. Cogulu, D.,, A. Uzel,, O. Oncag, and, C. Eronat. 2008. PCR-based identification of selected pathogens associated with endodontic infections in deciduous and permanent teeth. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 106:443449.
26. Coste, A. T.,, M. Karababa,, F. Ischer,, J. Bille, and, D. Sanglard. 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell 3:16391652.
27. Crowe, J. D.,, I. K. Sievwright,, G. C. Auld,, N. R. Moore,, N. A. Gow, and, N. A. Booth. 2003. Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol. Microbiol. 47:16371651.
28. Davis-Hanna, A.,, A. E. Pilspanen,, L. I. Stateva, and, D. A. Hogan. 2008. Farnesol and dodecanol effects on Candida albicans Ras1-cAMP signalling pathway and regulation of morphogenesis. Mol. Microbiol. 67:4762.
29. De Carvalho, F. G.,, D. S. Silva,, J. Hebling,, L. C. Spolidorio, and, D. M. Spolidorio. 2006. Presence of mutans streptococci and Candida spp. in dental plaque/dentine of carious teeth and early childhood caries. Arch. Oral Biol. 51:10241028.
30. De Groot, P. W.,, A. D. de Boer,, J. Cunningham,, H. L. Dekker,, L. de Jong,, K. J. Hellingwerf,, C. de Koster, and, F. M. Klis. 2004. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot. Cell 3:955965.
31. De Groot, P. W.,, C. Ruiz,, C. R. Vazquez de Aldana,, E. Duenas,, V. J. Cid,, F. Del Rey,, J. M. Rodriquez-Pena,, P. Perez,, A. Andel,, J. Caubin,, J. Arroyo,, J. C. Garcia,, C. Gil,, M. Molina,, L. J. Garcia,, C. Nombela, and, F. M. Klis. 2001. A genomic approach for the identification and classification of genes involved in cell wall formation and its regulation in Saccharomyces cerevisiae. Comp. Funct. Genomics 2:124142.
32. Dethlefsen, L.,, P. B. Eckburg,, E. M. Bik, and, D. A. Relman. 2006. Assembly of the human intestinal microbiota. Trends Ecol. Evol. 21:517523.
33. Eisenhaber, B.,, G. Schneider,, M. Wildpaner, and, F. Eisenhaber. 2004. A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J. Mol. Biol. 337:243253.
34. Enjalbert, B.,, and M. Whiteway. 2005. Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot. Cell 4:12031210.
35. Falagas, M. E.,, G. I. Betsi, and, S. Athanasiou. 2006. Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. J. Antimicrob. Chemother. 58:266272.
36. Firon, A.,, S. Aubert,, I. Iraqui,, S. Guadagnini,, S. Goyard,, M. C. Prevost,, G. Janbon, and, C. d’Enfert. 2007. The SUN41 and SUN42 genes are essential for cell separation in Candida albicans. Mol. Microbiol. 66:12561275.
37. Fradin, C.,, M. C. Slomianny,, C. Mille,, A. Masset,, R. Robert,, B. Sendid,, J. F. Ernst,, J. C. Michalski, and, D. Poulain. 2008. β-1,2 Oligomannose adhesin epitopes are widely distributed over the different families of Candida albicans cell wall mannoproteins and are associated through both N-and O-glycosylation processes. Infect. Immun. 76:45094517.
38. Frieman, M. B.,, and B. P. Cormack. 2004. Multiple sequence signals determine the distribution of glycosylphosphatidylinositol proteins between the plasma membrane and cell wall in Saccharomyces cerevisiae. Microbiology 150:31053114.
39. Garcia-Sanchez, S.,, S. Aubert,, I. Iraqui,, G. Janbon,, J. M. Ghigo, and, C. d’Enfert. 2004. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot. Cell 3:536545.
40. Gibson, J.,, A. Sood, and, D. A. Hogan. 2009. Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl. Environ. Microbiol. 75:504513.
41. Gomez, M. J.,, B. Maras,, A. Barca,, R. La Valle,, D. Barra, and, A. Cassone. 2000. Biochemical and immunological characterization of MP65, a major mannoprotein antigen of the opportunisitic human pathogen Candida albicans. Infect. Immun. 68:694701.
42. Goyard, S.,, P. Knechtle,, M. Chauvel,, A. Mellet,, M. C. Prevost,, C. Proux,, J. Y. Coppee,, P. Schwartz,, F. Dromer,, H. Park,, S. G. Filler,, G. Janbon, and, C. d’Enfert. 2008. The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol. Biol. Cell 19:22512266.
43. Gozalbo, D.,, I. Gil-Navarro,, I. Azorin,, J. Renau-Piqueras,, J. R. Martinez, and, M. L. Gil. 1998. The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect. Immun. 66:20522059.
44. Grimaudo, N. J.,, and W. E. Nesbitt. 1997. Coaggregation of Candida albicans with oral Fusobacterium species. Oral Microbiol. Immunol. 12:168173.
45. Hall, R. A.,, F. Cottier, and, F. A. Muhlschlegel. 2009. Molecular networks in the fungal pathogen Candida albicans. Adv. Appl. Microbiol. 67:191212.
46. Hiller, E.,, S. Heine,, H. Brunner, and, S. Rupp. 2007. Candida albicans Sun41p, a putative glycosidase, is involved in morphogenesis, cell wall biogenesis, and biofilm formation. Eukaryot. Cell 6:20562065.
47. Hogan, D. A. 2006. Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot. Cell 5:613619.
48. Hogan, D. A.,, A. Vik, and, R. Kolter. 2004. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol. Microbiol. 54:12121223.
49. Holmes, A. R.,, R. McNab, and, H. F. Jenkinson. 1996. Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. Infect. Immun. 64:46804685.
50. Hornby, J. M.,, E. C. Jensen,, A. D. Lisec,, J. J. Tasto,, B. Jahnke,, R. Shoemaker,, P. Dussault, and, K. W. Nickerson. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl. Environ. Microbiol. 67:29822992.
51. Hostetter, M. K. 2008. The iC3b receptor of Candida albicans and its roles in pathogenesis. Vaccine 26(Suppl. 8):11081112.
52. Hoyer, L. L. 2001. The ALS gene family in Candida albicans. Trends Microbiol. 9:176180.
53. Jeng, H. W.,, A. R. Holmes, and, R. D. Cannon. 2005. Characterization of two Candida albicans surface mannoprotein adhesins that bind immobilized saliva components. Med. Mycol. 43:209217.
54. Jenkinson, H. F.,, and L. J. Douglas. 2002. Interactions between Candida species and bacteria in mixed infections, p. 357–373. In K. A. Brogden and, J. M. Guthmiller (ed.), Polymicrobial Diseases. American Society for Microbiology, Washington, DC.
55. Jenkinson, H. F.,, and R. J. Lamont. 2005. Oral microbial communities in sickness and in health. Trends Microbiol. 13:589595.
56. Jong, A. Y.,, S. H. Chen,, M. F. Stins,, K. S. Kim,, T. L. Tuan, and, S. H. Huang. 2003. Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J. Med. Microbiol. 52:615622.
57. Kadosh, D.,, and A. D. Johnson. 2001. Rfg1, a protein related to Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol. Cell. Biol. 21:24962505.
58. Kebaara, B. W.,, M. L. Langford,, D. H. Navarathna,, R. Dumitru,, K. W. Nickerson, and, A. L. Aitkin. 2008. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot. Cell 7:980987.
59. Kempf, M.,, J. Cottin,, P. Licznar,, C. Lefrancois,, R. Robert, and, V. Apaire-Marchais. 2009. Disruption of the GPI protein-encoding gene IFF4 of Candida albicans results in decreased adherence and virulence. Mycopathologica 168:7377.
60. Klis, F. M.,, M. de Jong,, S. Brul, and, P. W. deGroot. 2007. Extraction of cell surface-associated proteins from living yeast cells. Yeast 24:253258.
61. Klis, F. M.,, P. de Groot, and, K. Hellingwerf. 2001. Molecular organization of the cell wall of Candida albicans. Med. Mycol. 39(Suppl. 1):18.
62. Kruppa, M.,, B. P. Krom,, N. Chauhan,, A. V. Bambach,, R. L. Cihlar, and, R. A. Calderone. 2004. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot. Cell 3:10621065.
63. Kumamoto, C. A. 2008. Molecular mechanisms of mechanosensing in fungal contact sensing. Nat. Rev. Microbiol. 6:667673.
64. LaFleur, M. D.,, C. A. Kumamoto, and, K. Lewis. 2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob. Agents Chemother. 50:38393846.
65. Lamarre, C.,, N. Deslauriers, and, Y. Bourbonnais. 2000. Expression cloning of the Candida albicans CSA1 gene encoding a mycelial surface antigen by sorting of Saccharomyces cerevisiae transformants with monoclonal antibody-coated magnetic beads. Mol. Microbiol. 35:444453.
66. Lee, S. A.,, S. Wormsley,, S. Kamoun,, A. F. Lee,, K. Joiner, and, B. Wong. 2003. An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 20:595610.
67. Lewis, K. 2008. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 322:107131.
68. Ley, R. E.,, D. A. Peterson, and, J. I. Gordon. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837848.
69. Li, F.,, and S. P. Palecek. 2008. Distinct domains of the Candida albicans adhesin Eap1p mediate cell-cell and cell-substrate interactions. Microbiology 154:11931203.
70. Lo, H. J.,, J. R. Kohler,, B. DiDomenico,, D. Loebenberg,, A. Cacciapuoti, and, G. R. Fink. 1997. Nonfilamentous C. albicans mutants are avirulent. Cell 90:939949.
71. Lopez-Ribot, J. L.,, M. Casanova,, A. Murgui, and, J. P. Martinez. 2004. Antibody response to Candida albicans cell wall antigens. FEMS Immunol. Med. Microbiol. 41:187196.
72. Lu, Q.,, J. A. Jayatilake,, L. P. Samaranayake, and, L. Jin. 2006. Hyphal invasion of Candida albicans inhibits the expression of human beta-defensins in experimental oral candidiasis. J. Investig. Dermatol. 126:20492056.
73. MacCallum, D. M.,, L. Castillo,, K. Nather,, C. A. Munro,, A. J. Brown,, N. A. Gow, and, F. C. Odds. 2009. Property differences among the four major Candida albicans strain clades. Eukaryot. Cell 8:373387.
74. Mao, Y.,, Z. Zhang,, C. Gast, and, B. Wong. 2008. C-terminal signals regulate targeting of the GPI-anchored proteins to the cell wall or the plasma membrane in Candida albicans. Eukaryot. Cell 7:19061915.
75. Marsh, P. D. 2006. Dental plaque as a biofilm and a microbial community—implications for health and disease. BMC Oral Health 6(Suppl. 1):S14.
76. Martinez-Lopez, R.,, H. Park,, C. L. Myers,, C. Gil, and, S. G. Filler. 2006. Candida albicans Ecm33p is important for normal cell wall architecture and interactions with host cells. Eukaryot. Cell 5:140147.
77. Mateus, C.,, S. A. Crow, Jr., and, D. G. Ahearn. 2004. Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob. Agents Chemother. 48:33583366.
78. Monge, R. A.,, E. Roman,, C. Nombela, and, J. Pla. 2006. The MAP kinase signal trasnduction network in Candida albicans. Microbiology 152:905912.
79. Morenzo-Ruiz, E.,, G. Ortu,, P. W. deGroot,, F. Cottier,, C. Loussert,, M. C. Prevost,, C. deKoster,, F. M. Klis,, S. Goyard, and, C. d’Enfert. 2009. The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity. Microbiology 155:20042020.
80. Munro, C. A.,, S. Bates,, E. T. Buurman,, H. B. Hughes,, D. M. MacCallum,, G. Bertram,, A. Atrih,, M. A. Ferguson,, J. M. Bain,, A. Brand,, S. Hamilton,, C. Westwater,, L. M. Thomson,, A. J. Brown,, F. C. Odds, and, N. A. Gow. 2005. Mnt1p and Mnt2p of Candida albicans are partially redundant α-1,2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J. Biol. Chem. 280:10511060.
81. Murad, A. M.,, P. Leng,, M. Straffon,, J. Wishart,, S. Macaskill,, D. MacCallum,, N. Schnell,, D. Talibi,, D. Marechal,, F. Tekaia,, C. d’Enfert,, C. Gaillardin,, F. C. Odds, and, A. J. Brown. 2001. NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J. 20:47424752.
82. Murillo, L. A.,, G. Newport,, C. Y. Lan,, S. Habelitz,, J. Dungan, and, N. M. Agabian. 2005. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot. Cell 4:15621573.
83. Naglik, J. R.,, S. J. Challacombe, and, B. Hube. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67:400428.
84. Netea, M. G.,, G. D. Brown,, B. J. Kullberg, and, N. A. Gow. 2008. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 6:6778.
85. Nett, J.,, L. Lincoln,, K. Marchillo,, R. Massey,, K. Holoyda,, B. Hoff,, M. VanHandel, and, D. Andes. 2007. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrob. Agents Chemother. 51:510520.
86. Nett, J. E.,, K. Crawford,, K. Marchillo, and, D. R. Andes. 2010. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob. Agents Chemother. 54:35053508.
87. Nett, J. E.,, H. Sanchez,, M.T . Cain,, D. R. Andes. 2010. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J. Infect. Dis. 202:171175.
88. Nickerson, K. W.,, A. L. Atkin, and, J. M. Hornby. 2006. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl. Environ. Microbiol. 72:38053813.
89. Nobile, C. J.,, D. R. Andes,, J. E. Nett,, F. J. Smith,, F. Yu,, Q. Phan,, J. E. Edwards,, S. G. Filler, and, A. P. Mitchell. 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2:e63.
90. Nobile, C. J.,, and A. P. Mitchell. 2005. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Curr. Biol. 15:11501155.
91. Nobile, C. J.,, and A. P. Mitchell. 2006. Genetics and genomics of Candida albicans biofilm formation. Cell. Microbiol. 8:13821391.
92. Nobile, C. J.,, N. Solis,, C. L. Myers,, A. J. Fay,, J. S. Deneault,, A. Nantel,, A. P. Mitchell, and, S. G. Filler. 2008. Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell. Microbiol. 10:21802196.
93. Nombela, C.,, C. Gil, and, W. L. Chaffin. 2006. Non-conventional protein secretion in yeast. Trends Microbiol. 14:1521.
94. Norice, C. T.,, F. J. Smith, Jr.,, N. Solis,, S. G. Filler, and, A. P. Mitchell. 2007. Requirement for Candida albicans Sun41 in biofilm formation and virulence. Eukaryot. Cell 6:20462055.
95. Oh, S. H.,, G. Cheng,, J. A. Nuessen,, R. Jajko,, K. M. Yeater,, X. Zhao,, C. Pujol,, D. R. Soll, and, L. L. Hoyer. 2005. Functional specificity of Candida albicans Als3p proteins and clade specificity of ALS3 alleles discriminated by the number of copies of the tandem repeat sequence in the central domain. Microbiology 151:673681.
96. O’Sullivan, J. M.,, R. D. Cannon,, P. A. Sullivan, and, H. F. Jenkinson. 1997. Identification of salivary basic proline rich proteins as receptors for Candida albicans. Microbiology 143:341348.
97. Pascual, L. M.,, M. B. Daniele,, F. Ruiz,, W. Giordano,, C. Pajaro, and, L. Barberis. 2008. Lactobacillus rhamnosus L60, a potential probiotic isolated from the human vagina. J. Gen. Appl. Microbiol. 54:141148.
98. Paster, B. J.,, I. Olsen,, J. A. Aas, and, F. E. Dewhirst. 2006. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol. 2000 42:8087.
99. Periasamy, S.,, N. I. Chalmers,, L. Du-Thumm, and, P. E. Kolenbrander. 2009. Fusobacterium nucleatum ATCC 10953 requires Actinomyces naeslundii ATCC 4316 for growth on saliva in a three-species community that includes Streptococcus oralis 34. Appl. Environ. Microbiol. 75:32503257.
100. Pfaller, M. A.,, L. Boyken,, R. J. Hollis,, J. Kroeger,, S. A. Messer,, S. Tendolkar, and, D. J. Diekema. 2008. In vitro susceptibility of invasive isolates of Candida albicans to anidulafungin, caspofungin, and micafungin: six years of global surveillance. J. Clin. Microbiol. 46:150156.
101. Phan, Q. T.,, C. L. Myers,, Y. Fu,, D. C. Sheppard,, M. R. Yeaman,, W. H. Welch,, A. S. Ibrahim,, J. E. Edwards, Jr., and, S. G. Filler. 2007. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 5:e64.
102. Plaine, A.,, L. Walker,, G. Da Costa,, H. M. Mora-Montes,, A. McKinnon,, N. A. Gow,, C. Gaillardin,, C. A. Munro, and, M. L. Richard. 2008. Functional analysis of Candida albicans GPI-anchored proteins: roles in cell wall integrity and caspofungin sensitivity. Fungal Genet. Biol. 45:14041414.
103. Ramage, G.,, S. Bachmann,, T. F. Patterson,, B. L. Wickes, and, J. L. López-Ribot. 2002. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J. Antimicrob. Chemother. 49:973980.
104. Ramage, G.,, S. P. Saville,, B. L. Wickes, and, J. L. Lopez-Ribot. 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl. Environ. Microbiol. 68:54595463.
105. Ramage, G.,, K. Tomsett,, B. L. Wickes,, J. L. López-Ribot, and, S. W. Redding. 2004. Denture stomatitis: a role for Candida biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 98:5359.
106. Rauceo, J. M.,, R. Dearmond,, H. Otoo,, P. C. Kahn,, S. A. Klotz,, N. K. Gaur, and, P. N. Lipke. 2006. Threonine-rich repeats increase fibronectin binding in the C. albicans adhesin Als5p. Eukaryot. Cell 5:16641673.
107. Richard, M. L.,, and A. Plaine. 2007. Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot. Cell 6:119133.
108. Robert, R.,, C. Mahaza,, M. Miegeville,, J. Ponton,, A. Marot-Leblond, and, J. M. Senet. 1996. Binding of resting platelets to Candida albicans germ tubes. Infect. Immun. 64:37523757.
109. Ruiz-Herrera, J.,, M. V. Elorza,, E. Valentin, and, R. Sentandreu. 2006. Molecular organization of the cell wall of Candida albicans and its relation to pathogenicity. FEMS Yeast Res. 6:1429.
110. Sachdeva, G.,, K. Kumar,, P. Jain, and, S. Ramachandran. 2005. SPAAN: a software program for prediction of adhesions and adhesion-like proteins using neural networks. Bioinformatics 21:483491.
111. Sakamoto, M.,, I. N. Rôças,, J. F. Siqueira, Jr., and, Y. Benno. 2006. Molecular analysis of bacteria in asymptomatic and symptomatic endodontic infection. Oral Microbiol. Immunol. 21:112122.
112. Sandini, S.,, R. La Valle,, F. De Bernardis,, C. Macri, and, A. Cassone. 2007. The 65 kDa mannoprotein gene of Candida albicans encodes a putative beta-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell. Microbiol. 9:12231238.
113. Schweizer, A.,, S. Rupp,, B. N. Taylor,, M. Rollinghoff, and, K. Schroppel. 2000. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans. Mol. Microbiol. 38:435445.
114. Selmecki, A.,, A. Forche, and, J. Berman. 2006. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313:367370.
115. Sentandreu, M.,, M. V. Elorza,, R. Sentandreu, and, W. A. Fonzi. 1998. Cloning and characterization of PRA1, a gene encoding a novel pH-regulated antigen of Candida albicans. J. Bacteriol. 180:282289.
116. Silverman, R. J.,, A. H. Nobbs,, M. M. Vickerman,, M. E. Barbour, and, H. F. Jenkinson. 2010. Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixedspecies biofilm communities. Infect. Immun. 78:46444652.
117. Singleton, D. R.,, and K. C. Hazen. 2004. Differential surface localization and temperature-dependent expression of the Candida albicans CSH1 protein. Microbiology 150:285292.
118. Siqueira, J. F., Jr.,, and B. H. Sen. 2004. Fungi in endodontic infections. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 97:632641.
119. Smukalla, S.,, M. Caldara,, N. Pochet,, A. Beauvais,, S. Guadagnini,, C. Yan,, M. D. Vinces,, A. Jansen,, M. C. Prevost,, J. P. Latge,, G. R. Fink,, K. R. Foster, and, K. J. Verstrepen. 2008. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726737.
120. Sosinska, G. J.,, P. W. De Groot,, M. J. Teixeira de Mattos,, H. L. Dekker,, C. G. De Koster,, K. J. Hellingwerf, and, F. M. Klis. 2008. Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology 154:510520.
121. Staab, J. F.,, Y. S. Bahn,, C. H. Tai,, P. F. Cook, and, P. Sundstrom. 2004. Expression of transglutaminase substrate activity on Candida albicans germ tubes through a coiled, disulfide-bonded N-terminal domain of Hwp1 requires C-terminal glycosylphosphatidylinositol modification. J. Biol. Chem. 279:4073740747.
122. Staab, J. F.,, and P. Sundstrom. 1998. Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. Yeast 14:681686.
123. Tampakakis, E.,, A. Y. Peleg, and, E. Mylonakis. 2009. Interaction of Candida albicans with an intestinal pathogen, Salmonella enterica serovar Typhimurium. Eukaryot. Cell 8:732737.
124. Tosh, F. D.,, and L. J. Douglas. 1992. Characterization of a fucoside-binding adhesin of Candida albicans. Infect. Immun. 60:47344739.
125. Urzua, B.,, G. Hermosilla,, J. Gamonal,, J. Morales-Bozo,, M. Canals,, S. Barahona,, C. Coccola, and, V. Cifuentes. 2008. Yeast diversity in the oral microbiota of subjects with periodontitis: Candida albicans and Candida dubliniensis colonize the periodontal pockets. Med. Mycol. 46:783793.
126. Valenza, G.,, D. Tappe,, D. Turnwald,, H. Frosch,, C. Konig,, H,. Hebestreit, and, M. Abele-Horn. 2008. Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J. Cyst. Fibros. 7:123127.
127. Vediyappan, G.,, T. Rossignol, and, C. d’Enfert. 2010. Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob. Agents Chemother. 54:20962111.
128. Verstrepen, K. J.,, A. Jansen,, F. Lewitter, and, G. R. Fink. 2005. Intragenic tandem repeats generate functional variability. Nat. Genet. 37:986990.
129. Villar, C. C.,, H. Kashleva,, A. P. Mitchell, and, A. Dongari-Bagtzoglou. 2005. Invasive phenotype of Candida albicans affects the host proinflammatory response to infection. Infect. Immun. 73:45884595.
130. Villar, C. C.,, H. Kashleva,, C. J. Nobile,, A. P. Mitchell, and, A. Dongari-Bagtzoglou. 2007. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect. Immun. 75:21262135.
131. Vinces, M. D.,, and C. A. Kumamoto. 2007. The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white to opaque switching in Candida albicans. Microbiology 153:28772884.
132. Yeater, K. M.,, J. Chandra,, G. Cheng,, P. K. Mukherjee,, X. Zhao,, S. L. Rodriguez-Zas,, K. E. Kwast,, M. A. Ghannoum, and, L. L. Hoyer. 2007. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology 153:23732385.
133. Yu, L.,, K. K. Lee,, R. S. Hodges,, W. Paranchych, and, R. T. Irvin. 1994. Adherence of Pseudomonas aeruginosa and Candida albicans to glycosphingolipid (asialo-GM1) receptors is achieved by a conserved receptor-binding domain present on their adhesins. Infect. Immun. 62:52135219.
134. Zhao, X.,, S. H. Oh, and, L. L. Hoyer. 2007. Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology 153:23422350.
135. Zhao, X.,, S. H. Oh,, R. Jajko,, D. J. Diekema,, M. A. Pfaller,, C. Pujol,, D. R. Soll, and, L. L. Hoyer. 2007. Analysis of ALS5 and ALS6 allelic variability in a geographically diverse collection of Candida albicans isolates. Fungal Genet. Biol. 44:12981309.
136. Zheng, X.,, Y. Wang, and, Y. Wang. 2004. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J. 23:18451856.
137. Zupancic, M. L.,, M. Frieman,, D. Smith,, R. A. Alvarez,, R. D. Cummings, and, B. P. Cormack. 2008. Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol. Microbiol. 68:547559.

Tables

Generic image for table
TABLE 1

gene regulators involved in morphogenesis and biofilm formation

Citation: Jenkinson H, Munro C. 2011. Colonization and Community Development, p 163-183. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch12
Generic image for table
TABLE 2

Some proteins or genes involved in adhesion and invasion

Citation: Jenkinson H, Munro C. 2011. Colonization and Community Development, p 163-183. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error