1887

Chapter 15 : Interaction with Host Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Interaction with Host Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817107/9781555815035_Chap15-2.gif

Abstract:

is a gram-negative filamentous anaerobe ubiquitous to the oral cavity. While the focus of this chapter is on interaction with host cells, the chapter also explains the role of coaggregation in oral microbial community interaction with the host. is an opportunistic pathogen implicated in various forms of periodontal disease. During periodontal infection, the cell mass of can increase as much as 10,000-fold, making it one of the most abundant anaerobic species in the diseased sites. In particular, is one of the leading organisms identified in intrauterine infections causing adverse pregnancy outcomes, including spontaneous miscarriage, preterm birth, and stillbirth. One common feature shared by bacterial pathogens is their ability to adhere to and invade host cells. modulates an array of host responses upon attachment to and invasion of host cells. A protein complex, FIP, composed of two subunits of 44 and 48 kDa, mediates T-cell suppression. Sequence analysis of TM7a shows that while the majority of the genes are only distantly related to genes found in other organisms, a minority share high sequence similarity with genes found in members of the classes , , and , which may result from horizontal gene transfer in the oral cavity. FadA is a unique adhesin in that both the secreted mFadA and the intact pre-FadA are required for function.

Citation: Han Y. 2011. Interaction with Host Cells, p 221-232. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch15

Key Concept Ranking

Infection and Immunity
0.7147512
Tumor Necrosis Factor alpha
0.50106263
0.7147512
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Kinetic study of intravenous injection of into pregnant mice. Mice were infected with a dose of 1 × 10 to 2.5 × 10 CFU of 12230. At each time point, i.e., 6, 18, 24, 48, and 72 h postinfection, three or four mice were dissected. The bacterial counts in the placentas, liver, spleen, fetuses, and amniotic fluid (A.F.) of each mouse are expressed as log CFU per gram of tissue or per milliliter of fluid. The results shown are the averages for all mice dissected at each time point. The standard deviations were <20% for values of >1 log CFU/g but >50% for those of <1 log CFU/g. Reproduced from ( ) with permission.

Citation: Han Y. 2011. Interaction with Host Cells, p 221-232. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Transmission electron microscopy image of murine placenta at 24 h after infection with 12230. R, red blood cells in the blood vessel. The solid arrows point to bacteria attached to or internalized in the endothelial cells lining the veins. The open arrows point to the bacteria in the blood vessel. Magnification, ×6,000. Reproduced from ( ) with permission.

Citation: Han Y. 2011. Interaction with Host Cells, p 221-232. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Amino acid sequence of FadA in one-letter code. The underlined residues encode the signal peptide, followed by mFadA. The central hairpin residues TRFY are marked by dotted lines, the leucine residues are marked by asterisks, and the histidine tag at the C terminus is italicized. Reproduced from ( ) with permission.

Citation: Han Y. 2011. Interaction with Host Cells, p 221-232. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Amino acid sequence alignment of FadA and its paralogues. Highlighted in gray are the identical residues shared among FadA. The sequences of three FadA paralogues, FNN1529 from ATCC 25586, FNV2159 from ATCC 49256, and FNP1049 from ATCC 10953, are listed below the FadA sequence. The conserved and identical residues among FadA and the paralogues are indicated. Fn, ; Fp, ; Fs, The numbers above the sequence indicate amino acid positions in the secreted form of FadA, and the numbers beside the sequence indicate positions in the intact form. Reproduced from ( ) with permission.

Citation: Han Y. 2011. Interaction with Host Cells, p 221-232. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Colonization of 12230, US1, and USF81 in the mouse placenta. Approximately 2 × 10 CFU of different strains were injected into each pregnant CF-1 mouse via tail vein on day 16 of gestation. The placentas were harvested 6 h (open bars) or 24 h (solid bars) later. Live bacterial titers in the placentas were determined and are expressed as log CFU/g of tissue. The results shown are the averages for three to seven mice per strain. The standard deviations are expressed as lines above the bars. *, < 0.05 compared to 12230. Reproduced from ( ) with permission.

Citation: Han Y. 2011. Interaction with Host Cells, p 221-232. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817107.ch15
1. Altshuler, G.,, and S. Hyde. 1985. Fusobacteria. An important cause of chorioamnionitis. Arch. Pathol. Lab. Med. 109:739743.
2. Babu, J. P.,, J. W. Dean, and, M. J. Pabst. 1995. Attachment of Fusobacterium nucleatum to fibronectin immobilized on gingival epithelial cells or glass coverslips. J. Periodontol. 66:285290.
3. Bachrach, G.,, S. K. Haake,, A. Glick,, R. Hazan,, R. Naor,, R. N. Andersen, and, P. E. Kolenbrander. 2004. Characterization of the novel Fusobacterium nucleatum plasmid pKH9 and evidence of an addiction system. Appl. Environ. Microbiol. 70:69576962.
4. Bachrach, G.,, C. Ianculovici,, R. Naor, and, E. I. Weiss. 2005. Fluorescence based measurements of Fusobacterium nucleatum coaggregation and of fusobacterial attachment to mammalian cells. FEMS Microbiol. Lett. 248:235240.
5. Bachrach, G.,, G. Rosen,, M. Bellalou,, R. Naor, and, M. N. Sela. 2004. Identification of a Fusobacterium nucleatum 65 kDa serine protease. Oral Microbiol. Immunol. 19:155159.
6. Bauer, C.,, D. Schoonbroodt,, C. Wagner, and, Y. Horsmans. 2000. Liver abscesses due to Fusobacterium species. Liver 20:267268.
7. Botha, S. J.,, R. Senekal,, P. L. Steyn, and, W. J. Coetzee. 1993. Anaerobic bacteria in orofacial abscesses. J. Dent. Assoc. S. Afr. 48:445449.
8. Brinig, M. M.,, P. W. Lepp,, C. C. Ouverney,, G. C. Armitage, and, D. A. Relman. 2003. Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl. Environ. Microbiol. 69:16871694.
9. Brook, I. 1990. Bacteremia due to anaerobic bacteria in newborns. J. Perinatol. 10:351356.
10. Brook, I.,, and E. H. Frazier. 2000. Aerobic and anaerobic microbiology in intra-abdominal infections associated with diverticulitis. J. Med. Microbiol. 49:827830.
11. Bultink, I. E.,, J. W. Dorigo-Zetsma,, M. G. Koopman, and, E. J. Kuijper. 1999. Fusobacterium nucleatum septicemia and portal vein thrombosis. Clin. Infect. Dis. 28:13251326.
12. Chaim, W.,, and M. Mazor. 1992. Intraamniotic infection with fusobacteria. Arch. Gynecol. Obstet. 251:17.
13. Chaim, W.,, M. Mazor, and, J. R. Leiberman. 1997. The relationship between bacterial vaginosis and preterm birth. A review. Arch. Gynecol. Obstet. 259:5158.
14. Chaudhry, R.,, B. Dhawan,, B. V. Laxmi, and, V. S. Mehta. 1998. The microbial spectrum of brain abscess with special reference to anaerobic bacteria. Br. J. Neurosurg. 12:127130.
15. Choi, J.,, M. A. Borrello,, E. Smith,, C. W. Cutler,, H. Sojar, and, M. Zauderer. 2001. Prior exposure of mice to Fusobacterium nucleatum modulates host response to Porphyromonas gingivalis. Oral Microbiol. Immunol. 16:338344.
16. Darveau, R. P.,, C. M. Belton,, R. A. Reife, and, R. J. Lamont. 1998. Local chemokine paralysis, a novel pathogenic mechanism for Porphyromonas gingivalis. Infect. Immun. 66:16601665.
17. Debelian, G. J.,, I. Olsen, and, L. Tronstad. 1998. Anaerobic bacteremia and fungemia in patients undergoing endodontic therapy: an overview. Ann. Periodontol. 3:281287.
18. Demuth, D. R.,, R. Savary,, E. Golub, and, B. J. Shenker. 1996. Identification and analysis of fipA, a Fusobacterium nucleatum immunosuppressive factor gene. Infect. Immun. 64:13351341.
19. Ebersole, J. L.,, L. Kesavalu,, S. L. Schneider,, R. L. Machen, and, S. C. Holt. 1995. Comparative virulence of periodontopathogens in a mouse abscess model. Oral Dis. 1:115128.
20. Edwards, A. M.,, T. J. Grossman, and, J. D. Rudney. 2007. Association of a high-molecular weight arginine-binding protein of Fusobacterium nucleatum ATCC 10953 with adhesion to secretory immunoglobulin A and coaggregation with Streptococcus cristatus. Oral Microbiol. Immunol. 22:217224.
21. Edwards, A. M.,, and J. D. Rudney. 2005. Fusobacterium nucleatum facilitates internalization of Streptococcus crista into epithelial cells, abstr. 1376. J. Dent. Res. IADR/AADR, Baltimore, MD, 2005.
22. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61:136169.
23. Gharbia, S. E.,, and H. N. Shah. 1992. Fuso-bacterium nucleatum subsp. fusiforme subsp. nov. and Fusobacterium nucleatum subsp. animalis subsp. nov. as additional subspecies within Fusobacterium nucleatum. Int. J. Syst. Bacteriol. 42:296298.
24. Grenier, D.,, and L. Grignon. 2006. Response of human macrophage-like cells to stimulation by Fusobacterium nucleatum ssp. nucleatum lipopolysaccharide. Oral Microbiol. Immunol. 21:190196.
25. Guo, M.,, Y. W. Han,, A. Sharma, and, E. De Nardin. 2000. Identification and characterization of human immunoglobulin G Fc receptors of Fusobacterium nucleatum. Oral Microbiol. Immunol. 15:119123.
26. Haake, S. K.,, S. C. Yoder,, G. Attarian, and, K. Podkaminer. 2000. Native plasmids of Fusobacterium nucleatum: characterization and use in development of genetic systems. J. Bacteriol. 182:11761180.
27. Han, Y. W.,, A. Ikegami,, P. Chung,, L. Zhang, and, C. X. Deng. 2007. Sonoporation is an efficient tool for intracellular fluorescent dextran delivery and one-step double-crossover mutant construction in Fusobacterium nucleatum. Appl. Environ. Microbiol. 73:36773683.
28. Han, Y. W.,, A. Ikegami,, C. Rajanna,, H. I. Kawsar,, Y. Zhou,, M. Li,, H. T. Sojar,, R. J. Genco,, H. K. Kuramitsu, and, C. X. Deng. 2005. Identification and characterization of a novel adhesin unique to oral fusobacteria. J. Bacteriol. 187:53305340.
29. Han, Y. W.,, R. W. Redline,, M. Li,, L. Yin,, G. B. Hill, and, T. S. McCormick. 2004. Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth. Infect. Immun. 72:22722279.
30. Han, Y. W.,, T. Shen,, P. Chung,, I. A. Buhimschi, and, C. S. Buhimschi. 2009. Uncultivated bacteria as etiologic agents of intra-amniotic inflammation leading to preterm birth. J. Clin. Microbiol. 47:3847.
31. Han, Y. W.,, W. Shi,, G. T. Huang,, S. Kinder Haake,, N. H. Park,, H. Kuramitsu, and, R. J. Genco. 2000. Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect. Immun. 68:31403146.
32. Hasegawa, Y.,, J. J. Mans,, S. Mao,, M. C. Lopez,, H. V. Baker,, M. Handfield, and, R. J. Lamont. 2007. Gingival epithelial cell transcriptional responses to commensal and opportunistic oral microbial species. Infect. Immun. 75:25402547.
33. Hill, G. B. 1998. Preterm birth: associations with genital and possibly oral microflora. Ann. Periodontol. 3:222232.
34. Hockensmith, M. L.,, D. L. Mellman, and, E. L. Aronsen. 1999. Fusobacterium nucleatum empyema necessitans. Clin. Infect. Dis. 29:15961598.
35. Hong, C. Y.,, S. K. Lin,, S. H. Kok,, S. J. Cheng,, M. S. Lee,, T. M. Wang,, C. S. Chen,, L. D. Lin, and, J. S. Wang. 2004. The role of lipopolysaccharide in infectious bone resorption of periapical lesion. J. Oral Pathol. Med. 33:162169.
36. Ikegami, A.,, P. Chung, and, Y. W. Han. 2009. Complementation of the fadA mutation in Fusobacterium nucleatum: the surface-exposed adhesin promotes cellular invasion and placental colonization. Infect. Immun. 77:30753079.
37. Jewett, A.,, W. R. Hume,, H. Le,, T. N. Huynh,, Y. W. Han,, G. Cheng, and, W. Shi. 2000. Induction of apoptotic cell death in peripheral blood mononuclear and polymorphonu-clear cells by an oral bacterium, Fusobacterium nucleatum. Infect. Immun. 68:18931898.
38. Kaplan, C. W.,, R. Lux,, S. K. Haake, and, W. Shi. 2009. The Fusobacterium nucleatum outer membrane protein RadD is an arginineinhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol. Microbiol. 71:3547.
39. Kaplan, C. W.,, R. Lux,, T. Huynh,, A. Jewett,, W. Shi, and, S. K. Haake. 2005. Fuso-bacterium nucleatum apoptosis-inducing outer membrane protein. J. Dent. Res. 84:700704.
40. Karpathy, S. E.,, X. Qin,, J. Gioia,, H. Jiang,, Y. Liu,, J. F. Petrosino,, S. Yerrapragada,, G. E. Fox,, S. K. Haake,, G. M. Weinstock, and, S. K. Highlander. 2007. Genome sequence of Fusobacterium nucleatum subspecies polymorphum—a genetically tractable fusobacterium. PLoS One 2:e659.
41. Kato, C.,, M. Mikami, and, K. Saito. 2001. Nitric oxide production and iNOS mRNA expression in mice induced by repeated stimulation with live Fusobacterium nucleatum. Microbiol. Immunol. 45:6978.
42. Kato, C.,, M. Mikami, and, K. Saito. 2004. The participation of nitric oxide in peritoneal exudate cell cytotoxicity of mice by Fusobacterium nucleatum. Microbiol. Immunol. 48:607615.
43. Kesavalu, L.,, S. Sathishkumar,, V. Bakthavatchalu,, C. Matthews,, D. Dawson,, M. Steffen, and, J. L. Ebersole. 2007. Rat model of polymicrobial infection, immunity, and alveolar bone resorption in periodontal disease. Infect. Immun. 75:17041712.
44. Kinder, S. A.,, and S. C. Holt. 1993. Localization of the Fusobacterium nucleatum T18 adhesin activity mediating coaggregation with Porphyromonas gingivalis T22. J. Bacteriol. 175:840850.
45. Kolenbrander, P. E.,, N. Ganeshkumar,, F. J. Cassels, and, C. V. Hughes. 1993. Coaggregation: specific adherence among human oral plaque bacteria. FASEB J. 7:406413.
46. Kolenbrander, P. E.,, and J. London. 1993. Adhere today, here tomorrow: oral bacterial adherence. J. Bacteriol. 175:32473252.
47. Koornstra, J. J.,, D. Veenendaal,, G. A. Bruyn, and, H. de Graaf. 1998. Septic arthritis due to Fusobacterium nucleatum. Br. J. Rheumatol. 37:1249.
48. Krisanaprakornkit, S.,, J. R. Kimball,, A. Weinberg,, R. P. Darveau,, B. W. Bain-bridge, and, B. A. Dale. 2000. Inducible expression of human β-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect. Immun. 68:29072915.
49. Kuriyama, T.,, K. Nakagawa,, S. Kawashiri,, E. Yamamoto,, S. Nakamura, and, T. Karasawa. 2000. The virulence of mixed infection with Streptococcus constellatus and Fusobacterium nucleatum in a murine orofacial infection model. Microbes Infect. 2:14251430.
50. Lark, R. L.,, S. A. McNeil,, K. VanderHyde,, Z. Noorani,, J. Uberti, and, C. Chenoweth. 2001. Risk factors for anaerobic bloodstream infections in bone marrow transplant recipients. Clin. Infect. Dis. 33:338343.
51. Lawson, P. A.,, S. E. Gharbia,, H. N. Shah,, D. R. Clark, and, M. D. Collins. 1991. Intra-generic relationships of members of the genus Fusobacterium as determined by reverse transcriptase sequencing of small-subunit rRNA. Int. J. Syst. Bacteriol. 41:347354.
52. Liu, H.,, R. W. Redline, and, Y. W. Han. 2007. Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J. Immunol. 179:25012508.
53. Marcy, Y.,, C. Ouverney,, E. M. Bik,, T. Losekann,, N. Ivanova,, H. G. Martin,, E. Szeto,, D. Platt,, P. Hugenholtz,, D. A. Relman, and, S. R. Quake. 2007. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl. Acad. Sci. USA 104:1188911894.
54. Martius, J.,, and D. A. Eschenbach. 1990. The role of bacterial vaginosis as a cause of amniotic fluid infection, chorioamnionitis and prematurity—a review. Arch. Gynecol. Obstet. 247:113.
55. Metzger, Z.,, J. Blasbalg,, M. Dotan,, I. Tsesis, and, E. I. Weiss. 2009. Characterization of coaggregation of Fusobacterium nucleatum PK1594 with six Porphyromonas gingivalis strains. J. Endod. 35:5054.
56. Metzger, Z.,, J. Blasbalg,, M. Dotan, and, E. I. Weiss. 2009. Enhanced attachment of Porphyromonas gingivalis to human fibroblasts mediated by Fusobacterium nucleatum. J. Endod. 35:8285.
57. Metzger, Z.,, Y. Y. Lin,, F. Dimeo,, W. W. Ambrose,, M. Trope, and, R. R. Arnold. 2009. Synergistic pathogenicity of Porphyromonas gingivalis and Fusobacterium nucleatum in the mouse subcutaneous chamber model. J. Endod. 35:8694.
58. Moore, W. E.,, and L. V. Moore. 1994. The bacteria of periodontal diseases. Periodontol. 2000 5:6677.
59. Nagashima, H.,, A. Takao, and, N. Maeda. 1999. Abscess forming ability of Streptococcus mill-eri group: synergistic effect with Fusobacterium nucleatum. Microbiol. Immunol. 43:207216.
60. Nithianantham, S.,, M. Xu,, N. Wu,, Y. W. Han, and, M. Shoham. 2006. Crystallization and preliminary X-ray data of the FadA adhesin from Fusobacterium nucleatum. Acta Crystallogr. Sect. F 62:12151217.
61. Nithianantham, S.,, M. Xu,, M. Yamada,, A. Ikegami,, M. Shoham, and, Y. W. Han. 2009. Crystal structure of FadA adhesin from Fusobacterium nucleatum reveals a novel oligomerization motif, the leucine chain. J. Biol. Chem. 284:38653872.
62. Ouverney, C. C.,, G. C. Armitage, and, D. A. Relman. 2003. Single-cell enumeration of an uncultivated TM7 subgroup in the human subgingival crevice. Appl. Environ. Microbiol. 69:62946298.
63. Ozaki, M.,, Y. Miyake,, M. Shirakawa,, T. Takemoto,, H. Okamoto, and, H. Suginaka. 1990. Binding specificity of Fusobacterium nucleatum to human erythrocytes, polymorphonuclear leukocytes, fibroblasts, and HeLa cells. J. Periodontal Res. 25:129134.
64. Pan, Y.,, D. Teng,, A. C. Burke,, E. M. Haase, and, F. A. Scannapieco. 2009. Oral bacteria modulate invasion and induction of apoptosis in HEp-2 cells by Pseudomonas aeruginosa. Microb. Pathog. 46:7379.
65. Polak, D.,, A. Wilensky,, L. Shapira,, A. Halabi,, D. Goldstein,, E. I. Weiss, and, Y. Houri-Haddad. 2009. Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: bone loss and host response. J. Clin. Periodontol. 36:406410.
66. Ribeiro Sobrinho, A. P.,, M. A. Lanna,, L. M. Farias,, M. A. Carvalho,, J. R. Nicoli,, M. de Uzeda, and, L. Q. Vieira. 2001. Implantation of bacteria from human pulpal necrosis and translocation from root canals in gnotobiotic mice. J. Endod. 27:605609.
67. Rickard, A. H.,, P. Gilbert,, N. J. High,, P. E. Kolenbrander, and, P. S. Handley. 2003. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11:94100.
68. Roberts, G. L. 2000. Fusobacterial infections: an underestimated threat. Br. J. Biomed. Sci. 57:156162.
69. Rosen, G.,, and M. N. Sela. 2006. Coaggregation of Porphyromonas gingivalis and Fusobacterium nucleatum PK 1594 is mediated by capsular polysaccharide and lipopolysaccharide. FEMS Microbiol. Lett. 256:304310.
70. Saito, A.,, S. Inagaki,, R. Kimizuka,, K. Okuda,, Y. Hosaka,, T. Nakagawa, and, K. Ishihara. 2008. Fusobacterium nucleatum enhances invasion of human gingival epithelial and aortic endothelial cells by Porphyromonas gingivalis. FEMS Immunol. Med. Microbiol. 54:349355.
71. Shaniztki, B.,, N. Ganeshkumar, and, E. I. Weiss. 1998. Characterization of a novel N-acetylneuraminic acid-specific Fusobacterium nucleatum PK1594 adhesin. Oral Microbiol. Immunol. 13:4750.
72. Shaniztki, B.,, D. Hurwitz,, N. Smorodinsky,, N. Ganeshkumar, and, E. I. Weiss. 1997. Identification of a Fusobacterium nucleatum PK1594 galactose-binding adhesin which mediates coaggregation with periopathogenic bacteria and hemagglutination. Infect. Immun. 65:52315237.
73. Shenker, B. J.,, and S. Datar. 1995. Fusobacterium nucleatum inhibits human T-cell activation by arresting cells in the mid-G1 phase of the cell cycle. Infect. Immun. 63:48304836.
74. Takemoto, T.,, T. Hino,, M. Yoshida,, K. Nakanishi,, M. Shirakawa, and, H. Okamoto. 1995. Characteristics of multimodal co-aggregation between Fusobacterium nucleatum and streptococci. J. Periodontal Res. 30:252257.
75. Tuttle, R. S.,, and D. F. Mangan. 1990. Interaction of Fusobacterium nucleatum 191 with human peripheral blood lymphocytes. J. Periodontal Res. 25:364371.
76. Tuttle, R. S.,, N. A. Strubel,, J. Mourad, and, D. F. Mangan. 1992. A non-lectin-like mechanism by which Fusobacterium nucleatum 10953 adheres to and activates human lymphocytes. Oral Microbiol. Immunol. 7:7883.
77. Uitto, V. J.,, D. Baillie,, Q. Wu,, R. Gendron,, D. Grenier,, E. E. Putnins,, A. Kanervo, and, J. D. Firth. 2005. Fusobacterium nucleatum increases collagenase 3 production and migration of epithelial cells. Infect. Immun. 73:11711179.
78. Weiss, E. I.,, B. Shaniztki,, M. Dotan,, N. Ganeshkumar,, P. E. Kolenbrander, and, Z. Metzger. 2000. Attachment of Fusobacterium nucleatum PK1594 to mammalian cells and its coaggregation with periodontopathogenic bacteria are mediated by the same galactose-binding adhesin. Oral Microbiol. Immunol. 15:371377.
79. Winkler, J. R.,, S. R. John,, R. H. Kramer,, C. I. Hoover, and, P. A. Murray. 1987. Attachment of oral bacteria to a basement-membrane-like matrix and to purified matrix proteins. Infect. Immun. 55:27212726.
80. Xie, H.,, R. J. Gibbons, and, D. I. Hay. 1991. Adhesive properties of strains of Fusobacterium nucleatum of the subspecies nucleatum, vincentii and polymorphum. Oral Microbiol. Immunol. 6:257263.
81. Xu, M.,, M. Yamada,, M. Li,, H. Liu,, S. G. Chen, and, Y. W. Han. 2007. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J. Biol. Chem. 282:2500025009.

Tables

Generic image for table
TABLE 1

Homology between FadA and proteins from different organisms

Citation: Han Y. 2011. Interaction with Host Cells, p 221-232. In Kolenbrander P (ed), Oral Microbial Communities. ASM Press, Washington, DC. doi: 10.1128/9781555817107.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error